7.36

1 7.36, §1 Asked

Asked: Find the horizontal perturbation velocity in a supersonic flow above a membrane
overlaying a compressible variable medium.
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2 7.36, 82 PDE Model
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Domain : 0 < 2 < 00,0 < y < 00

Unknown horizontal perturbation velocity v = u(z, y)

Hyperbolic

Two homogeneous initial conditions



e One mixed boundary condition at y = 0 and a regularity constraint at y = oo

e Constant a = tan u, where p is the Mach angle.

Try a Laplace transform. The physics and the fact that Laplace transforms like only initial
conditions suggest that x is the one to be transformed. Variable z is our “time-like” coordinate.

3 7.36, §3 Transform

Transform the PDE:

Table 6.3, # 3
2 -9, 2. 2
Ugy = A" Uy s°U — suO4 — w09 = a1y,

Transform the BC:

u, —pu = f(x) Uy—p?l:f@)

4 7.36, 84 Solve

Solve the PDE, again effectively a constant coefficient ODE:
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Apply the BC at y = oo:

Apply the BC at y = 0:
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Solving for B and plugging it into the expression for @ gives:
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5 7.36, §5 Back

We need to find the original to

A a r—sy/a
“ s+ apfe
Looking in the tables:
1 Table 6.4, # 3 —apz
e
s+ ap

The other factor is a shifted function f, restricted to the interval that its argument is positive:

e—sy/af -2

Table 6.3, # 6 f( y>

With the bar, I indicate that I only want the part of the function for which the argument is
positive. This could be written instead as

((e-Dn(e-2)

where the Heaviside step function H(z) = 0 if x is negative and 1 if it is positive.
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Use convolution, Table 6.3, # 7. again to get the product.
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This must be cleaned up. I do not want bars or step functions in my answer.

I can do that by restricting the range of integration to only those values for which f is nonzero.



(Or H is nonzero, if you prefer)
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Two cases now exist:

u(z,y) =0 (x <=
It is neater if the integration variable is the argument of f. So, define ¢ = £ —y/a and convert:

z—y/a
uwy) == [ af @ e eray @)
u(ey) =0 (x<2)

This allows me to see which physical f values I actually integrate over when finding the flow

at an arbitrary point:
/ !
——
' Es

FET 7
MHE SN

L1

6 7.36, §6 Alternate

An alternate solution procedure is to define a new unknown:

V= Uy — pu



You must derive the problem for v:
The boundary condition is simply:

v(z,0) = f(x)

To get the PDE for v, use

8[F(;ly?E] —p|PDE] = wy= vy

Similarly, for the initial conditions:

ICs] —pllCs] = v(0,y) =v,(0,y) =0
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After finding v, I still need to find u from the definition of v:

V= Uy —pu

Where do you get the integration constant??



