
Matrix multiplication

1 General

Matrix multiplication is defined in terms of the row-column product:
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where
cij = ai1b1j + ai2b2j + . . . + aipbpj

In other words, cij is the dot product of the i-th row-vector of A times the j-th column-vector
of B:
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(Here the first row of A is written as ~aT
1
, the second row as ~aT

2
, etc. Similar, the first column

of B is ~b1, etc.)

The dots in the above product can be omitted since the matrix product of a row vector times
a column vector is by definition the same as the dot product of those vectors.

Multiplication in index notation:

C = AB =⇒ cij =
∑

k

aikbkj for all i and j



The summation is over neighboring indices.

For matrices to be multiplied, the second dimension of A must be the same as the first
dimension of B.

Matrix multiplication does not ordinarily commute:

AB 6= BA

2 Unit matrix

The unit (or identity) matrix I is like the number 1 for numbers: multiplying by I does not
change a matrix.

Form of the unit matrix:
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Note, blocks of zeros are often omitted, (or written as a humongous zero,) so
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Index notation
Iij = δij (= 1 if i = j; = 0 if i 6= j)

The tensor δij is called the Kronecker delta.


