Introduction

Linear Constant Coefficient Equations:

- dynamical systems;
- vibrating systems;
- linearized systems;
- part of the solution of multidimensional problems;
- ...

General form:

$$
a_{0} y+a_{1} y^{\prime}+a_{2} y^{\prime \prime}+a_{3} y^{(3)}+\ldots+a_{n} y^{(n)}=q
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are all constants but q can be any function of x.
Solution of the homogeneous equation:
Homogeneous equation:

$$
a_{0} y+a_{1} y^{\prime}+a_{2} y^{\prime \prime}+a_{3} y^{(3)}+\ldots+a_{n} y^{(n)}=0
$$

Special solutions are $y=e^{\lambda x}$ provided that λ is a root of the characteristic polynomial:

$$
a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+a_{3} \lambda^{3}+\ldots+a_{n} \lambda^{n}=0
$$

If all roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are different, the general solution of the homogeneous equation is

$$
y=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x}+\ldots+C_{n} e^{\lambda_{n} x}
$$

