
EML 4930/5930 Spring 2006
Analysis in Mechanical Engineering II

Van Dommelen

1 Catalog Description

None.

2 Credit Hours

3

3 Prerequisites

EML 5060.

4 Textbooks

Advanced Engineering Mathematics (Hardcover) by Peter V. O’Neil. Hardcover: 1194 pages Publisher:
Thomson-Engineering (Thomson Learning? Brooke/Cole?); 5th edition (July 9, 2002). ISBN: 0534400779

5 Instructor

Dr. Leon Van Dommelen:

Office hours M 10:15-11:15, R 10:30-11:30 in A242 CEB

Phone (850) 410-6324. I tend to forget to check my voice mail.

E-mail dommelen@eng.fsu.edu

Web page http://www.eng.fsu.edu/∼dommelen/index.html

Contact information See web page

6 Teaching Assistant

None

7 Schedule

Class times: MWF 9:15-10:05 am in A226 CEB (A building).
Tentative outline; first time this class is taught. Relevant sections of the book are listed below, but some

material will only be in the notes (which will be scanned and put on the web.)

• 01/09/06 M 11.1 Example vector functions of one variable in science and engineering. (Position, electric
field.) 11.2 Derivatives and their meaning. (Velocity, acceleration.)

• 01/11/06 W Curve length. Normal vector and curvature. Tangential and normal components.
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• 01/13/06 F 11.3 Example scalar and vector fields in science and engineering. (Density, potential energy,
velocity field, electrical field, gravity vector, current density.) Streamlines and lines of force. 11.4
Example gradients of a scalar in science and engineering. (Pressure, electrostatic potential, velocity
potential.)

• 01/16/06 M Martin Luther King day.

• 01/18/06 W Example directional derivatives in science and engineering. (Heat flux through surfaces,
shear stress on surfaces, magnetic flux.) Example level surfaces in science and engineering. (Isobars,
surfaces of conductors) The normal vectors to them. Tangent planes.

• 01/20/06 F 11.5 Examples of inflow and outflow in science and engineering. (Fluid mechanics, heat trans-
fer, electrical current.) Relation to the divergence for infinitesimal regions. Relation to the divergence
for finite regions (mention.) Solid body motion. Relationship to the curl. Due:

1. Consider a Miata cornering at maximum speed through a parabolic curve given by y = x2/(2R)
where R is a constant equal to the radius of the radius of curvature at the apex x = 0. Write an
expression for the arclength of the curve, from the apex, as a function of x. Also give the tangential
unit vector to the curve as a function of x. Also find the redius of curvature as a function of x and
show that the curvature is greatest at x = 0. (Do not try to find these quantities as a function of
the arclength s; that would be prohibitively messy.)

Now assume that the magnitude of the car acceleration that the Miata tires can support |~a| is
equal to one g. (In other words, the radius of the friction circle is one g.) The fastest time will
be obtained by decelerating and accelerating the Miata so that the tires are always at that limit
|~a| = g. Show that this is achieved if I drive the car so that x = V t where V is a constant. Also
find V in terms of g and R. Find the tangential component of acceleration as a function of x, and
from this discuss that when I have reached the apex, I should stomp on the gas, or start increasing
the gas linearly with time, or quadratically with time.

2. (11.3.17) Find and sketch the streamlines of the velocity field

~v = ez ı̂ − x2k̂

Next find the particular streamline that passes through the point (4,2,0).

3. (11.3.21) Construct an electrostatic field whose field lines are straight lines. Where would you
physically find such a field? Also give a few examples of common velocity fields that have straight
streamlines.

• 01/23/06 M Relationship of divergence and curl to the derivative tensor of a vector field. The skew-
symmetric part and solid body rotation.

• 01/25/06 W The symmetric part and rate of deformation.

• 01/27/06 F Divergence and Stokes theorems. Parametric curves and surfaces and integration.

Due:

1. (11.4.[1],19,29) Given the following two scalar fields and a point P:

φ = x2 + y2 − z2 ψ = x2 + y2 P = (2, 2, 2
√

2)

describe the shape of the surface φ = 0 and of the surface ψ = 8. Show that point P is on both
surfaces, in other words, it is one of the points where the two surfaces cut through each other. Find
the gradient of φ at point P and also the maximum increase of φ with distance from point P at
point P , as well as the maximum decrease.
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2. Continuing the previous question, if a particle at point P moves with a velocity ~v = ı̂ + ̂, what is
the derivative of φ with distance traveled for this particle at point P? At what angle do the surfaces
φ = 0 and ψ = 8 cut through each other at point P? Does this angle sound right geometrically?

3. The fundamental theorem of vector calculus, also known as Helmholtz’s theorem, states that any
vector field meeting certain conditions (of decaying towards infinity) can be resolved into irrotational
(curl-free) and solenoidal (divergence-free) component vector fields.

This implies that any vector field ~v meeting certain decay criteria can be considered to be generated
by a scalar potential φ and a vector streamfunction ψ.

~v = ∇ϕ + ∇× ~ψ

Show that the divergence of ∇ϕ must produce the divergence of ~v (the rate of expansion) and the

curl of ∇× ~ψ produces the curl of ~v (the vorticity.) Hint: use that the divergence of any curl and
the curl of any gradient are always zero.

4. (11.5.13) The net outward mass flow generated per unit volume in fluid mechanics is ∇·(ρ~v), where
ρ is the density and ~v the velocity. Rewrite this in terms of vector derivatives of ρ and ~v themselves.
When eliminating the pressure from the momentum equations, we end up with ∇× (ρ~v). Rewrite
this too in terms of vector derivatives of ρ and ~v themselves.

5. (11.5.18) In 2D incompressible flow we can define a scalar streamfunction ψ so that ~v = ∇×(ψk̂). In
that case the Laplacian of ψ equals minus the vorticity. In 3D incompressible flow we can similarly
define a vector streamfunction ~ψ so that ~v = ∇× ~ψ. This satisfies the incompressibility condition
∇ · ~v = 0 automatically since the divergence of any curl is zero. Show that

∇× (∇× ~ψ) = grad div ~ψ −∇2 ~ψ

(Showing this for one component is enough, since there is no prefered direction in the problem.)

From this result, argue that if we still want the vorticity ∇ × ~v to be minus the Laplacian of ~ψ,
we will have to choose the divergence of ~ψ equal to a constant. Show that if ∇ · ~ψ = C, then
~ψ = 1

3
C~r+ ~ψ0 where ∇· ~ψ0 = 0 and the 1

3
C~r does not produce any velocity, so we may as well leave

it out. So, the vector streamfunction is normally taken to be solenoidal (i.e. with zero divergence.)

• 01/30/06 M Parametric curves and surfaces and integration continued.

• 02/01/06 W Parametric curves and surfaces and integration continued. 12.1 Examples of line integrals
in science and engineering: work, circulation, Ampere’s law and Maxwell’s.

• 02/03/06 F Continued: Faraday’s law and Maxwell’s. 12.4 Examples of surface integrals in science and
engineering: conservation laws, Gauss’ laws and Maxwell’s, land surface of the earth. Archimedes. Due:

1. (c.f. 12.8.9-16, section 12.8.1) Going back to last week’s fundamental theorem of vector calculus,

~v = ∇ϕ + ∇× ~ψ

show that if ∇× ~ψ produces the curl of ~v, then the remainder must be the gradient of a scalar.

2. (c.f. section 12.8.1) In fluid flow about solid, stationary bodies, the velocity must be zero on the
solid surfaces. The vorticity, ∇×~v is normally not zero on the surfaces. Explain how that is possible
if ~v = 0. Next, use Stokes’ theorem to argue that the component of vorticity normal to the surface
is zero. Vorticity lines at solid stationary surfaces follow the surface (if the vorticity is nonzero).

3. (c.f. 12.8.9-16, section 12.8.1) We have seen in class that if a flow field is in a state of solid body
rotation, the vorticity vector ~γ is constant over space and equal to twice the angular velocity vector
~ω. Show that the converse is not true. If the vorticity ~γ is constant, the velocity is not necessarily
that of a solid body rotation. Hint: examine the properties of ∆~v = ~v − 1

2
~γ × ~r and establish that

∆v can be any arbitrary potential flow velocity field.
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4. Consider the velocity field of Couette flow:

~v = ı̂Cy

where C is a constant. Find the velocity derivative tensor, the rate of expansion, the vorticity ~γ
and the strain rate tensor of this flow.

5. In the Couette flow of the previous question, since the angular velocity ω = 2~γ is constant, the
fluid particles should continue to rotate around in time and for large times make many revolutions
around their centers. Now study an arbitrary straight line of fluid particles and see how many
revolutions it actually makes. In particular, show that no line of fluid particles will ever complete
even half a revolution. Take a circle of fluid particles (as many people do to make the “vorticity =
angular velocity” argument) and sketch how it really evolves for large times. Does it rotate many
revolutions? Comment on the wisdom of using concepts from solid body mechanics for describing
the motion of distorting fluids.

6. For the Couette flow of the previous questions, rotate the coordinate system 45 degrees counter-
clockwise around the z-axis to new x′ and y′ axes and new velocity components u′ and v′, and show
that

u′ = 1

2
C(x′ + y′) v′ = − 1

2
C(x′ + y′)

Show that this velocity field has a strain rate tensor that is diagonal.

7. Substract the solid body rotation from the u′, v′ velocity field of the previous question and show
that the remaining velocity field is

u′

r = 1

2
Cx′ v′

r = − 1

2
Cy′

Describe the distortion of an initially square fluid element in a time interval dt due to this remaining
velocity field. Also describe the distortion of a little circle x′2 + y′2 = ε2 in this velocity field.

• 02/06/06 M Derivation of the heat and continuity equations. Uniqueness of the solution of the heat
equation using the energy method.

• 02/08/06 W Improperly posedness of the backward heat equation. The fundamental solution to the
Laplacian in 3D. The Poisson equation.

• 02/10/06 F Solution to the Poisson equation in inifinite 3D space. Solution to the Poisson and Laplace
equation in finite spaces: panel and boundary element methods.

1. (12.1.16) Given the force ~F = xı̂ + y̂ − xyzk̂, find the work along the path y = x, z = −3x2 for
−1 ≤ x ≤ 3.

2. (12.1.17) Find the work along the path ~r = (t,−2t, 5t) for 1 ≤ t ≤ 4 if the component of the force
tangential to the path equals 3y3.

3. (12.5.3) Find the center of mass of the conical shell z =
√

x2 + y2 for x2 + y2 ≤ 9. The mass per
unit area of the shell is constant. Do not use cylindrical coordinates. For a bonus 10 points, give
me the z-value for the problem as stated in the book.

4. (12.5.8) Find the flux of ~F = xzı̂− yk̂ across the part of the spherical surface x2 + y2 + z2 = 4 that
is above z = 1. Do not use cylindrical coordinates nor polar coordinates.

5. As we have seen, the fact that a velocity field has a constant vorticity, e.g. ∇ × ~v = k̂, does not
mean that it is in a state of solid body rotation. (See the Couette flow example.) However, we can
say something about the average tangential velocity around any arbitrary circle in the flow field.
What? Such constant vorticity flows really exist. Assuming that z is upwards, what can you say
about the speed-up of bathtub vortices in such flows? Are you sure that is right?
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6. In standard fluid mechanics, the linear momentum equation for an arbitrary fixed volume V is:

d

dt

∫

V

~vρdV +

∫

S

~v(ρ~v · ~n) dS =

∫

S

~T dS

where S is the entire outside surface of the volume V and ~T is the complete stress (viscous plus
pressure). In index notation:

d

dt

∫

V

viρdV +

∫

S

viρvjnj dS =

∫

S

σjinj dS

where σji is the complete stress tensor. Use the scalar form of the divergence theorem (see notes
on Archimedes) to derive the differential linear momentum equation of fluid mechanics, which is
valid pointwise.

7. In standard fluid mechanics, the angular momentum equation for an arbitrary fixed volume V is:

d

dt

∫

V

~r × ~vρdV +

∫

S

~r × ~v(ρ~v · ~n) dS =

∫

S

~r × ~T dS

It is very useful for sprinklers, turbines, and other fluid systems involving angular velocity. If we
write the first component out in index notation:

d

dt

∫

V

ε1jkrjvkρdV +

∫

S

ε1jkrjvkρvlnl dS =

∫

S

ε1jkrjσlknl dS

where ε1jk is a 2 × 2 constant matrix whose form is not needed to solve this question. Use the
scalar form of the divergence theorem to derive the differential angular momentum equation of fluid
mechanics, which is valid pointwise. (Note that ∂rj/∂rl is the Kronëcker δjl, which is zero when
l 6= j, in other words, which forces l to equal j to get something nonzero, and then δjj = 1. Also,
because of the properties of matrix ε1jk, ε1jkajk is zero for any “symmetrix” matrix ajk for which
the order of the indices j and k does not make a difference.) Solve the mystery why you do not hear
that much about the angular momentum equation in standard graduate fluid mechanics classes.

• 02/13/06 M Poisson integral solution for the Dirichlet problem on a sphere.

• 02/15/06 W The mean value theorem for the Laplace equation. Solution smoothness in the interior. The
integral constraint for the Neumann problem. Examples of first order partial differential equations in
science and engineering (population age evolution, one-dimensional inviscid flow, electrical transmission
lines, vehicular traffic.)

• 02/17/06 F Solution of scalar first order PDEs in two dimensions.

1. (12.7.20) Show that for a given volume V with boundary S, the partial differential equation

∂u

∂t
= k∇2u = φ(x, y, z, t) in V

with boundary condition
∂u

∂n
+ hu = f on S

with ∂u/∂n the derivative of u in the direction normal to the boundary, and initial condition

u(x, y, z, 0) = g(x, y, z)

(for given φ, h > 0, f , and g) can have at most one solution.

2. Derive the fundamental solution G0 of the Laplacian in 2D, satisfying

∇2G0 = δ(x, y)
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3. Derive the solution of the Poisson equation in infinite two-dimensional space. Comment on the
behavior of the solution at large distances.

4. Show that the solution of the Laplace equation in an arbitrary finite region in space can be written
in terms of a distribution of sources and dipoles on the boundary of the region.

5. Explain why it is enough to use either sources or dipoles; we do not need both.

• 02/20/06 M Review.

• 02/22/06 W Mid Term Exam

• 02/24/06 F Last day to drop. Quasi-linear equations. Conservation laws. Shock conservation laws.
Entropy condition.

1. Show that if u(r, θ) is a solution to the Laplace equation inside a unit circle, then v(ρ, θ) = u(r, θ),
with r = 1/ρ, is a solution of the Laplace equation outside the unit circle.

2. Derive the Poisson integral solution for the Dirichlet problem for the Laplace equation in a unit
circle;

u(x, y) =
1 − r2

2π

∮

r=1

f

(x − x̄)2 + (y − ȳ)2
ds̄

Note that for any solution uo to the Laplace equation outside the circle, and (x, y) a point inside
the circle,

0 =

∮

r=1

(

G
∂u0

∂r̄
− uo

[

∂G

∂r̄
− 1

2π

])

ds̄

(The additional 1/2π comes from converting the integral at r̄ = ∞.) Clean up the expression to
polar coordinates using

x = r cos(θ) y = r sin(θ) x̄ = cos(α) ȳ = sin(α)

and compare with literature.

3. Derive the Poisson integral solution for the Neumann problem for the Laplace equation in a circle,

u(r, θ) = − 1

2π

∮

r=1

ln
(

r2 − 2r cos(θ − α) + 1
)

dα + C

with C an undetermined constant.

4. Verify the mean value property for the Laplace equation in two dimensions.

5. (5.25) Solve
xux + yuy = 0 u(x, 1) = f(x).

Suppose f does not have a derivative at a point x = x̄, then where does u(x, y) not have a derivative?

6. (5.27a) Solve the McKendric-von Foerster problem

ut + ua = − cu

L − a
0 ≤ a ≤ L u(0, t) = b(t)

where c and L are positive constants

7. (5.27b) Solve
xux + yuy = 1 u = x2 + y on x + y = 1

• 02/27/06 M Propagation of small disturbances. Expansion fans. Systems of first order equations:
classification, simple examples, solution of the wave equation.

• 03/01/06 W Wave equation continued. Cauchy initial value problem. D’Alembert solution.

6



• 03/03/06 F Diagonalizing hyperbolic systems in general. Equations of steady inviscid flows.

1. (5.29) The Cauchy problem is solving a first order equation using a given “initial condition” on
some line, as we did in last week’s homeworks. However, if the initial condition to a first order
PDE is given on a characteristic line, the problem is normally not solvable. Show that the following
Cauchy problem with an initial condition on the characteristic line y = x:

ux + uy = 1 u(x, x) = x2

does not have a solution.

2. (5.34) Consider the following problem for the Burgers’ equation:

ut + uux = 0 u(x, 0) =

{

1 0 < x < 1
0 x < 0 or x > 1

It has two possible solutions; a double shock one:

u1(x, t) =







0 x < 1

2
t

1 1

2
t < x < 1 + 1

2
t

0 1 + 1

2
t < x

and an expansion fan/shock one:

u2(x, t) =















0 x < 0
x/t 0 < x < t
1 t < x < 1 + 1

2
t

0 1 + 1

2
t < x

(assuming that t < 2.)

Draw the characteristics and the shocks of each solution in an x, t-diagram.

3. Continuing the previous problem, derive the general form of the solution of the Burger’s equation
in smooth regions using the method of characteristics, and show that six of seven partial solutions
above are of that form, but x/t is a problem. Check directly that x/t does indeed satisfy ut+uux = 0,
so the problem must be elsewhere. Check that the problem is that all chraracteristic lines in the
expansion fan have, in class notation, C1 = 0, so C1 is not a good variable to distinguish between
characteristic lines. However, C2 is different between different characteristic lines, so it is possible
to write C1 as some function of C2 instead of vice versa. Show that in those terms, the general
solution is x = ut + f(u), and identify what function f is for the expansion fan.

4. Continuing the previous problem, check that both u1 and u2 are weak solutions; in other words,
that for both all shocks continue to satisfy the conservation law requirement

vs =
F2 − F2

u2 − u1

assuming that the conserved quantity is
∫

u dx, in order to determine what F is.

5. Continuing the previous problem, show that one shock in u1 does not satisfy the entropy condition

F ′

1 > vs > F ′

2

while the single shock in u2 does. For that reason, the physically correct solution is u2.

6. Continuing the previous problem, show that for times t > 2, when the expansion fan has hit the
shock, the shock at x = 1 + 1

2
t no longer satisfies the conservation law. When the shock hits the

fan, the true shock velocity will start to decrease from 1

2
.

• 03/06/06 M Spring Break
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• 03/08/06 W Spring Break

• 03/10/06 F Spring Break

• 03/13/06 M Streamline compatibility equation for inviscid flow.

• 03/15/06 W Mach line compatibility equations. Method of characteristics. Riemannian invariants.

• 03/17/06 F Second order constant coeficient PDEs. Classification and reduction to canonical form of
hyperbolic and parabolic equations.

1. The equations of one-dimensional inviscid nonconducting flow are:

ρt + (ρu)x = 0 ut + uux +
1

ρ
px = 0 pt + γpux + upx = 0

being, respectively, the continuity equation, Newton’s second law, and a convoluted form of the
energy equation. The density is ρ, p is the pressure, u the flow velocity, and γ is a constant equal
to the ratio of the specific heats. Write this system in matrix form and classify it. Simplify the
expressions for the eigenvalues by defining the “speed of sound” a to be

a =

√

γ
p

ρ

2. Solve the following initial value problem:

utt = uxx u(x, 0) = 0 ut(x, 0) =







0 x ≤ −1
1 −1 ≤ x ≤ 1
0 1 ≤ x

Show the solution u graphically at times t = 0.25, 0.5, 1, and 2. At which time does ut at x = 0
switch from being 1 to being zero?

• 03/20/06 M Reduction of elliptical equations to canonical form. Cauchy-Kovalevski theorem. Well-
posedness of the wave equation. Derivation of the wave equation for a string. Introduction to the
method of separation of variables.

• 03/22/06 W Separation of variables continued. Sturm Liouville problems and their solution.

• 03/24/06 F Separation of variables concluded. Orthogonality.

1. Continuing last week’s problem, find the compatibility equation of one-dimensional inviscid non-
conducting flow along the fluid particle paths. Interpret it physically, noting that the entropy s for
an ideal gas satisfies:

ds = cv

(

dp

p
− γ

dρ

ρ

)

2. Find the compatibility equations of one-dimensional inviscid nonconducting flow along the acoustic
wave fronts.

3. Assuming that the entropy is not just constant along the particle paths, but the same everywhere,
(which requires the absence of strong shocks,) all thermodynamic variables, including the speed of
sound, are unique functions of the pressure, and can be integrated with respect to the pressure.
Show that in that case, there are two more Riemannian invariants besides the entropy, and that
they are equal to

u ± 2

γ − 1
a
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Hint: express dp in terms of da using

da2 = d

(

γ
p

ρ

)

dρ

ρ
=

dp

γp

(the latter from ds = 0 as in question 1.)

4. Classify the wave equation
utt = c2uxx

and write it in characteristic coordinates. Solve the equation and convert the result back to the
physical coordinates x and t. Show that the same form for the general solution is found as we got
using a first order system.

5. (19.1.9) Classify and derive the general solution to

2uxx − 10uxy + 8uyy + ux − uy = 0

6. (19.1.4) Classify and reduce to canonical form

2uxx − 4uxy + 2uyy − y2ux + uy − xu = 0

• 03/27/06 M Solution using D’Alembert. Mirror method. Comparison of solutions. simple derivation of
the heat equation.

• 03/29/06 W Radiation boundary conditions. Separation of variables for a mixed boundary condition.

• 03/31/06 F Sturm-Liouville theory. Separation of variables with convection terms.

1. Classify

uxx + 8uxy + 25uyy = 0

Show that when this equation is solved inside any finite domain, like a rectangle, say, the maximum
value of u will occur on the boundary of that rectangle.

2. (19.3.3) While the boundary value for the Laplace equation is properly posed, the initial value
problem is not, according to Hadamard. Consider the generic initial value problem for the Laplace
equation:

uxx + uyy = 0 for −∞ < x < ∞, y ≥ 0

u(x, 0) = f(x) uy(x, 0) = g(x)

Now add a small perturbation of the form sin(nx)/n (where we will let n → ∞, so that it becomes
zero) to g to get a perturbed solution u′ satisfying

u′

xx + u′

yy = 0 for −∞ < x < ∞, y ≥ 0

u′(x, 0) = f(x) u′

y(x, 0) = g(x) +
1

n
sin(nx)

Show that the difference in solution, v = u′ − u is not small when n → ∞, although the difference
in initial condition is. (The first becomes infinite, the latter zero.)

Hint: verify by direct substitution that the solution for v is

v =
1

n2
sin(nx) sinh(ny)

3. (16.1.1) Show that

u(x, t) = sin
(nπx

L

)

sin

(

nπct

L

)

satusfies the one-dimensional wave equation for any value of n.
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4. Show that the solution of the previous question is of the form

u(x, t) = f1(x − ct) + f2(x + ct)

and identify functions f1(x) and f2(x).

5. (16.2.15) (30 pts) Solve the problem of longitudinal vibrations in a bar of length L that is strained
to a strain of A and then released:

utt = c2uxx for 0 ≤ x ≤ L, t ≥ 0

ux(0, t) = 0 ux(L, t) = 0

u(x, 0) = Ax ut(x, 0) = 0

Here x is the rest position of locations on the bar; u is the displacement from the rest position; c2

is the ratio of modulus of elasticity over density. The boundary conditions express that the stress,
hence strain is zero at the ends of the bar. Solve this problem using separation of variables. Make
sure you account for the fact that the boundary conditions are different from the example worked
in class.

• 04/03/06 M Separation of variables with convection continued.

• 04/05/06 W Separation of variables for inhomogeneous PDE.

• 04/07/06 F Separation of variables for inhomogeneous PDE concluded.

1. Solve the last homework problem of last week using D’Alembert, after symmetrically (i.e. with no
sign change) mirroring the initial condition around both ends of the bar. Sketch the solution for a
time slightly greater than zero.

2. Consider the PDE:
ut = kuxx + Uux + Au

where U is a constant convection velocity and A a constant. Define a new unknown v so that
u(x, t) = ecx+dtv(x, t) with c and d constants to be determined. Plug this into the PDE, showing
all details, and then find the values of the constants c and d for which the vx and v terms drop out,
to leave a standard heat equation for v:

vt = kvxx

3. (30 pts) Use the trick from the previous question to solve

ut = uxx + 6ux for 0 ≤ x ≤ 4, t ≥ 0

u(0, t) = u(4, t) = 0 u(x, 0) = 1

Make sure to convert the initial and boundary conditions for u to ones for v. Convert v back into
u and then show that your solution is the same as the one derived in class without using the trick.
Make sure to show the full derivations in detail.

4. Plot the solution u against x for times t = 0, 0.25, 0.5, 0.75, and 1, summing at least 100,000 terms
of the sum, or until the error in u is less than 0.001. Plot 200 points along each curve.

• 04/10/06 M Numerical example of an inhomogeneous PDE. Dealing with inhomogeneous boundary
conditions.

• 04/12/06 W Dealing with inhomogeneous boundary conditions continued. Fourier series and complex
Fourier series.

• 04/14/06 F

10



1. (17.2.30) (30 pts) Adapt the method followed in class (not the one in the book) to solve the
inhomogeneous heat equation with Neumann boundary conditions. Go over all the steps, but be
sure to emphasize which parts change due to the different boundary conditions:

ut = κuxx + F (x, t) 0 ≤ x ≤ L, t ≥ 0

u(x, 0) = f(x) ux(0, t) = 0 ux(L, t) = 0

In case you did not do the Neumann problem of the homework two weeks ago correct; the correct
eigenfunctions were:

X0(x) = 1 Xn(x) = cos
(nπx

L

)

for n = 1, 2, 3, . . .

and X0 has to be done separately in orthogonality integrals and ODE solutions.

2. (17.2.31) Use the solution of the previous question to solve

ut = 16uxx + xt 0 ≤ x ≤ 5, t ≥ 0

u(x, 0) = 1 ux(0, t) = 0 ux(5, t) = 0

Again, do not solve it in the book way. Show the derivations of the integrals.

3. Plot the solution to the previous question graphically at times 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

• 04/17/06 M Review.

• 04/19/06 W Review.

• 04/21/06 F Review.

1. Consider the problem of heat conduction in a bar,

ut = κuxx for 0 ≤ x ≤ L, t ≥ 0 u(x, 0) = f(x)

with the temperature given at one end and the heat flux at the other end:

u(0, t) = T1(t) ux(L, t) = q2(t)

Convert this problem into one with homogeneous boundary conditions. Identify the new initial
condition and new PDE to solve.

2. For the previous problem, if the boundary conditions T1 and q1 are independent of time, compare
the steady solution for u0 with the solution you get for u0 using a linear expression in x. In either
case, write the new problem to be solved.

3. Consider the following problem of longitudinal vibrations in a bar of length L that experiences
forces on the ends:

utt = c2uxx for 0 ≤ x ≤ L, t ≥ 0

ux(0, t) = 1 ux(L, t) = 2

u(x, 0) =
x2

2L
ut(x, 0) = 0

Show that
u0(x, t) = A(t) + B(t)x

does not work to get homogeneous boundary conditions, and that there is no steady long-time
solution either. Show that

u0(x, t) = A(t)x + B(t)x2

does work. Show that if in addition you substract

c2t2

2L

from the solution, you get a problem that you already solved a few weeks ago. Write the solution
for u.
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4. Consider the following heat conduction problem with a homogeneous PDE and inhomogeneous BC:

ut = 16uxx for 0 ≤ x ≤ 5, t ≥ 0

ux(0, t) = − 1

2
t2 ux(5, t) = − 1

2
t2

u(x, 0) = 1

Reduce this problem to one you solved last week and write the solution for u.

5. For the previous problem, what would the solution have been if the boundary conditions would have
been simply t2 instead of − 1

2
t2 and the initial condition would have been homogeneous? (Note that

the problem is linear: you can multiply solutions by constants.)

6. (16.3.6, 30 points) Solve the wave equation

utt = 4uxx

in the infinite domain −∞ < x < ∞, if the initial conditions are:

u(x, 0) = 0 ut(x, 0) = 0 for |x| > 2

ut(x, 0) = −1 for − 2 < x < 0 ut(x, 0) = 1 for 0 < x < 2

using the Fourier transform only, not D’Alembert. Explicitly evaluate the Fourier transform of the
initial condition and explicitly evaluate the Fourier transform of u. Write a Fourier integral for u.

• 04/25/06: Final Tuesday 3-5 pm (ignore FSU schedule).

• 05/03/06: Grades available online

8 Goals

This course will familiarize students with applications of vector calculus and partial differential equations in
mechanical engineering.

9 Course Outline

See the tentative schedule in section 7 above.

10 Methods of Instruction

Lectures, problem solving sessions, examinations.

11 Student Evaluation

The course grade will be computed as:

• Homework: 20%

• Midterm: 40%

• Final: 40%

Grading is at the discretion of the instructor.

12



12 Important Regulations

1. Immediately check the dates listed above for any conflicts.

2. Homework must be handed in at the start of the lecture at which it is due. It may not be handed in at
the departmental office or at the end of class. Homework that is not received at the start of class on the
due date cannot be made up unless permission to hand in late has been given before the homework is
due, or it was not humanly possible to ask for such permission before the class. If there is a chance you
may be late in class, hand the homework in to the instructor the day before it is due. (Shove it under
his door if necessary.) This also applies to Web students: they must E-mail the homework before the
time that the class starts.

3. Homework should be neat.

4. Students are bound by the rules and regulations in their University bulletin, as well as by those specified
in this syllabus, and by the usual standards applied by the College of Engineering. Read your academic
bulletin. Violations of the rules and regulations in your bulletin may result in reduced grades and/or
other actions.

5. Students are bound by the honor code of their university. It requires you to uphold academic integrity
and combat academic dishonesty. Please see your student handbook. Violations of your honor code may
result in reduced grades and/or other actions.

6. Copying of homework, assignments, or tests is never allowed and will result in a failing or zero grade for
the copied work. It will also result in a failing or zero grade of the person whose work is being copied if
that person could reasonably have prevented the copying. However, working together is typically allowed
and encouraged for most homeworks, (and sometimes for other take-home assignments,) as long as you
present the final results in your own words and using your own line of reasoning. Since close similarities
between solutions will reduce credit, it is better not to formally put down anything until you have figured
out the problem, and then let each person write their own solution. If it is unclear whether working
together is allowed on any assignment, check with the instructor beforehand.

7. Attendance is required. Exams missed, even when rescheduled from the original date and surprise tests,
or homework not handed in on time due to unexcused absence or lateness will result in a zero grade
for that exam and/or homework. Failure to properly complete homework, tests, assignments, etcetera
due to changes in date, assignment, etcetera, that you did not know about due to unexcused absence,
lateness, or inattentiveness will not be excused and cannot be made up.

8. For excused absences where the student has given advanced notice of the absence at the earliest oppor-
tunity, the instructor will work with the student to arrange for make-up work and tests.

9. The College of Engineering has a restrictive interpretation of what is considered a valid excuse for an
absence. If an absence is to be excused, make sure you at least get official confirmation by phone that
it will be granted beforehand.

10. The instructor will make sure that make-up tests are no simpler than the original, but he will try to
make them similarly difficult. However, he cannot make allowances for increased difficulty due to the
small sample size.

11. The College of Engineering has a more restrictive drop-add period than you might think based on your
bulletin. Check both your bulletin and the Dean’s office to determine whether drop-add will be allowed.

12. Some of these rules may not apply if you fall under the Americans with Disabilities Act. FAMU students
with disabilities needing academic accommodations should contact Student Health Services for confir-
mation of permanent physical disability, FSU students should register with and provide documentation
to the Student Disability Resource Center. Next bring a letter to the instructor from the Services or
Center indicating you need academic accommodations. This should be done during the first week of
classes.

13



13. The instructor might wave some regulation on a case-by-case basis depending on his subjective determi-
nation of fairness and appropriateness. This will occur only under exceptional circumstances and should
not be assumed. Especially, never assume that a seemingly minor regulation will be waved because the
instructor has waved it in the past. A second appeal to wave a minor regulation will probably indicate
to the instructor that the regulation is not being taken seriously and most likely refused. Any appeal to
the instructor will further be refused apriori unless it is done at the earliest possible moment by phone
and/or by E-mail. Do not wait until you are back in town, say.

13 Computer Requirements

Students must have an E-mail address and daily check their E-mail. Students must be able to use a Web
browser such as Netscape. The class web page can be accessed at

http://www.eng.fsu.edu/ dommelen/courses/aim2/
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