First Order Systems

Important for numerical work. Library subroutines usually do not solve higher order equations, but they do solve first order systems.

General First Order System:

$$
\vec{y}^{\prime}=\vec{f}(x, \vec{y})
$$

Written out

$$
\begin{gathered}
y_{1}^{\prime}=f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
y_{2}^{\prime}=f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
\ldots \\
y_{n}^{\prime}=f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{gathered}
$$

If the functions are linear constant coefficient ones, we can rewrite this as:

$$
\vec{y}^{\prime}=A \vec{y}+b(x) .
$$

In this class, solution using eigenvalues and eigenvectors is required. We assume that A is diagonalizable.

Homogeneous solution:

$$
y_{h}=C_{1} \vec{v}_{1} e^{\lambda_{1} x}+C_{2} \vec{v}_{2} e^{\lambda_{2} x}+\ldots
$$

where $\lambda_{1}, \lambda_{2}, \ldots$ are the eigenvalues of A and $\vec{v}_{1}, \vec{v}_{2}, \ldots$ the eigenvectors.
General solution: Guess and add a particular solution. Varying the parameters C_{1}, C_{2}, \ldots also works.

