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1 22.12, §1 Asked

Solve as a System:

ẍ + 2ẋ − 8x = 4 x(0) = 1, ẋ(0) = 2

2 22.12, §2 Solution

Solve as a System:

ẍ + 2ẋ − 8x = 4 x(0) = 1, ẋ(0) = 2

Define new dependent variables x1 = x and x2 = ẋ.

ẋ1 = x2

ẋ2 = 8x1 − 2x2 + 4

Matrix form ~̇x = A~x + b:
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ẋ2

)

=
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Homogeneous equation:
~xh = C1~v1e

λ1t + C2~v2e
λ2t

where λ1 and λ2 are the eigenvalues of A and ~v1 and ~v2 the eigenvectors:
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= λ2 + 2λ − 8 = 0

λ1 = 2, ~v1 =

(

1
2

)

λ2 = −4, ~v2 =

(

1
−4

)

Particular solution ~̇xp = A~xp + b: guess that ~xp is constant, then A~xp = −
~b. Solve:

~xp =

(

−

1

2

0

)

Total solution:
(
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x2

)

=

(
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)
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e2t + C2

(
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)

e−4t



Put in the initial conditions:
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which gives C2 = 1

6
, C1 = 4

3
.

Final solution:
(
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)

=
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e2t +

(
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e−4t


