
2nd Order

The general n-dimensional second order quasilinear equations is:
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Its coefficients can be placed into a symmetric matrix A, just like those of a quadratic form
can be.

Example:
auxx + 2buyx + cuyy + d = 0

The matrix A is here:
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In index notation, the n-dimensional equation can be written as:
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Classification is based on the eigenvalues of A:

• parabolic if any eigenvalues are zero; otherwise:

• elliptic if all eigenvalues are the same sign;

• hyperbolic if all eigenvalues except one are of the same sign;

• ultrahyperbolic, otherwise.

Exercise: Figure out whether that is consistent with what we defined for the two-dimensional
case,

A =

(

a b

b c

)

• hyperbolic if b2
− ac > 0.

• parabolic if b2
− ac = 0.

• elliptic if b2
− ac < 0.


