Matrix multiplication

1 General

Matrix multiplication is defined in terms of the row-column product:
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where
Cij = ailblj + CLinQj 4+ ...+ aipbpj

In other words, ¢;; is the dot product of the i-th rourvector of A times the j-th column-vector
of B:
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(Here the first row of A is written as al, the second row as a2, etc. Similar, the first column
of B is by, etc.)

The dots in the above product can be omitted since the matrix product of a row vector times
a column vector is by definition the same as the dot product of those vectors.

Multiplication in index notation:

C=AB - Cij = Zaikbkj for all 7 and j
k



The summation is over neighboring indices.

For matrices to be multiplied, the second dimension of A must be the same as the first
dimension of B.

Matrix multiplication does not ordinarily commute:

AB # BA
2 Unit matrix
The unit (or identity) matrix [ is like the number 1 for numbers: multiplying by I does not

change a matrix.

Form of the unit matrix:

1 00 ...0
010 ...0
I=1001 0
0 00 1

Index notation
The tensor 9;; is called the Kronecker delta.



