Introduction

Description:
The Laplace transform pairs a function of a real coordinate, call it ¢, with 0 < ¢ < co, with
a different function of a complex coordinate s:
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The pairing is designed to get rid of derivatives with respect to ¢ in equations for the function
u. This works as long as the coefficients do not depend on ¢ (or at the very most are low degree
powers of ¢.) The transformation is convenient since pairings can be looked up in tables.

Typical procedure:

Use tables to find the equations satisfied by @ from these satisfied by u. Solve for 4 and
look up the corresponding v in the tables.

About coordinate t:

In many cases, t is physically time, since time is most likely to satisfy the constraints 0 <
t < oo and coefficients independent of ¢. Also, the Laplace transform likes initial conditions
at t = 0, not boundary conditions at both t = 0 and ¢ = co.



Table 6.3: Properties of the Laplace transform:
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Here a > 0, b > 0, ¢ are constants, and n is a natural number.



Table 6.4: Laplace transform pairs:
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Here £ > 0, a and b are constants, n is a natural number, and
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