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Abstract

This are some revised notes on linear algebra. They supplement the
current text book [2].
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1 Gaussian Elimination

To do Gaussian (or forward) elimination in this class, the general procedure
consists of four basic steps. Take the initial “submatrix” to look at to be the
complete given matrix. Then:

GE I If there is only one row left in the submatrix currently being looked at,
you are done with Gaussian elimination. And so you are if there are no
more nonzero coefficients in the submatrix.

GE II In the submatrix currently being looked at, identify the first column
that still has a nonzero coefficient. Any earlier columns no longer appear
anywhere, and should be dropped from the submatrix being looked at.

GE III In the submatrix currently being looked at, use the first row to elimi-
nate the first coefficient from the subsequent rows. Normally, you do that
by subtracting suitable multiples of the first row from the subsequent ones.
Step GE III can be described as “creating zeros below the pivot.” Note
that this is only possible if the coefficient in the first column of the first
row, called the pivot, is nonzero. In general, before doing the actual step
GE III, you may need to exchange the current first row with a later one
that will produce a better pivot. The next section will explain that in
more detail.

GE IV Drop the first row and the first column from the submatrix being looked
at. With the so-reduced submatrix, repeat the process starting from step
GE I.

This process will give rise to a so-called “echelon form” of the matrix. That
is a special case of an upper triangular (if square) or upper trapezoidal (if not
square) matrix.

Additional note: the eliminations in GE II can be done in a single step for
all rows below the pivot. You do not have to show each row using a separate
matrix. You must however explicitly show the multiplier(s) used.

2 Partial Pivoting

Partial pivoting is defined as interchanging the first row of the submatrix cur-
rently being looked at with a subsequent one. Its purpose is to replace the
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current pivot by a more desirable one. In particular, partial pivoting must be
used if otherwise the pivot would be zero.

More generally, partial pivoting must be used to select the equation with the
most desirable pivot. In particular

• In a numerical solution of systems of equations on a computer, the
main objective is to minimize the effect of round-off errors. Here
you should select the row having the pivot with the largest absolute
value. (This assumes that the equations are scaled in a consistent,
reasonable way.)

• In hand computations with integer matrices in homework or an exam
in this class, the objective is to avoid fractions in the algebra. So
you try to select a pivot which is ±1.

Note that there may not be such a pivot. In that case, you may
be still be able to avoid fractions by partial pivoting. Or else you
might be able to avoid them by multiplying the row being replaced
by an integer greater than 1 instead of 1.

If that works, it should normally be done. However, if you want
to identify matrices L and U in the LU theorem, you can only mul-
tiply the row being replaced by 1. Otherwise the theorem does not
work. So you may have to live with fractions.

3 Back substitution

To solve an echelon system resulting from Gaussian elimination, start with the
last equation and work backwards to the first. At any stage,

• If all the coefficients of the unknowns are zero, and the right hand
side too, the equation is trivial. Ignore it.

• If all the coefficients of the unknowns are zero, and the right hand
side is not, there is no way to satisfy it. So there is no solution to
the given system of equations. Note so explicitly.

• In all other cases, solve the equation for the pivot variable (the vari-
able with the pivot, i.e. with the first nonzero coefficient.) Take the
other terms to the right hand side and substitute in anything you
already learned in solving the previous equations below it.

4 LU Theorem

If you put minus the multipliers in a Gaussian elimination without partial piv-
oting in a lower triangular matrix L, with values 1 on the main diagonal, then

LU = A (1)
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That is the LU theorem.
After L and U have been found through Gaussian elimination, you can solve

A~x = ~b for any given right hand side vector ~b as follows: The system to solve
is according to the theorem LU~x = ~b. Temporarily call U~x = ~y. Solve L~y = ~b
using simple forward substitution. With ~y now known, U~x = ~y can be solved
using back substitution as before:

L~y = ~b U~x = ~y (2)

In case partial pivoting was needed, remember the row order interchanges
you did and do the same interchanges with the coefficients of ~b before solving
as above. You also need to do the row exchanges on the forming matrix L while
doing the GE. LU will then be the matrix App, equal to matrix A except with
its rows in the final order produced by all the row interchanges.

For large n × n matrices the number of computer “operations” (defined as
1 multiplication and 1 addition) to find L and U is approximately 1

3
n3. After

that, to find a ~x given a ~b takes only about n2 operations.
Some warnings. Normally speaking:
1. Never ever use Cramer’s rule for anything but the tiniest of matrices.

Multiplying out a determinant takes about (n+1)! operations, which
is gigantically larger than 1

3
n3 for everything except the tiniest n.

Not to mention the possible round-off error growth with so many
operations. And the risk of overflow and underflow (i.e. numbers
getting outside the range that they can be stored on a computer.)

2. If you find the inverse matrix A−1, you can simply find any ~x as
A−1~b. But that is normally a bad idea. One reason is that it takes
n3 operations to find A−1, three times more than to find L and U .
And to evaluate A−1~b still takes n2 operations. Also the additional
operations tend to increase round-off error, [1].

3. A band matrix is a matrix in which the nonzero elements are re-
stricted to a relatively narrow band around the main diagonal. Never
ever use an LU decomposition library routine designed for a full ma-
trix to solve a system with a band matrix. The waste in storage and
computer effort to store all these zeros, and compute with them,
would be gigantic. Use an LU decomposition subroutine designed
for a band matrix.

4. Never ever find the inverse of a band matrix if you can help it. The
inverse will be a full matrix. However, L and U will still be band
matrices. (Partial pivoting may increase U a bit to outside the band
of A, by up to the width of L.)
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5 Reduction to Row Canonical form

To reduce a matrix to “row canonical” form, (AKA “row reduced echelon”
form, or “reduced row-echelon” form, or “Gauss-Jordan” form), first reduce
it to echelon form using Gaussian elimination as described in section 1. Then,
starting from the last equation with a nonzero coefficient of an unknown,

1. Use the equation to eliminate the first unknown with a nonzero co-
efficient in the equation, (i.e. the pivot unknown), from the previous
equations (i.e. create zeros above the pivot). Do not worry about
fractions anymore; they cannot normally be avoided.

2. Divide the equation by the pivot so that the pivot becomes 1.
3. Go to the previous equation, if any, and repeat the process.
Note: you can do both steps 1 and 2 above in each stage at the same time.

You do not have to show each row nor the final scaling using a separate matrix.
You must however explicitly show the multiplier(s) used.

Note: in this class you may not reduce a matrix to row canonical unless
you are explicitly told so or the given class procedure requires it. Normally you
must stop after you did the Gaussian elimination (producing normal echelon
form with pivots that in general are not 1). That is because this is the standard
and most efficient way to do it.

You may however proceed to row-canonical when finding the inverse of a ma-
trix using the Gaussian Elimination method described later. You must proceed
to row-canonical to find a simplified basis of the row space of a matrix, or of the
column space, (starting from the transpose matrix), as described later.

6 Finding null spaces and solution spaces

To find the null space of a matrix, reduce it to echelon form as described earlier.
To refresh your memory, the first nonzero elements in the rows of the echelon
form are the pivots. Solve the homogeneous system by back substitution as also
described earlier. To refresh your memory, you solve for the pivot variables.
The variables without pivots cannot be solved for and become parameters with
arbitrary values in the null space, multiplying “basis vectors”. The coefficients
inside the basis vectors come from the solved variables or from writing trivialities.

For example, if your unknowns are (x1, x2, x3, x4, x5, x6) and your echelon
matrix is











0 2 4 6 8 6
0 0 0 5 0 0
0 0 0 0 2 4
0 0 0 0 0 0










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then the last equation is trivial and you get from the third

2x5 + 4x6 = 0 =⇒ x5 = −2x6

then from the second
x4 = 0

then from the first

2x2 + 4x3 + 6(0) + 8(−2x6) + 6x6 = 0 =⇒ x2 = −2x3 + 5x6

To get the null space (i.e. the full set of vectors (x1, x2, x3, x4, x5, x6) that
produce zero when premultiplied by the original A), the variables (x1, x3, x6)
without pivots go in the right hand side as arbitrary constants that can be
anything:

null space:





















x1

x2

x3

x4

x5

x6





















null space

= x1





















1
0
0
0
0
0





















+ x3





















0
−2
1
0
0
0





















+ x6





















0
5
0
0
−2
1





















The coefficients for the pivot variables (x2, x4, x5) in the vectors in the right hand
side come from the solved equations, and those for (x1, x3, x6) from trivialities.

To get a basis for the null space, you can use the constant vectors in the
right hand side:

a basis of the null space:





















1
0
0
0
0
0





















,





















0
−2
1
0
0
0





















, and





















0
5
0
0
−2
1





















(By definition any vector in the null space is a linear combination of the above
three vectors. And it is easy to see that the three are linearly independent.)

If the above basis would contain fractions, you should consider multiplying
them by some nonzero constants to clean up. Note that that will of course affect
the given expression for the null space.

To find a solution space is almost the same as finding the null space, except
that you will use an augmented matrix to include the given nonzero right hand
side. The right hand side will produce an additional vector in the solution space
that is not multiplied by any unknown. Therefore the solution space is not a
vector space (assuming that the given right hand side is not zero) and has no
basis.
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7 Finding inverses using GE

Note: if you are required to find an inverse using minors in this class, do not
use any GE, even for attractive simplifications.

Note: If a matrix is orthonormal, its inverse must be found using a transpose
in this class.

Finding the inverse of a matrix is usually a bad idea. But if you do need it,
you may use the following trick:

1. Create an augmented matrix in which the n right hand side column
vectors are the columns of the unit matrix.

2. Reduce the matrix to row canonical form using Gaussian elimination
as described earlier. In other words

(A|I)
GE
−→ (ARowCan|BRed)

3. For a nonsingular matrix A, ARowCan will be a unit matrix and BRed

will be the desired A−1. (For a singular matrix, one of the pivots
will be found to be zero in the reduction to echelon form, and there
is no inverse matrix.)

Note that what you are really doing in the above is solving the system of
equations AA−1 = I for the columns of A−1. The only trick is that if you reduce
the matrix all the way to a unit matrix, the solution A−1 becomes the same as
the right hand side of the reduced system.

Also note that the most efficient way to find the inverse, in terms of oper-
ations, is still LU decomposition. Normally this would take 1

3
n3 operations to

find L and U and then n3 operations to find the n columns of A−1. But the
right hand sides to the U~y = ~b systems are unit vectors, which are mostly zeros.
If you use this to avoid computing coefficients in y that are automatically zero,
you can reduce the operations by 1

3
n3.

8 Finding inverses using minors

Note: if you are required to find an inverse using GE in this class, do not use
any minors, even on 2× 2 matrices.

Note: If a matrix is orthonormal, its inverse must be found using a transpose
in this class.

In this class, if you need to find an inverse matrix using the method of
minors,

• Write the transpose matrix.
• Form a matrix of the minors of each of the elements of the transpose
matrix, with a checkerboard sign pattern. (Positive on the main
diagonal.)
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• Divide by the determinant.
• Evaluate.

9 Finding inverses using transposing

A matrix is orthonormal if its columns are mutually orthogonal and of length 1.
For an orthonormal square matrix, its inverse must be found using a transpose
in this class. This is mainly important, in this class, for the transformation
matrices that diagonalize symmetric matrices.

10 Finding eigenvalues

In this class, to find the eigenvalues of an n× n matrix,
1. Form the matrix A − λI. That means, add −λ to each diagonal

elements. (Don’t forget zero diagonal elements.)
2. Find the determinant of that matrix using the method of minors.

(Gaussian elimination is too messy here and should not be used.)
3. Set this determinant to zero. For an n× n matrix, the determinant

can always be written in the form

|A| = ±(λ− λ1)(λ− λ2) . . . (λ− λn)

where λ1, λ2, . . . , λn are the eigenvalues. They are found as the roots
(or zeros) of the determinant. There are always n eigenvalues. But
these n eigenvalues do not necessarily correspond to n different num-
bers. For example, for some matrix λ2 might be the same number
as λ4. In that case, that number is called a “double eigenvalue”. If
three of the eigenvalues are the same number, that number is called
a “triple eigenvalue,” etcetera.

For an n × n matrix, the determinant is always a polynomial of degree n,
call it pn(λ). Now finding the roots of quadratics, n = 2, is easy. But if the
dimension of the matrix n = 3, you have to solve a cubic equation. For that the
general solution is very and hard to apply, especially if you do not know complex
variables. For n = 4, the general solution is even worse, and for n = 5 or more,
there is no general expression for the roots at all. (It has in fact been proved
that such an expression is impossible to find.) To deal with such problems, here
are some tricks:

• Do not be too quick to multiply out. Maybe you can recognize a
common factor λ − λi in all terms before multiplying out. In that
case, λi is one of your eigenvalues. To find the remaining eigenvalues,
take the factor λ− λi out of the entire expression and look at what
is left.
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• If you can guess a root λi (by trying, say, 0, ±1, ±2, . . . , and seeing
whether the determinant is zero for that value of λ), then you can
write the original characteristic polynomial pn(λ) as (λ− λi)pn−1(λ)
where pn−1(λ) is one degree less that pn(λ). So its roots are easier
to find. You find pn−1(λ) by long division of pn(λ) by (λ− λi).

• Sometimes a fourth order polynomial is really just a quadratic when
written in terms of λ2, like (λ2)2 − a(λ2)− b. In that case, first find
the values of λ2, then from those the values of λ.

11 Eigenvectors of nonsymmetric matrices

To find the eigenvectors of a nonsymmetric matrix,
1. Find the eigenvalues of the matrix as described.
2. For each distinct eigenvalue λi, find the basis of the null space of

A − λiI. This basis forms a complete set of eigenvectors ~ei for the
eigenvalue. The method for finding nullspaces was discussed earlier.

There is always at least one eigenvector. However, for a multiple eigenvalue,
the number of eigenvectors might be less than the multiplicity of the eigenvalue.
If so, the matrix is defective. (This is not to be confused with singular. A matrix
is singular if an eigenvalue is zero, making its determinant zero.) For example,
a matrix is defective if a double eigenvalue has only one eigenvector. Or a triple
eigenvector only one or two.

12 Eigenvectors of symmetric matrices

Real symmetric matrices (or more generally, complex Hermitian matrices) al-
ways have real eigenvalues, and they are never defective. Their eigenvectors
can, and in this class must, be taken orthonormal. (Mutually orthogonal and of
length 1.)

For real symmetric matrices, initially find the eigenvectors like for a nonsym-
metric matrix. However, after that, youmust make the eigenvectors orthonormal
in this class.

• For eigenvectors belonging to single eigenvalues, orthogonality to all
the other eigenvectors is automatic. Therefore it is enough to just
divide the eigenvector by its length:

~ei = ~eBAD
i /|~eBAD

i | (3)

Clean up, and that is it.
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• However, eigenvectors belonging to a multiple eigenvalue are usually
not mutually orthogonal if correctly found using the class procedure
(as basis of the A−λiI null space). You must make them orthogonal.

The most general method to do that is using the Gram-Schmidt
procedure. This procedure works as follows. You start with the
nonorthogonal eigenvectors corresponding to the multiple eigenvalue,

~eBAD
1 , ~eBAD

2 , ~eBAD
3 , . . .

obtained using the same procedure as for nonsymmetric matrices.
For an eigenvalue of multiplicity m, there will be exactly m of these
eigenvectors (since symmetric matrices can never be defective). I am
assuming here that you have numbered these eigenvectors as 1, 2,
. . . . If not, just replace 1, 2, . . . by i1, i2, . . . .

You create your first good eigenvector ~e1 as before, by simply
dividing ~eBAD

1 by its length:

~e1 = ~eBAD
1 /|~eBAD

1 |

Now you need to make the remaining vectors in the set of m
orthogonal to ~e1. You do that by removing from each vector its
vector component in the direction of ~e1, as follows:

~eBAD,2
2 = ~eBAD

2 − (~eBAD
2 · ~e1)~e1 ~eBAD,2

3 = ~eBAD
3 − (~eBAD

3 · ~e1)~e1 . . .

Vectors ~eBAD,2
2 , ~eBAD,2

3 , . . . are now orthogonal to ~e1.
Now you create your second good eigenvector ~e2 by simply divid-

ing ~eBAD,2
2 by its length

~e2 = ~eBAD,2
2 /|~eBAD,2

2 |

If there are still vectors left, you need to make each orthogonal
to ~e2. In the same way as before

~eBAD,3
3 = ~eBAD,2

3 − (~eBAD,2
3 · ~e2)~e2 . . .

Now you create your third good eigenvector ~e3 by simply dividing
~eBAD,3
3 by its length

~e3 = ~eBAD,3
3 /|~eBAD,3

3 |

If there are still vectors ~eBAD,3
4 , . . . left, you now have to make

them orthogonal to ~e3. Then you can find ~e4 by dividing ~eBAD,4
4 by

its length.
Continue like this for multiplicities greater than 4. The general

formula is

~eBAD,new
j = ~eBAD,old

j − (~eBAD,old
j · ~ei)~ei for i = j+1, j+2, . . . ,m

(4)
where ei is the last good eigenvector obtained so far and j > i.
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13 Change of basis (coordinate system)

Normally, you use “Cartesian coordinates” when dealing with vectors. That is
based on “Cartesian basis vectors” ı̂, ̂, k̂, . . .. For example, in two dimensions,

ı̂ =

(

1
0

)

̂ =

(

0
1

)

These Cartesian basis vectors are shown in red in figure 1(a). Using these two
basis vectors, you can write any vector ~v in the form

~v = v1ı̂+ v2̂

This is illustrated graphically in figure 1(b). Note how, starting from the origin,
if you first move over v1ı̂ and then over v2̂ you reach the end point of vector
~v. Now v1 and v2 are ordinary numbers that are called the “components”, or
“coefficients,” or “coordinates” of vector ~v.

Therefore, in this way, you are never have to deal with more vectors that ı̂
and ̂. All the rest is just ordinary numbers.

But sometimes it is convenient to use a different basis than the obvious ı̂, ̂
one. For example, you might know that in dealing with plane stresses, it is often
convenient to rotate the coordinate system to the “principal axes.” In principal
axes, there are no shear stresses, just normal stresses. But if you rotate the
coordinate system, ı̂ and ̂ become different vectors, call them ı̂′ and ̂′. The
point however is that in using these new basis vectors ı̂′ and ̂′, your physical
problem has simplified.

As we will see later, to simplify a problem, the desired new vectors are not
always orthonormal (orthogonal and of length 1) like ı̂′ and ̂′ in the example
above. In general, the new basis vectors, we will call them ~p1 and ~p2, can be
anything, as long as they are linearly independent. As long as that is true, you
can still write any arbitrary vector ~v as

~v = v′1~p1 + v′2~p2

where v′1 and v′2 are still ordinary numbers. They are called the coordinates of
~v in the new basis ~p1, ~p2. It is illustrated graphically in figure 1(c).

However, in general the coordinates v′1 and v′2 in the new basis are not the
same as the coordinates v1 and v2 in the old basis ı̂, ̂. So, if you want to use the
new basis to your advantage, you will normally have to know how to compute
v′1 and v′2 if you know v1 and v2 and/or vice-versa. That is the problem that
this section will address.

First, to find the old coordinates v1 and v2 given the new ones v′1 and v′2 is
easy. Just write the above equation as a row-column multiplication:

~v =
(

~p1 ~p2
)

(

v′1
v′2

)
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(a)

~v

ı̂

̂
~p1

~p2

(b)

~v

ı̂

̂
~p1

~p2

v1ı̂

v1ı̂

v2̂v2̂

(c)

~v

ı̂

̂
~p1

~p2

v′1~p1

v′1~p1

v′2~p2

Figure 1: Illustration of a change of basis in two dimensions. (a) The standard
basis ı̂, ̂, a new basis ~p1, ~p2, and any arbitrary vector ~v. (b) Any vector ~v can
be written as ~v = v1ı̂ + v2̂. (c) However, the same vector can also be written
as ~v = v′1~p1 + v′2~p2. That uses the new basis.
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Then write that out in terms of the old Cartesian coordinates:
(

v1
v2

)

=
(

~p1 ~p2
)

(

v′1
v′2

)

or more concisely,
~v =

(

~p1 ~p2
)

~v ′

where a prime on a vector means that its coordinates are written out in terms
of the new basis, and no prime means they are written out in terms of the old
basis. According to the above, to get the old coordinates from the new ones,
just put ~p1 and ~p2 in a matrix, call it P ,

P =
(

~p1 ~p2
)

(5)

and multiply by that matrix. Do note that the ~p1 and ~p2 that you put in P
must be written out in terms of the old Cartesian coordinates. But what else
could you do?

So you get the following transformation formulae between coordinates

~v = P~v ′ ~v ′ = P−1~v (6)

with P as above. Note that while P computes the old coordinates from the new
ones, it is called “the transformation matrix from old to new”. It does not make
any sense, but that is what mathematicians call it. Just remember, “old to new”
really means old from new.

The final thing you need to know is what happens to matrices. If a matrix
A converts a vector ~v to a vector ~w in terms of Cartesian coordinates, then A′

should convert ~v ′ to ~w ′ in terms of the new coordinates. Since

A~v = ~w =⇒ AP~v ′ = P ~w ′ =⇒ P−1AP~v ′ = ~w ′

the desired matrix A′ is seen to equal P−1AP .
So the transformation rules for matrices are

A = PA′P−1 A′ = P−1AP (7)

That is much like the ones for vectors, except there is an additional trailing P−1,
respectively P .

While we used a two dimensional example, you can do all of the above in
any number of dimensions. You just add more basis vectors to transformation
matrix P .
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14 Diagonalization of nonsymmetric matrices

If a matrix A is not defective, you can use its eigenvectors as new basis. It turns
out that in that basis the matrix simplifies to a diagonal matrix

A′ =













λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
...

. . .













(8)

Since this diagonal matrix has the eigenvalues on the main diagonal, (in the
order that you arranged the corresponding eigenvectors), it is often written as
Λ instead of A′.

Needless to say, this simplification is a tremendous help if you are doing
analytical or numerical work involving the matrix.

The quickest was to see why A′ is diagonal like above is to note that in terms
of the new basis, A~v produces a new vector ~w ′ according to

~w ′ = A′~v ′ = A′(v′1~e1 + v′2~e2 + . . .+ v′n~en) = v′1λ1~e1 + v′2λ2~e2 + . . .+ v′nλn~en

since ~e1, ~e2, . . . are eigenvectors of A. So the coefficients of ~w ′ are related to
those of ~w ′ as v′1λ1, v

′

2λ2, . . . , v
′

nλn. And that is just what multiplying by the
diagonal matrix A′ above accomplishes.

Recall from section 13 that the transformation matrix P for change of basis
to the eigenvectors must equal the matrix E of eigenvectors. You therefore have
for any vector ~v and matrix M that you want to transform from new coordinates
to old or vice-versa:

~v = E~v′ ~v′ = E−1~v M = EM ′E−1 M ′ = E−1ME (9)

Here the primes mean the vector or matrix as it appears in the new basis of
eigenvectors.

In summary, a nondefective matrix becomes diagonal when its eigenvectors
are used as basis. The main diagonal contains the eigenvalues, ordered like the
corresponding eigenvectors in E.

15 Diagonalization of symmetric matrices

For symmetric matrices the same observations apply as for nonsymmetric ma-
trices in the previous section. But there are some further considerations.

Most importantly, the eigenvectors, if found using the class procedure, are or-
thonormal. So you can consider the eigenvectors ~e1, ~e2, . . . to be a rotated Carte-
sian basis. To make this clearer to other people, you should rename ~e1, ~e2, . . .
to ı̂′, ̂′, . . ..
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The most important other thing to remember is that the transformation
matrix

E = (̂ı′ ̂′ . . .)

is now orthonormal. So be sure to use section 9 to find its inverse.
Note further that if the determinant of the transformation matrix E is neg-

ative, the rotated coordinate system is also left-handed instead of right-handed.
It corresponds to a mirroring of a coordinate besides the rotation. If this bothers
you, multiply one of the eigenvectors by minus one.
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