
Introduction

Ordinary differential equations:

• Dynamical systems

mẍ + kx = F

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= 0

• Fluid mechanics

• Chemical reactions
dO2

dt
= −k1[O2][H2] − k2[O2][C] + . . .

dH2

dt
= −2k1[O2][H2] − k3[H2][C] + . . .

• Economics

• Biology

• ...

Notations:

• Ordinary differential equations: one independent variable

• Partial differential equations: more independent variables

• Order: order of the highest derivative

• Degree: highest degree of the dependent variable

• Linear: first degree



1.14

1 1.14, §1 Asked

Classify:

(y′′)2 − 3yy
′ + xy = 0

2 1.14, §2 Solution

(y′′)2 − 3yy
′ + xy = 0

• ordinary differential equation for y(x);

• second order;

• nonlinear (second degree)



1.21

1 1.21, §1 Asked

Classify:

d7b

dp7
= 3p

2 1.21, §2 Solution

d7b

dp7
= 3p

• ordinary differential equation for b(p);

• seventh order;

• linear (first degree)



Introduction

First order equations:

dy

dx
= f(x, y)

Artificial form convenient for problems in the book, not real life:

M(x, y) dx + N(x, y) dy = 0

In real life, only f = −M/N would be known.



Separation of Variables

Separable equation:

dy

dx
= f(x)g(y)

Solution:

∫ dy

g(y)
=

∫

f(x) dx



3.39

1 3.39, §1 Asked

Solve:
dx

dt
=

x

t

2 3.39, §2 Solution

dx

dt
=

x

t

The unknown is clearly x(t).

Separation of variables:

dx

x
=

dt

t

ln |x| = ln |t| + C

eln |x| = eln |t|+C =⇒ |x| = |t|eC =⇒ x = ±eCt

x = Dt

An additional “initial” condition would be needed to find D. For example, x = 1 at t = 1.

Note: the O.D.E. applies at all positions. Initial or boundary conditions apply only to a
specific point.



3.42

1 3.42, §1 Asked

Solve:
dy

dx
= −(x2 + 1)y y = 1 at x = −1

2 3.42, §2 Solution

dy

dx
= −(x2 + 1)y y = 1 at x = −1

Solve the O.D.E. first:
dy

y
= −(x2 + 1) dx

ln |y| = −1
3
x3 − x + C

y = ±eCe−
1

3
x3−x

y = De−
1

3
x3−x



Since the additional condition is y = 1 at x = −1, substitute in y = 1 and x = −1 to get D:

1 = De
1

3
+1

So, at any x:
y = e−

1

3
x3−x− 4

3



Homogeneous Equations

Homogeneous equation:

dy

dx
= f

(

y

x

)

Solution: define a new unknown

u =
y

x
,

so replace y by xu. The equation for u(x) will be separable.

Note: Do not confuse this use of the word “homogeneous” for first order equations with the
use of the same word for “homogeneous” for linear ODEs!

Note: To check exactness, you can replace x by tx and y by ty and see whether the ts cancel.



3.50

1 3.50, §1 Asked

Solve:
dy

dx
=

x2 + y2

2xy

2 3.50, §2 Solution

Note that the equation is homogeneous

dy

dx
=

x2 + y2

2xy

← degree 2
← degree 2

or alternatively,
(tx)2 + (ty)2

2txty
=

x2 + y2

2xy

dy

dx
=

1 +
(

y

x

)2

2
(

y

x

)

Use new unknown u = y/x, i.e., replace y by xu:

dxu

dx
= x

du

dx
+ u =

1 + u2

2u

x
du

dx
=

1 − u2

2u

Separable:

− 2u du

1 − u2
= − dx

x

ln |1 − u2| = − ln |x| + C



|1 − u2| =
eC

|x|

u2 = 1 ± eC

x
= 1 +

D

x

Get rid of u in favor of y/x:
y2 = x2 + Dx



Exact Equations

If for an equation of the form

g1(x, y) dx + g2(x, y) dy = 0,

the cross derivatives of the coefficients are equal;

∂g1

∂y
=

∂g2

∂x
,

then the equation is exact.

The solution of an exact equation is:

g(x, y) = C

where g(x, y) is found by solving

∂g

∂x
= g1(x, y)

∂g

∂y
= g2(x, y).

You do that by first solving the easier of the two, giving an integration constant that depends
on the other variable. For example, solving ∂g/∂x = g1(x, y) gives an integration constant
depend on y. Next you take that solution and put it into the other equation.

If an equation is not exact, you may sometimes be able to find an “integrating factor” in a
table.



4.32

1 4.32, §1 Asked

Solve:

−2y

t3
dt +

1

t2
dy = 0

2 4.32, §2 Solution

−2y

t3
dt +

1

t2
dy = 0

Check for exactness:
∂g

∂t

?
= −2y

t3
∂g

∂y

?
=

1

t2

∂

∂y

(

−2y

t3

)

?
=

∂

∂t

(

1

t2

)

− 2

t3
!
= − 2

t3

Integrate the easiest equation first:

∂g

∂y
=

1

t2
=⇒ g =

y

t2
+ C(t)

Put in the other equation:
∂g

∂t
= −2y

t3
+ C ′ = −2y

t3

g =
y

t2
+ C

Solution of the O.D.E.:
y

t2
+ C = C2

y = Dt2



In real life, you would have

−2y

t
dt + dy = 0



Linear Equations

Linear equation:

dy

dx
+ p(x)y = q(x)

The terms linear in y are the homogeneous part, the terms independent of y are the inhomo-
geneous terms.

Linear equations allow solutions to be added:

y′
1 + p(x)y1 = q1(x)

y′
2 + p(x)y2 = q2(x)

}

=⇒ (y1 + y2)
′ + p(x) (y1 + y2) = q1(x) + q2(x)

Solve the homogeneous equation first:

y′ + py = 0

Separable:
dy

y
= −p dx

y = Ce−
∫

p dx

Now solve the inhomogeneous equation:

Variation of parameter:

y = C(x)e−
∫

p dx

Put in the O.D.E. and solve for C(x).



5.34

1 5.34, §1 Asked

Solve:

y′ + x2y = x2

2 5.34, §2 Solution

y′ + x2y = x2

The equation is linear.

Solution of the homogeneous equation:

y′ + x2y = 0 =⇒ dy

y
= −x2 dx

ln |y| = −1
3
x3 + C1 =⇒ y = Ce−

1

3
x3

Solution of the inhomogeneous equation:

y = C(x)e−
1

3
x3

into
y′ + x2y = x2

C ′e−
1

3
x3 − Ce−

1

3
x3

x2 + x2Ce−
1

3
x3

= x2

C ′ = x2e
1

3
x3

=⇒ C = e
1

3
x3

+ C0

Solution:
y = C(x)e−

1

3
x3

= 1 + C0e
− 1

3
x3

Note: function y(x) = 1 is called a particular solution. It is one solution that satisfies the
inhomogeneous equation.

The general solution of linear equations is always: (any arbitrary particular solution) plus
(the general solution of the homogeneous equation).



(What is wrong in the graph above)?



Bernoulli Equations

Bernoulli equation:

dy

dx
+ p(x)y = q(x)yn (n 6= 0, 1)

Solution:

Take y
n to the other side:

y
−n dy

dx
+ p(x)y1−n = q(x) (n 6= 0, 1)

Putting u = y
1−n gives a linear equation:

1

1 − n

du

dx
+ p(x)u = q(x)



5.38

1 5.38, §1 Asked

Solve:

xy′ + y = xy3

2 5.38, §2 Solution

xy′ + y = xy3

It is a Bernoulli equation since it has terms linear in y and a power of y.

xy−3y′ + y−2 = x

Put u = y−2:
−1

2
xu′ + u = x

Solution of the homogeneous equation:

−1
2
xu′ + u = 0 =⇒ du

u
= 2

dx

x
=⇒ u = Cx2

Solution of the inhomogeneous equation:

u = C(x)x2

into the inhomogeneous equation:

−1
2
xC ′x2 − 1

2
xC2x + Cx2 = x

C ′ = − 2

x2
=⇒ C =

2

x
+ C0

u = C(x)x2 = 2x + C0x
2 =

1

y2

Solution:

y =
±1√

2x + C0x2



For C0 = 0 y = ±1/
√

2x:

For x = −2/C0, y is infinite.

For C0 < 0:

For C0 > 0:

Total:



Introduction

Linear Constant Coefficient Equations:

• dynamical systems;

• vibrating systems;

• linearized systems;

• part of the solution of multidimensional problems;

• ...

General form:

a0y + a1y
′ + a2y

′′ + a3y
(3) + . . . + any

(n) = q

where a0, a1, . . . , an are all constants but q can be any function of x.

Solution of the homogeneous equation:

Homogeneous equation:

a0y + a1y
′ + a2y

′′ + a3y
(3) + . . . + any

(n) = 0

Special solutions are y = eλx provided that λ is a root of the characteristic polynomial:

a0 + a1λ + a2λ
2 + a3λ

3 + . . . + anλn = 0

If all roots λ1, λ2, . . . , λn are different, the general solution of the homogeneous equation is

y = C1e
λ1x + C2e

λ2x + . . . + Cne
λnx



8.18

1 8.18, §1 Asked

Solve:

y′′ − y′ − 30y = 0

2 8.18, §2 Solution

y′′ − y′ − 30y = 0

Characteristic polynomial:
λ2 − λ − 30 = 0

has roots λ1 = 6 and λ2 = −5

General solution:
y = C1e

6x + C2e
−5x



8.19

1 8.19, §1 Asked

Solve:

y′′ − 2y′ + y = 0

2 8.19, §2 Solution

y′′ − 2y′ + y = 0

Characteristic polynomial:
λ2 − 2λ + 1 = 0

has roots λ1 = λ2 = 1.

For multiple roots, start adding factors that are increasing powers of x: General solution:

y = C1e
x + C2xex



8.21

1 8.21, §1 Asked

Solve:

y′′ + 2y′ + 2y = 0

2 8.21, §2 Solution

y′′ + 2y′ + 2y = 0

Characteristic polynomial:
λ2 + 2λ + 2 = 0

λ =
−2 ±

√
−4

2
= −1 ± i (i =

√
−1)

General solution:
y = C1e

(−1+i)x + C2e
(−1−i)x

Cleanup of complex exponentials is required in this class:

y = e−x
(

C1e
ix + C2e

−ix
)

Euler:
eiα = cos(α) + i sin(α)

y = e−x (C1[cos x + i sin x] + C2[cos x − i sin x])

y = e−x ([C1 + C2] cos x + i[C1 − C2] sin x)

Cleaned up solution:
y = e−x (D1 cos x + D2 sin x)





Method of Undetermined Coefficients

Inhomogeneous equation:

a0y + a1y
′ + a2y

′′ + a3y
(3) + . . . + any

(n) = q

where q 6= 0.

First solve the homogeneous equation, then guess a particular solution with a few undeter-
mined coefficients:

For q =: guess yp =:
eαx Ceαx

eλx Cxneλx

cos x C1 cos x + C2 sin x

polynomial polynomial
. . . . . .

The general solution is any particular solution plus the general solution of the homogeneous
equation.



10.45

1 10.45, §1 Asked

Solve:

y′′ − 2y′ + y = 3e2x

2 10.45, §2 Solution

y′′ − 2y′ + y = 3e2x

Homogeneous equation:

Characteristic polynomial:
λ2 − 2λ + 1 = 0

has roots λ1 = λ2 = 1: General solution:

yh = C1e
x + C2xex

Particular solution:

y′′
p − 2y′

p + yp = 3e2x

Guessing yp = Ce2x produces

y′′
p − 2y′

p + yp = C
(

4e2x − 4e2x + e2x
)

= Ce2x

so C = 3 and yp = 3e2x.

Total solution:

y = 3e2x + C1e
x + C2xex



10.47

1 10.47, §1 Asked

Solve:

y′′ − 2y′ + y = 3ex

2 10.47, §2 Solution

y′′ − 2y′ + y = 3ex

Homogeneous equation:

yh = C1e
x + C2xex

Particular solution:

y′′
p − 2y′

p + yp = 3ex

Particular solutions yp = ex or yp = xex don’t work. Try

yp = Cexx2 y′
p = Cex(x2 + 2x) y′′

p = Cex(x2 + 4x + 2)

y′′
p − 2y′

p + yp = Cex2

so C = 1.5.

Total solution:

y = 1.5x2ex + C1e
x + C2xex



Variation of Parameters

Works always, but is more work.

Inhomogeneous equation:

a0y + a1y
′ + a2y

′′ + a3y
(3) + . . . + any

(n) = q

where q 6= 0.

First solve the homogeneous equation, then allow its integration constants to vary.



11.10

1 11.10, §1 Asked

Solve:

y′′ + y = sec x

2 11.10, §2 Solution

y′′ + y = sec x

Homogeneous equation:

λ2 + 1 = 0 =⇒ λ = ±i

yh = A cos x + B sin x

Variation of parameters:

y = A cos x + B sin x A = A(x), B = B(x)

y′ = −A sin x + B cos x + A′ cos x + B′ sin x

Put the additional terms to zero:

A′ cos x + B′ sin x = 0 (1)

y′′ = −A cos x − B sin x − A′ sin x + B′ cos x

Do not put the additional terms to zero in the highest derivative. Instead, put everything into
the O.D.E.:

y′′ + y = −A cos x − B sin x − A′ sin x + B′ cos x + A cos x + B sin x = sec x

−A′ sin x + B′ cos x = sec x (2)



The result is a system of linear equations (1), (2) for A′ and B′:

(

cos x sin x 0
− sin x cos x sec x

)

(1)
(2)

Forward elimination:
(

cos x sin x 0
0 1 1

)

(1)
(2′) = cos x(2) + sin x(1)

Back substitution gives B′ = 1 and A′ = − tan x:

B = x + B0 A = ln | cos x| + A0

Total solution y = A cos x + B sin x:

y = ln | cos x| cos x + x sin x + A0 cos x + B0 sin x



11.25

1 11.25, §1 Asked

Solve:
...
r −3

..
r +3

.
r −r =

et

t

2 11.25, §2 Solution

...
r −3

..
r +3

.
r −r =

et

t

Homogeneous equation:

λ3 − 3λ2 + 3λ − 1 = 0 =⇒ λ1 = λ2 = λ3 = 1

rh = C1e
t + C2te

t + C3t
2et

Variation of parameters:

r = C1e
t + C2te

t + C3t
2et

Ċ1e
t + Ċ2te

t + Ċ3t
2et = 0 (1)

.
r = C1e

t + C2(t + 1)et + C3(t
2 + 2t)et

Ċ1e
t + Ċ2(t + 1)et + Ċ3(t

2 + 2t)et = 0 (2)
..
r = C1e

t + C2(t + 2)et + C3(t
2 + 4t + 2)et

...
r = Ċ1e

t + Ċ2(t + 2)et + Ċ3(t
2 + 4t + 2)et + . . .

Into the O.D.E.:

Ċ1e
t + Ċ2(t + 2)et + Ċ3(t

2 + 4t + 2)et + . . . =
et

t
(3)

Total system of equations for unknowns Ċ1,Ċ2, and Ċ3:






1 t t2 0
1 t + 1 t2 + 2t 0
t t2 + 2t t3 + 4t2 + 2t 1







(1′) = e−t(1)
(2′) = e−t(2)
(3′) = te−t(3)



Forward elimination:






1 t t2 0
0 1 2t 0
0 2t 4t2 + 2t 1







(1′)
(2′′) = (2′) − (1′)
(3′′) = (3′) − t(1′)







1 t t2 0
0 1 2t 0
0 0 2t 1







(1′)
(2′′)
(3′′′) = (3′′) − 2t(2′′)

Back substitution: Ċ3 = 1/2t, Ċ2 = −1, Ċ1 = 1
2
t, hence

C1 = 1
4
t2 + C10 C2 = −t + C20 C3 = ln

√
t + C30

Total solution:
r = t2 ln

√
tet + C10e

t + C20te
t + C∗

30t
2et



Initial Conditions

After solving the O.D.E., a finite number of unknown integration constants remain. In prac-
tical applications, these integration constants are typically found from initial conditions at
a starting point such as t = 0 or from boundary conditions at the end points a and b of an
interval a ≤ x ≤ b



12.11

1 12.11, §1 Asked

Solve:

y′′ + y = x y(1) = 0, y′(1) = 1

2 12.11, §2 Solution

y′′ + y = x y(1) = 0, y′(1) = 1

Homogeneous solution:
yh = A cos x + B sin x

Guess the particular solution Cx + D:
yp = x

General solution:
y = x + A cos x + B sin x

Put in the initial conditions

y(1) = 1 + A cos 1 + B sin 1 = 0 y′(1) = 1 − A sin 1 + B cos 1 = 1

to find A = − cos 1 and B = − sin 1:

y = x − cos 1 cos x − sin 1 sin x = x − cos(x − 1)



First Order Systems

Important for numerical work. Library subroutines usually do not solve higher order equations,
but they do solve first order systems.

General First Order System:

~y′ = ~f(x, ~y)

Written out
y′

1 = f1(x, y1, y2, . . . , yn)
y′

2 = f2(x, y1, y2, . . . , yn)
· · ·

y′
n = fn(x, y1, y2, . . . , yn)

If the functions are linear constant coefficient ones, we can rewrite this as:

~y′ = A~y + b(x).

In this class, solution using eigenvalues and eigenvectors is required. We assume that A is
diagonalizable.

Homogeneous solution:

yh = C1~v1e
λ1x + C2~v2e

λ2x + . . .

where λ1, λ2, . . . are the eigenvalues of A and ~v1, ~v2, . . . the eigenvectors.

General solution: Guess and add a particular solution. Varying the parameters C1, C2, ...
also works.



22.12

1 22.12, §1 Asked

Solve as a System:

ẍ + 2ẋ − 8x = 4 x(0) = 1, ẋ(0) = 2

2 22.12, §2 Solution

Solve as a System:

ẍ + 2ẋ − 8x = 4 x(0) = 1, ẋ(0) = 2

Define new dependent variables x1 = x and x2 = ẋ.

ẋ1 = x2

ẋ2 = 8x1 − 2x2 + 4

Matrix form ~̇x = A~x + b:
(

ẋ1

ẋ2

)

=

(

0 1
8 −2

) (

x1

x2

)

+

(

0
4

)

Homogeneous equation:
~xh = C1~v1e

λ1t + C2~v2e
λ2t

where λ1 and λ2 are the eigenvalues of A and ~v1 and ~v2 the eigenvectors:
∣

∣

∣

∣

∣

−λ 1
8 −2 − λ

∣

∣

∣

∣

∣

= λ2 + 2λ − 8 = 0

λ1 = 2, ~v1 =

(

1
2

)

λ2 = −4, ~v2 =

(

1
−4

)

Particular solution ~̇xp = A~xp + b: guess that ~xp is constant, then A~xp = −~b. Solve:

xp =

(

−1
2

0

)

Total solution:
(

x1

x2

)

=

(

−1
2

0

)

+ C1

(

1
2

)

e2t + C2

(

1
−4

)

e−4t



Put in the initial conditions:
(

1
2

)

=

(

−1
2

0

)

+

(

C1

2C1

)

+

(

C2

−4C2

)

which gives C2 = 1
6
, C1 = 4

3
.

Final solution:
(

x1

x2

)

=

(

−1
2

0

)

+

(

4
3
8
3

)

e2t +

(

1
6

−2
3

)

e−4t



Some Other Equations

1 §1 Introduction

Generally speaking, equations become more difficult when the order goes up.

For a first order equation, even if you cannot solve, you can always draw little line segments
with the right slope in the x, y plane and then draw trajectories following those directions.

For some equations there are tricks that allow you to reduce the order.

Nonlinear equations are generally more difficult than linear ones.

2 §2 Handbooks

Look it up in a mathematical handbook. Schaum’s Mathematical Handbook has some.
Abramowitz and Stegun has a large collection of equations solvable by Bessel functions and
other standard functions, and the properties of these function.

Avoid exact equations in Schaum’s Mathematical Handbook.

3 §3 Power Series

Expand the solution in a power series, equating all powers in the O.D.E. to zero.

4 §4 Euler

a0y + a1xy′ + a2x
2y′′ + a3x

3y(3) + . . . + anx
ny(n) = q

where a0, a1, . . . , an are all constants but q can be any function of x.

The substitution ξ = ln x turns this into a constant coefficient equation for y(ξ). Reason:

y′ =
dξ

dx

d

dξ
y =

1

x
yξ



y′′ = − 1

x2
yξ +

1

x

dξ

dx

d

dξ
yξ = − 1

x2
yξ +

1

x2
yξξ

y′′′ = . . .

5 §5 No y

If the derivatives of y, but not y itself appear, simply take y′ instead of y as the unknown. A
second order equation for y becomes first order for y′.

6 §6 No x

If derivatives with respect to x appear, but not x itself, use y as the new independent variable
and y′ as the new dependent variable.

y′′ =
dy′

dy
y′

y′′′ = . . .

The order of the equation for y′(y) is one less than that of the equation for y(x).

7 §7 Linear

If the equation is linear and homogeneous, setting y = ef gives an equation not involving f

itself:
y = ef y′ = eff ′ y′′ = eff ′2 + eff ′′ . . .

If the equation is linear and homogeneous, and you know a solution y1(x), setting y =
C(x)y1(x) gives a linear equation for C not involving C itself.


