Some Other Equations

1 §1 Introduction

Generally speaking, equations become more difficult when the order goes up.
For a first order equation, even if you cannot solve, you can always draw little line segments with the right slope in the x, y plane and then draw trajectories following those directions.

For some equations there are tricks that allow you to reduce the order.
Nonlinear equations are generally more difficult than linear ones.

2 §2 Handbooks

Look it up in a mathematical handbook. Schaum's Mathematical Handbook has some. Abramowitz and Stegun has a large collection of equations solvable by Bessel functions and other standard functions, and the properties of these function.

Avoid exact equations in Schaum's Mathematical Handbook.

3 §3 Power Series

Expand the solution in a power series, equating all powers in the O.D.E. to zero.

4 §4 Euler

$$
a_{0} y+a_{1} x y^{\prime}+a_{2} x^{2} y^{\prime \prime}+a_{3} x^{3} y^{(3)}+\ldots+a_{n} x^{n} y^{(n)}=q
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are all constants but q can be any function of x.
The substitution $\xi=\ln x$ turns this into a constant coefficient equation for $y(\xi)$. Reason:

$$
y^{\prime}=\frac{\mathrm{d} \xi}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} \xi} y=\frac{1}{x} y_{\xi}
$$

$$
\begin{gathered}
y^{\prime \prime}=-\frac{1}{x^{2}} y_{\xi}+\frac{1}{x} \frac{\mathrm{~d} \xi}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} \xi} y_{\xi}=-\frac{1}{x^{2}} y_{\xi}+\frac{1}{x^{2}} y_{\xi \xi} \\
y^{\prime \prime \prime}=\ldots
\end{gathered}
$$

5 §5 No y

If the derivatives of y, but not y itself appear, simply take y^{\prime} instead of y as the unknown. A second order equation for y becomes first order for y^{\prime}.

6 §6 No x

If derivatives with respect to x appear, but not x itself, use y as the new independent variable and y^{\prime} as the new dependent variable.

$$
\begin{gathered}
y^{\prime \prime}=\frac{\mathrm{d} y^{\prime}}{\mathrm{d} y} y^{\prime} \\
y^{\prime \prime \prime}=\ldots
\end{gathered}
$$

The order of the equation for $y^{\prime}(y)$ is one less than that of the equation for $y(x)$.

$7 \quad \S 7$ Linear

If the equation is linear and homogeneous, setting $y=e^{f}$ gives an equation not involving f itself:

$$
y=e^{f} \quad y^{\prime}=e^{f} f^{\prime} \quad y^{\prime \prime}=e^{f} f^{\prime 2}+e^{f} f^{\prime \prime} \quad \ldots
$$

If the equation is linear and homogeneous, and you know a solution $y_{1}(x)$, setting $y=$ $C(x) y_{1}(x)$ gives a linear equation for C not involving C itself.

