22.12

1 22.12, §1 Asked

Solve as a System:

$$
\ddot{x}+2 \dot{x}-8 x=4 \quad x(0)=1, \dot{x}(0)=2
$$

2 22.12, §2 Solution

Solve as a System:

$$
\ddot{x}+2 \dot{x}-8 x=4 \quad x(0)=1, \dot{x}(0)=2
$$

Define new dependent variables $x_{1}=x$ and $x_{2}=\dot{x}$.

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=8 x_{1}-2 x_{2}+4
\end{aligned}
$$

Matrix form $\dot{\vec{x}}=A \vec{x}+b$:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{rr}
0 & 1 \\
8 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{4}
$$

Homogeneous equation:

$$
\vec{x}_{h}=C_{1} \vec{v}_{1} e^{\lambda_{1} t}+C_{2} \vec{v}_{2} e^{\lambda_{2} t}
$$

where λ_{1} and λ_{2} are the eigenvalues of A and \vec{v}_{1} and \vec{v}_{2} the eigenvectors:

$$
\begin{gathered}
\left|\begin{array}{rc}
-\lambda & 1 \\
8 & -2-\lambda
\end{array}\right|=\lambda^{2}+2 \lambda-8=0 \\
\lambda_{1}=2, \vec{v}_{1}=\binom{1}{2} \quad \lambda_{2}=-4, \vec{v}_{2}=\binom{1}{-4}
\end{gathered}
$$

Particular solution $\dot{\vec{x}}_{p}=A \vec{x}_{p}+b$: guess that \vec{x}_{p} is constant, then $A \vec{x}_{p}=-\vec{b}$. Solve:

$$
\vec{x}_{p}=\binom{-\frac{1}{2}}{0}
$$

Total solution:

$$
\binom{x_{1}}{x_{2}}=\binom{-\frac{1}{2}}{0}+C_{1}\binom{1}{2} e^{2 t}+C_{2}\binom{1}{-4} e^{-4 t}
$$

Put in the initial conditions:

$$
\binom{1}{2}=\binom{-\frac{1}{2}}{0}+\binom{C_{1}}{2 C_{1}}+\binom{C_{2}}{-4 C_{2}}
$$

which gives $C_{2}=\frac{1}{6}, C_{1}=\frac{4}{3}$.
Final solution:

$$
\binom{x_{1}}{x_{2}}=\binom{-\frac{1}{2}}{0}+\binom{\frac{4}{3}}{\frac{8}{3}} e^{2 t}+\binom{\frac{1}{6}}{-\frac{2}{3}} e^{-4 t}
$$

