
Introduction

1 §1 Examples

Partial differential equations:

• Standard examples:

– Steady heat conduction in a plate:

– Unsteady heat conduction in a bar:

– Vibrations of a string:

• Fluid mechanics;

• Heat transfer;

• Solid mechanics;

• Dynamics;

• Electro-magnetodynamics;

• Geometry;

• Optics;

• ...



2 §2 Notations

• Ordinary differential equations: one independent variable

• Partial differential equations: more independent variables

• Partial derivative:

uxP ≡
(

∂u

∂x

)

P

= lim
∆x→0

uQ − uP

∆x
uyP ≡

(

∂u

∂y

)

P

= lim
∆y→0

uR − uP

∆y

• Order: order of the highest derivative

• Degree: highest degree of the dependent variable

• Linear: first degree

• Domain Ω: the spatial region, i.e.

– Plate (rectangle in the x, y-plane

– Bar (line segment 0 < x < `)

– String (line segment 0 < x < `)

• Boundary δΩ: the edges of the domain, i.e.

– Perimeter of the plate

– Ends of the bar

– End points of the string

3 §3 Standard Examples

You must know by heart:



• The Laplace equation. Steady heat conduction in a plate:

Also describes ideal flows, unidirectional flows, membranes, electro and magnetostatics,
complex functions, ...
In any number of dimensions: ∇2u = 0.
Properties:

– Smooth solutions.

– Boundary-value problems.

– Maximum property.

– Unlimited region of influence.

– A simple example of an elliptic equation.



• The heat equation. Unsteady heat conduction in a bar:

Also describes unsteady unidirectional flow, ...
In any number of dimensions ut = k∇2u.

– Smooth solutions.

– Initial/boundary value problems.

– Maximum property.

– Unlimited region of influence in space.

– A simple example of a parabolic equation.

• Vibrations of a string: the wave equation:



Also describes acoustics in a pipe, steady supersonic flow, water waves, optics, ...
In any number of dimensions utt = a2∇2u.

– Propagating waves.

– Propagates singularities.

– Initial/boundary value problems.

– Energy conservation.

– Finite propagation speed.

– A simple example of a hyperbolic equation.

4 §4 Boundary Conditions

Boundary condition types:

• Dirichlet: u is given on the boundary

• Neumann: ∂u/∂n is given on the boundary

∂u

∂n
= ~n · ∇u

• Mixed: a combination of u and ∂u/∂n is given on the boundary

• ...

5 §5 Properly Posedness

A P.D.E. problem is properly posed if

• a solution exists;

• it is unique

• small changes in the conditions produce correspondingly small changes in the solution.



Introduction

Classification groups P.D.E. with similar properties together.

Example: inviscid fluid flow past a wing cross-section:

Subsonic region M < 1: smooth solutions, unlimited region of dependence, iterative solution.
These features are indicative of an elliptic PDE.

Supersonic region M > 1: singularities, characteristic lines, spatial marching solution. Typical
for a hyperbolic PDE.

One set of PDEs that has a unambiguous classification are 2D second order quasilinear equa-
tions:

auxx + 2buxy + cuyy + d = 0

where a = a(x, y, u, ux, uy), b = b(x, y, u, ux, uy), c = c(x, y, u, ux, uy), and d = d(x, y, u, ux, uy).

The classification for these equations is:

• b2 − ac > 0: hyperbolic

• b2 − ac = 0: parabolic

• b2 − ac < 0: elliptic



2.19 (e)

1 2.19 (e), §1 Asked

Classify:
yuxx − 2uxy + exuyy + u = 3

2 2.19 (e), §2 Solution

yuxx − 2uxy + exuyy + u = 3

a = y, b = −1, c = ex =⇒ b2 − ac = 1 − yex

Parabolic for
1 − yex = 0 =⇒ y = e−x,

elliptic if y is greater than this, hyperbolic if y is less.



2nd Order

The general n-dimensional second order quasilinear equations is:

a11ux1x1
+

2a21ux2x1
+ a22ux2x2

+
2a31ux3x1

+ 2a32ux3x2
+ 2a33ux3x3

+ . . . + d = 0

Its coefficients can be placed into a symmetric matrix A, just like those of a quadratic form
can be.

Example:
auxx + 2buyx + cuyy + d = 0

The matrix A is here:

A =

(

a b

b c

)

In index notation, the n-dimensional equation can be written as:

∑

i

∑

j

aij
∂2u

∂xi∂xj

+ d = 0

where aij = aij(x1, x2, . . . , xn, u, ux1
, ux2

, . . . , uxn
) is a symmetric matrix and d = d(x1, x2, . . . , xn, u, ux1

, ux2
, . . .

Classification is based on the eigenvalues of A:

• parabolic if any eigenvalues are zero; otherwise:

• elliptic if all eigenvalues are the same sign;

• hyperbolic if all eigenvalues except one are of the same sign;

• ultrahyperbolic, otherwise.

Exercise: Figure out whether that is consistent with what we defined for the two-dimensional
case,

A =

(

a b

b c

)

• hyperbolic if b2 − ac > 0.

• parabolic if b2 − ac = 0.

• elliptic if b2 − ac < 0.



2.21 (b)

1 2.21 (b), §1 Asked

Classify:
ut −∇ · (p∇u) + qu = f

2 2.21 (b), §2 Solution

ut −∇ · (p∇u) + qu = f

Written out:

∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

∇u ≡ grad u = ı̂ux + ̂uy + k̂uz

∇ · ~v ≡ div ~v = v1x + v2y + v3z

ut − (pux)x − (puy)y − (puz)z + qu = f

Highest derivatives of u:
−puxx − puyy − puzz + . . . = f

Coefficient matrix A

A =











−p 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 0











Eigenvalues are λ1 = λ2 = λ3 = −p and λ4 = 0.



Introduction

1 §1 Motivation

It is possible to simplify many P.D.E.s by using coordinate systems that are special to the
problem:

• in unsteady pipe flows, use the lines along which sound waves propagate (characteristic
lines) as coordinate lines to simplify the P.D.E.;

• in steady supersonic flows, use the Mach lines along which disturbances propagate (char-
acteristic lines) as coordinate lines to simplify the P.D.E.;

• in problems with anisotropic properties, rotate your coordinate system along the prin-
cipal or physical directions;

• ...

2 §2 Formulae

• Old independent coordinates x1, x2, . . . , xn

• New independent coordinates ξ1, ξ2, . . . , ξn

(It may include time as one coordinate). Assume

ξ1 = ξ1(x1, x2, . . . , xn) ξ2 = ξ2(x1, x2, . . . , xn) . . . ξn = ξn(x1, x2, . . . , xn)

The original n-dimensional second order quasilinear equation:

∑

i

∑

j

aij
∂2u

∂xi∂xj

+ d = 0

where aij = aij(x1, x2, . . . , xn, u, ux1
, ux2

, . . . , uxn
) is a symmetric matrix and d = d(x1, x2, . . . , xn, u, ux1

, ux2
, . . .

To convert:

• The new matrix coefficients are

a′
kl =

∑

i

∑

j

aij
∂ξk

∂xi

∂ξl

∂xj



• The new lower order terms are

d′ = d +
∑

k





∑

i

∑

j

aij
∂2ξk

∂xi∂xj





∂u

∂ξk

• In the coefficients, express x1, x2, . . . , xn in terms of ξ1, ξ2, . . . , ξn by solving the given
relationships for them;

• In the coefficients, rewrite the first order derivatives:

∂u

∂xi

=
∑

k

∂u

∂ξk

∂ξk

∂xi

Matrix notation: Let BT be the matrix of new coordinate derivatives:

d~ξ = BT d~x =⇒ bT
ki =

∂ξk

∂xi

then
A′ = BT AB

3 §3 Rotation

For linear, constant coefficient equations, rotate the coordinate system to the principal axes
of A:

~ξ = BT~x A′ = diag(λ1, λ2, . . . , λn)

provided that B consists of the orthonormal eigenvectors of A.

Our equation simplifies to

λ1uξ1ξ1 + λ2uξ2ξ2 + . . . + λnuξnξn
+ d′ = 0

Notes:

1. If A is not constant, we must select a point P for which we determine the eigenvectors.
The new A′ will then only be diagonal at the point P .

2. If A is not constant, trying to set B at every point equal to the eigenvectors of the A at
that point will not usually work since it requires n2 equations to be satisfied by the n

components of ~ξ.

3. If we do not normalize the eigenvectors,

A′ = diag(|~v1|2λ1, |~v2|2λ2, . . . , |~vn|2λn)



2.24

1 2.24, §1 Asked

Given:
3uxx − 2uxy + 2uyy − 2uyz + 3uzz + 12uy − 8uz = 0

Asked: Classify and put in canonical form.

2 2.24, §2 Solution

3uxx − 2uxy + 2uyy − 2uyz + 3uzz + 12uy − 8uz = 0

Identify the matrix:

A =







3 −1 0
−1 2 −1

0 −1 3







To find the new coordinates (transformation matrix), find the eigenvalues and eigenvectors of
A:

|A − λI| =

∣

∣

∣

∣

∣

∣

∣

3 − λ −1 0
−1 2 − λ −1
0 −1 3 − λ

∣

∣

∣

∣

∣

∣

∣

= (3 − λ)2(2 − λ) − (3 − λ) − (3 − λ)

Hence λ1 = 1, λ2 = 3, λ3 = 4.

For λ1 = 1,






2 −1 0
−1 1 −1

0 −1 2













2 −1 0
0 1 −2
0 −1 2













2 −1 0
0 1 −2
0 0 0





 ~v1 =







1
2
1





 /
√

6

For λ2 = 3,






0 −1 0
−1 −1 −1

0 −1 0













−1 −1 −1
0 −1 0
0 −1 0













−1 −1 −1
0 −1 0
0 0 0





 ~v2 =







1
0

−1





 /
√

2



For λ3 = 4,






−1 −1 0
−1 −2 −1

0 −1 −1













−1 −1 0
0 −1 −1
0 −1 −1













−1 −1 0
0 −1 −1
0 0 0





 ~v3 =







1
−1

1





 /
√

3

The new equation is:

uξξ + 3uηη + 4uθθ + 12uy − 8uz = 0

However, that still contains the old coordinates in the first order terms. Use the transformation
formulae and total differentials to convert the first order derivatives:







x
y
z





 =









1√
6

1√
2

1√
3

2√
6

0 − 1√
3

1√
6

− 1√
2

1√
3















ξ
η
θ













ξ
η
θ





 =









1√
6

2√
6

1√
6

1√
2

0 − 1√
2

1√
3

− 1√
3

1√
3















x
y
z







uy = uξ
2√
6
− uθ

1√
3

uz = uξ
1√
6
− uη

1√
2

+ uθ
1√
3

Hence in the rotated coordinate system, the PDE is:

uξξ + 3uηη + 4uθθ +
16√

6
uξ +

8√
2
uη −

20√
3
uθ = 0

This could be reduced further by stretching the coordinates. If

ξ = ξ̄ η =
√

3η̄ θ = 2θ̄

then

uξ̄ξ̄ + uη̄η̄ + uθ̄θ̄ +
16√

6
uξ̄ +

8√
6
uη̄ −

10√
3
uθ̄ = 0

Note that tall that is left in the second order derivative terms is the sign of the eigenvalues.
Now you know why we classify based on the sign of the eigenvalues!

You could further set u = veaξ+bη+cθ and choose a, b, and c to get rid of the first order
derivatives. You need:

a = − 8√
6

b = − 4√
6

c =
5√
3

Then

vξ̄ξ̄ + vη̄η̄ + vθ̄θ̄ −
65

3
v = 0



2D Coordinate Changes

More powerful simplifications are possible in 2D.

In the initial independent coordinates x, y:

auxx + 2buxy + cuyy + d = 0

In the new independent coordinates ξ, η

a′uξξ + 2b′uξη + c′uηη + d′ = 0

The new coefficients may be found by writing out the transformation formulae from the
introduction for the two-dimensional case, and are:

a′ = a (ξx)
2 + 2b (ξx) (ξy) + c (ξy)

2

b′ = a (ξx) (ηx) + b (ξx) (ηy) + b (ξy) (ηx) + c (ξy) (ηy)

c′ = a (ηx)
2 + 2b (ηy) (ηy) + c (ηy)

2

d′ = d + (aξxx + 2bξxy + cξyy) uξ + (aηxx + 2bηxy + cηyy) uη

The trick now is to demand that a′, b′ and c′ are as simple as possible and from that compute
what the required ξ and η are.



Characteristic Coordinates

Characteristic coordinates are coordinates so that a′ and c′ vanish:

2b′uξη + d′ = 0

Finding characteristic coordinates:

Vanishing of a′ requires that ξ satisfies

a (ξx)
2 + 2b (ξx) (ξy) + c (ξy)

2 = 0

while for c′ to vanish,
a (ηx)

2 + 2b (ηx) (ηy) + c (ηy)
2 = 0

Note that ξ and η must satisfy the exact same equation, but they must be different solutions
to be valid independent coordinates.

To solve the equation for ξ (η goes the same way), divide by (ξy)
2:

a

(

−ξx

ξy

)2

− 2b

(

−ξx

ξy

)

+ c = 0

and note that, from your calculus or thermo,

−ξx

ξy

=

(

dy

dx

)

ξ is constant

So the lines of constant ξ should satisfy the ODE

dy

dx
=

b ±
√

b2 − ac

a

We can achieve this by taking ξ to be the integration constant in the solution of this ODE!

By taking the other sign for the square root, you can get a second independent coordinate η.

Bottom line, to get characteristic coordinates, solve the plus and minus sign ODEs above, and
equate the integration constants to ξ and η.

Notes:

1. Since integration constants are not unique, the characteristic coordinates are not. But
the lines of constant ξ and η are unique, and are called characteristic lines or charac-
teristics.



2. Elliptic equations do not have characteristics, and parabolic ones only a single family.

Application to the wave equation:

utt − a2uxx = 0

(

dx

dt

)2

− a2 = 0 =⇒ dx

dt
= ±a

x = at + ξ x = −at + η

Since d′ remains zero:

uξη = 0 =⇒ uη = f(η) =⇒ u = f1(ξ) + f2(η)

Hence the D’Alembert solution:

u = f1(x − at) + f2(x + at),

which is a right travelling ’wave’ plus a left travelling one. Example 4.10 figures out what f1

and f2 are in terms of given initial displacement u and velocity ut at the initial time.



2.22 (d)

1 2.22 (d), §1 Asked

Given:
uxx + yuyy = 0

Asked: Find the characteristics.

2 2.22 (d), §2 Solution

uxx + yuyy = 0

dy

dx
=

b ±
√

b2 − ac

a
= ±√−y

d − y√−y
= ± dx =⇒ 2

√−y = ±(x − C)

y = −1
4
(x − C)2



2.27 (d)

1 2.27 (d), §1 Asked

Given:
eyuxx + 2exuxy − e2x−yuyy = 0

Asked: Find the coordinates that reduce it to 2D canonical form.

2 2.27 (d), §2 Solution

eyuxx + 2exuxy − e2x−yuyy = 0

dy

dx
=

b ±
√

b2 − ac

a
= (1 ±

√
2)ex−y

ey dy = (1 ±
√

2)ex dx =⇒ ey = (1 ±
√

2)ex + C

ξ = (1 +
√

2)ex − ey η = (1 −
√

2)ex − ey

The resulting P.D.E.:

b′ = a (ξx) (ηx) + b (ξx) (ηy) + b (ξy) (ηx) + c (ξy) (ηy) = −4e2x+y

d′ = d + (aξxx + 2bξxy + cξyy) uξ + (aηxx + 2bηxy + cηyy) uη

d′ =
[

(1 +
√

2)ex+y + e2x
]

uξ +
[

(1 −
√

2)ex+y + e2x
]

uη

Get rid of x and y:

ex =
1

2
√

2
(ξ − η) ey =

1 −
√

2

2
√

2
ξ − 1 +

√
2

2
√

2
η

−(ξ − η)[(1 −
√

2)ξ − (1 +
√

2)η]uξη = (1 +
√

2)ηuξ + (1 −
√

2)ξuη



2.28 (n)

1 2.28 (n), §1 Asked

Given:
sin2(x)uxx + 2 cos(x)uxy − uyy = 0

Asked: Reduce it to 2D canonical form.

2 2.28 (n), §2 Solution

sin2(x)uxx + 2 cos(x)uxy − uyy = 0

dy

dx
=

b ±
√

b2 − ac

a
=

cos(x) ± 1

sin2(x)

y = − 1

sin(x)
± cotg(x) + C

ξ = y +
1

sin(x)
+ cotg(x) η = y +

1

sin(x)
− cotg(x)



Parabolic Case

In the parabolic case,

a

(

dy

dx

)2

− 2b

(

dy

dx

)

+ c = 0

leads to only one root.

Take η as the single integration constant and ξ as anything else, say ξ = x.

Canonical form:
a′uξξ + d′ = 0



2.28 (m)

1 2.28 (m), §1 Asked

Given:
xuxx + 2

√
xyuxy + yuyy − uy = 0

Asked: Reduce it to 2D canonical form.

2 2.28 (m), §2 Solution

xuxx + 2
√

xyuxy + yuyy − uy = 0

dy

dx
=

b ±
√

b2 − ac

a
=

√

y

x

Parabolic.

dy√
y

=
dx√
x

=⇒ √
y =

√
x + C

ξ = x η =
√

y −
√

x



Elliptic Case

In the elliptic case,

a

(

dy

dx

)2

− 2b

(

dy

dx

)

+ c = 0

leads to complex roots.

Take ξ∗ as the integration constant of either root. Then take ξ = <(ξ∗) and η = =(ξ∗).

Canonical form:
a′uξξ + a′uηη + d′ = 0



2.28 (l)

1 2.28 (l), §1 Asked

Given:
uxx + (1 + y)2uyy = 0

Asked: Reduce it to 2D canonical form.

2 2.28 (l), §2 Solution

uxx + (1 + y)2uyy = 0

dy

dx
=

b ±
√

b2 − ac

a
= ±i(1 + y)

Elliptic.

dy

1 + y
= i dx ln |1 + y| − ix = ξ∗

ξ = ln |1 + y| η = −x



Introduction
Wave equation:

utt = a2uxx

Characteristics:

x + at = ξ x − at = η

General solution:

u(x, t) = f1(x − at) + f2(x + at)

Here f1(x − at) is a function that moves to the right with speed a; a ’right-going wave’. And
f2(x − at) is a function that moves to the left with speed a; a ’left-going wave’.

D’Alembert solution:
Assume no boundaries, (−∞ < x < ∞). Then we can solve for f1 and f2 in terms of the

given initial string displacement f(x) = u(x, 0) and initial velocity g(x) = ut(x, 0) to give:

u(x, t) =
f(x − at) + f(x + at)

2
+

1

2a

∫ x+at

x−at
g(ξ) dξ

uP =
uQ + uR

2
+

1

2a

∫ R

Q
ut dξ

This is derived in example 4.10 in the book.
If x is restricted by finite boundaries, we must somehow extend the problem to doubly

infinite x without boundaries. But our solution without boundaries should still satisfy the
boundary conditions we are given. That is often possible by clever use of symmetry.

1



7.28

1 7.28, §1 Asked

Asked: Find the pressure for sound wave propagation in a tube with one end closed and one
end open.

2 7.28, §2 P.D.E. Model

• Finite domain Ω̄: 0 ≤ x < `

• Unknown pressure u = u(x, t)

• Hyperbolic

• Two initial conditions



• One homogeneous Neumann boundary condition at x = 0 and a homogeneous Dirichlet
condition at x = `.

• Constant speed of sound a and much smaller flow velocities.

Try D’Alembert

3 7.28, §3 Boundaries

• Get rid of the boundaries by imagining that the pipe extends from −∞ < x < ∞

• To do so, we must extend the initial conditions f(x) and g(x) to all x. Call the extended
functions f̄(x) and ḡ(x).

• The extended functions should make the given boundary conditions automatic.

To make the boundary condition ux = 0 at x = 0 automatic, create symmetry around x = 0 To
make the boundary condition u = 0 at x = ` automatic, create antisymmetry (odd symmetry)
around x = `.



4 7.28, §4 Solution

u(x, t) =
f̄(x − at) + f̄(x + at)

2
+

1

2a

∫ x+at

x−at
ḡ(ξ) dξ

Probably pretty easy to evaluate.



In the range 0 ≤ x ≤ `, the found solution is exactly the same as for the finite pipe!

Note that if f and/or g does not satisfy the given boundary conditions, f̄ and ḡ may have
kinks or jumps.



7.28

1 7.28, §1 Asked

Asked: Find the unsteady pressure field u(x, t) in a pipe with one end closed and the other
open to the athmospere.

2 7.28, §2 P.D.E. Model

Always draw the depend-variable picture first.

• Unknown pressure u = u(x, t).

• Constant speed of sound a.

• Finite domain Ω̄: 0 ≤ x ≤ `.

• Hyperbolic PDE (waves, singularities, evolution).



• Two initial conditions.

• One homogeneous Neumann boundary condition at x = 0 and one homogeneous Dirich-
let condition at x = `.

We will try to find a solution of this problem in the form

u =
∑

n

un(t)Xn(x)

i.e. a sum, in which each term is a product of a function of x only times a function of t only.

3 7.28, §3 Eigenfunctions

To find the solution in the form,

u(x, t) =
∑

n

un(t)Xn(x)

we try substituting an individual term of this general form into the PDE. In particular, we
substitute a trial solution u = T (t)X(x) into the homogeneous P.D.E. utt = a2uxx. This gives:

T ′′(t)X(x) = a2T (t)X ′′(x)

Now we can take the terms depending on t only to one side of the equation, and the ones
depending on x only to the other side:

T ′′(t)

a2T (t)
=

X ′′(x)

X(x)

This trick is why this solution procedure is called the “method of separation of variables.’

While the right hand side, X ′′(x)/X(x), does not depend on t, you would think that it would
depend on the position x; both X and X ′′ change when x changes. But actually, X ′′/X does
not change with x; after all, if we change x, it does nothing to t, so the left hand side does
not change. And since the right hand side is the same, it too does not change. So the right
hand side does not depend on either x or t; it must be a constant. By convention, we call the
constant −λ:

T ′′

a2T
=

X ′′

X
= constant = −λ

If we also require X to satisfy the same homogeneous boundary conditions as u, i.e., that at
x = 0, its x-derivative is zero, and that at x = `, X itself is zero, we get the following problem
for X:

X ′′ + λX = 0 X ′(0) = 0 X(`) = 0



This is an ordinary differential equation boundary value problem.

Note that this problem is completely homogeneous: X(x) = 0 satisfies both the PDE and the
boundary conditions. This is similar to the eigenvalue problem for vectors A~v = λ~v, which is
certainly always true when ~v = 0. But for the eigenvalue problem, we are interested in nonzero
vectors ~v so that A~v = λv, which only occurs for special values λ1, λ2, . . . of λ. Similarly, we
are interested only in nonzero solutions X(x) of the above ODE and boundary conditions.

Eigenvalue problems for functions such as the one above are called “Sturm-Liouville problems.”
The biggest differences from matrix eigenvalue problems are:

• There are infinitely many eigenvalues λ1, λ2, . . . and corresponding eigenfunctions X1(x),
X2(x), . . . rather than just n eigenvalues and eigenvectors.

• We cannot write a determinant to find the eigenvalues. Instead we must solve the
problem using our methods for solving ODE.

Fortunately, the above ODE is simple: it is a constant coefficient one, so we write its charac-
teristic polynomial:

k2 + λ = 0 =⇒ k = ±
√
−λ = ±i

√
λ

We must now find all possible eigenvalues λ and corresponding eigenfunctions that satisfy the
required boundary conditions. We must look at all possibilities, one at a time.

Case λ < 0:

Since k = ±
√
−λ

X = Ae
√
−λx + Be−

√
−λx

We try to satisfy the boundary conditions:

X ′(0) = 0 = A
√
−λ − B

√
−λ =⇒ B = A

X(`) = 0 = A
(

e
√
−λ` + e−

√
−λ`

)

=⇒ A = 0

So A = B = 0; there are no nontrivial solutions for λ < 0.

Case λ = 0:

Since k1 = k2 = 0 we have a multiple root of the characteristic equation, and the solution is

X = Ae0x + Bxe0x = A + Bx

We try to satisfy the boundary conditions again:

X ′(0) = 0 = B X(`) = 0 = A



So A = B = 0; there are again no nontrivial solutions.

Case λ > 0:

Since k = ±
√
−λ = ±i

√
λ, the solution of the ODE is after cleanup:

X = A sin
(√

λx
)

+ B cos
(√

λx
)

We try to satisfy the first boundary condition:

X ′(0) = 0 = A
√

λ

Since we are looking at the case λ > 0, this can only be true if A = 0. So, we need

X = B cos
(√

λx
)

We now try to also satisfy the second boundary condition:

X(`) = 0 = B cos
(√

λ`
)

= 0

For a nonzero solution, B may not be zero, so the cosine must be zero. For positive argument,
a cosine is zero at 1

2
π, 3

2
π, . . ., so that our eigenvalues are

√

λ1 =
π

2`
,
√

λ2 =
3π

2`
,
√

λ3 =
5π

2`
, . . .

The same as for eigenvectors, for our eigenfunctions we must choose the one undetermined
parameter B. Choosing each B = 1, we get the eigenfunctions:

X1 = cos
(

πx

2`

)

, X2 = cos
(

3πx

2`

)

, X3 = cos
(

5πx

2`

)

, . . .

Total:

The only eigenvalues for this problem are the positive ones above, with the corresponding
eigenfunctions. If we want to evaluate them on a computer, we need a general formula for
them. You can check that it is:

λn =
(2n − 1)2π2

4`2
Xn = cos

(

(2n − 1)πx

2`

)

(n = 1, 2, 3, . . .)

Just try a few values for n. We have finished finding the eigenfunctions.

If you look way back to the beginning of this section, you may wonder about the function
T (t). It satisfied

T ′′

a2T
= −λ

Now that we have found the values for λ from the X-problem, we could solve this ODE too,
and find functions T1(t), T2(t), . . .. Many people do exactly that. However, if you want to
mindlessly follow the crowd, please keep in mind the following:



1. The values of λ can only be found from the Sturm-Liouville problem for X. The problem
for T is not a Sturm-Liouville problem and can never produce the correct values for λ.

2. The functions T (t) do not satisfy the same initial conditions at time t = 0 as u does.

3. Finding T is useless if the PDE is inhomogeneous; it simply does not work. (Unless you
add still more artificial tricks to the mix, as the book does.)

We will just ignore the entire T . Instead in the next section we will systematically solve the
problem for u without tricks using our found eigenfunctions. What we do there will always
work. If you want to try to take a shortcut for an homogeneous PDE, well, the responsibility
and risk are yours alone. Someday I will stop seeing students getting themselves in major
trouble this way at the final, but it may not be this year.

4 7.28, §4 Solve

So what is the procedure for solving the original problem for the pressure u having found the
eigenfunctions Xn? It is “to switch to the basis of eigenfunctions.” Or in plain English, it is
to write everything in terms of eigenfunctions. And if I say everything, I mean everything.

We first write our solution u(x, t) in terms of the eigenfunctions:

u(x, t) =
∞
∑

n=1

un(t)Xn(x)

The coefficients un(t) are called the “Fourier coefficients” of u. They are really just the
coordinates of u in the basis of eigenfunctions. The sum is called the “Fourier series” for u.

We know our eigenfunctions Xn(x), but not our Fourier coefficients un(t). In fact, the un(t)
are exactly what we want to find out: if we know un(t), we can find the pressure u we are
looking for by doing the sum above. On a computer probably, if we want to get high accuracy.
Or just the first few terms by hand, if we accept some numerical error.

Second, we also write our PDE, utt = a2uxx, in terms of the eigenfunctions:

∞
∑

n=1

ün(t)Xn(x) = a2
∞
∑

n=1

un(t)X ′′
n(x)

This PDE will always simplify; that is how the method of separation of variables works. Look
up the Sturm-Liouville problem for Xn in the previous section; it was X ′′

n(x) = −λnXn(x).
So we can get rid of the x-derivatives in the PDE:

∞
∑

n=1

ün(t)Xn(x) = a2
∞
∑

n=1

(−λnun(t)) Xn(x)



Now if two functions are equal, all their Fourier coefficients must be equal, so we have, for
any value of n,

ün(t) = −a2λnun(t) (n = 1, 2, 3, . . .)

That no longer contains x at all: the PDE has become a set of ODE in t only. And we
(hopefully) know how to solve those! Getting rid of x is really what the method of separation
variables does for us.

We can solve the ODE above easily. It is a constant coefficient one, with a characteristic
equation k2 = −a2λn, hence k = ±ia

√
λn, giving

un(t) = C1ne
ia
√

λnt + C2ne
−ia

√
λnt

or after cleaning up,

un(t) = D1n cos
(

a
√

λnt
)

+ D2n sin
(

a
√

λnt
)

So, we have already found our pressure a bit more precisely:

u(x, t) =
∞
∑

n=1

[

D1n cos
(

a
√

λnt
)

+ D2n sin
(

a
√

λnt
)]

Xn(x)

but we still need to figure out what the integration constants D1n and D2n are.

Third, we write our initial condition u(x, 0) = f(x) and ut(x, 0) = g(x) in terms of the
eigenfunctions. Writing the Fourier series for the two functions as

f(x) =
∞
∑

n=1

fnXn(x) g(x) =
∞
∑

n=1

gnXn(x).

and using the Fourier series for u above, the two initial conditions become

∞
∑

n=1

D1nXn(x) =
∞
∑

n=1

fnXn(x)

∞
∑

n=1

a
√

λnD2nXn(x) =
∞
∑

n=1

gnXn(x).

The Fourier coefficients must again be equal, so we conclude that the coefficients we are
looking for are

D1n = fn D2n =
gn

a
√

λn

The Fourier series for u becomes now

u(x, t) =
∞
∑

n=1

[

fn cos
(

a
√

λnt
)

+
gn

a
√

λn

sin
(

a
√

λnt
)

]

Xn(x)



where

λn =
(2n − 1)2π2

4`2
Xn = cos

(

(2n − 1)πx

2`

)

So, if we can find the Fourier coefficients fn and gn of functions f(x) and g(x), we are done.

Now f(x) and g(x) are, supposedly, given functions, but how do we find their Fourier coef-
ficients? We need a transformation matrix P−1 to get coefficients in a new basis for vectors.
The equivalent for functions is the following important formula:

fn =

∫ l
0 f(x)Xn(x)dx
∫ l
0 Xn(x)2dx

which is called the “orthogonality relation”. Even if f(x) = 1, say, we still need to do those
integrals. The same for g of course:

gn =

∫ l
0 g(x)Xn(x)dx
∫ l
0 Xn(x)2dx

We are done! Or at least, we have done as much as we can do until someone tells us the actual
functions f(x) and g(x). If they do, we just do the integrals above to find all the fn and gn,
(maybe analytically or on a computer), and then we can sum the expression for u(x, t) for
any x and t that strikes our fancy.

Note that we did not have to do anything with the boundary conditions ux(0, t) = 0 and
u(`, t) = 0; since every eigenfunction Xn satisfies them, the expression for u above automati-
cally also satisfies these homogeneous boundary conditions.

5 7.28, §5 Comparison

Separation of variables solution found as:

u =
∞
∑

n=1

[

fn cos

(

(2n − 1)πat

2`

)

+
2`gn

(2n − 1)πa
sin

(

(2n − 1)πat

2`

)]

cos

(

(2n − 1)πx

2`

)

• Shows the natural frequencies (tones) to be πa/2`, 3πa/2`,...

• Shows the energy in each harmonic.

• Not restricted to the 1D wave equation.

D’Alembert:

u(x, t) =
f̄(x − at) + f̄(x + at)

2
+

1

2a

∫ x+at

x−at
ḡ(ξ) dξ



• I can evaluate the pressure at any point without doing big sums.

• Shows how wave fronts propagate.

• Shows regions of influence and dependence.



7.38

1 7.38, §1 Asked

Asked: Find the ideal flow in a cylinder if the normal (radial) velocity at the perimeter is
known.

2 7.38, §2 P.D.E. Model

• Finite domain Ω̄: 0 ≤ r ≤ 1, 0 ≤ ϑ < 2π

• Unknown velocity potential u = u(r, ϑ)



• Elliptic equation

∇2u = urr +
1

r
ur +

1

r2
uϑϑ = 0

• One Neumann boundary condition at r = 1.

We will try separation of variables.

3 7.38, §3 Eigenfunctions

If we substitute a trial solution u = R(r)Θ(ϑ) into the homogeneous P.D.E. urr + ur/r +
uϑϑ/r

2 = 0, we get:

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0

which separates into

r2T ′′

T
+ r

T ′

T
= −Θ′′

Θ
= constant = λ

Make sure that all r terms are at the same side of the equation!

Now which ODE gives us the Sturm-Liouville problem, and thus the eigenvalues? Not the
one for R(r); u has an inhomogeneous boundary condition on the perimeter r = 1. Eigenvalue
problems must be homogeneous; they simply don’t work if anything is inhomogeneous.

We are in luck with Θ(ϑ) however. The unknown u(r, ϑ) has “periodic” boundary conditions
in the ϑ-direction. If ϑ increases by an amount 2π, u(r, ϑ) returns to exactly the same values
as before: it is a “periodic function” of ϑ. Periodic boundary conditions are homogeneous: the
zero solution satisfies them. After all, zero remains zero however many times you go around
the circle.

The Sturm-Liouville problem for Θ is:

−Θ′′ = λΘ

Θ(0) = Θ(2π) Θ′(0) = Θ′(2π)

Note that for a second order ODE, we need two boundary conditions. So we wrote down that
both Θ, as well as its derivative are exactly the same at ϑ = 0 and 2π.

Pretend that we do not know the solution of this Sturm-Liouville problem! Write the charac-
teristic equation of the ODE:

k2 + λ = 0 =⇒ k = ±i
√

λ

Lets look at all possibilities:



Case λ = 0:

Since k1 = k2 = 0:
Θ = A + Bϑ

Boundary conditions:
Θ(0) = Θ(2π) =⇒ A = A + B2π

That can only be true if B = 0. Then the second boundary condition is

Θ′(0) = Θ′(2π) =⇒ 0 = 0

hence Θ = A. No undetermined constants in eigenfunctions! Simplest is to choose A = 1:

Θ0(ϑ) = 1

Case λ 6= 0:

We will be lazy and try to do the cases of positive and negative λat the same time. For
positive λ, the cleaned-up solution is

Θ = A cos
(√

λϑ
)

+ B sin
(√

λϑ
)

This also applies for negative λ, except that the square roots are then imaginary.

Lets write down the boundary conditions first:

Θ(0) = Θ(2π) =⇒ A = A cos
(√

λ2π
)

+ B sin
(√

λ2π
)

Θ′(0) = Θ′(2π) =⇒ B
√

λ = −A
√

λ sin
(√

λ2π
)

+ B
√

λ cos
(√

λ2π
)

These two equations are a bit less simple than the ones we saw so far. Rather than directly
trying to solve them and make mistakes, this time let us write out the augmented matrix of
the system of equations for A and B:





1 − cos
(√

λ2π
)

− sin
(√

λ2π
)

0

sin
(√

λ2π
)

1 − cos
(√

λ2π
)

0





Any nontrivial solution must be nonunique (since zero is also a solution). So the determinant
of the matrix must be zero, which is:

1 − 2 cos
(√

λ2π
)

+ cos2
(√

λ2π
)

+ sin2
(√

λ2π
)

= 0

or
cos

(√
λ2π

)

= 1



A cosine is only equal to 1 when its argument is an integer multiple of 2π. Hence the only
possible eigenvalues are

√

λ1 = 1
√

λ2 = 2
√

λ3 = 3 . . .

If λ is negative, cos
(

i
√
−λ2π

)

= cosh
(√

−λ2π
)

which is always greater than one for nonzero
λ.

For the found eigenvalues, the system of equations for A and B becomes:

(

0 0 0
0 0 0

)

Hence we can find neither A or B; there are two undetermined constants in the solution:

Θn = A cos(nϑ) + B sin(nϑ)

We had this situation before with eigenvector in the case of double eigenvalues, where an
eigenvalue gave rise two linearly independent eigenvectors. Basically we have the same situa-
tion here: each eigenvalue is double. Similar to the case of eigenvectors of symmetric matrices,
here we want two linearly independent, and more specifically, orthogonal eigenfunctions. A
suitable pair is

Θ1
n(ϑ) = cos(nϑ)

Θ2
n(ϑ) = sin(nϑ)

Total:

We can tabulate the complete set of eigenvalues and eigenfunctions now as:

λ0 = 0 Θ0 = 1
λ1 = 1 Θ1

1 = cos(ϑ) Θ2
1 = sin(ϑ)

λ2 = 4 Θ1
2 = cos(2ϑ) Θ2

2 = sin(2ϑ)
λ3 = 9 Θ1

3 = cos(3ϑ) Θ2
3 = sin(3ϑ)

λ4 = 16 Θ1
4 = cos(4ϑ) Θ2

4 = sin(4ϑ)
...

...
...



4 7.38, §4 Solve

We will again expand all variables in the problem in a Fourier series. Let’s start with the
function f(ϑ) giving the outflow through the perimeter.

f(ϑ) = f0 +
∞
∑

n=1

f 1
n cos(nϑ) +

∞
∑

n=1

f 2
n sin(nϑ)

This is the way a Fourier series of a periodic function with period 2π always looks.

Since f(ϑ) is supposedly known, we should again be able to find its Fourier coeficients using
orthogonality. The formulae are as before.

f0 =

∫ 2π
ϑ=0 f(ϑ)1 dϑ
∫ 2π
ϑ=0 12 dϑ

(the bottom is of course equal to 2π,)

f 1
n =

∫ 2π
ϑ=0 f(ϑ) cos(nϑ) dϑ
∫ 2π
ϑ=0 cos2(nϑ) dϑ

(n = 1, 2, . . .)

f 2
n =

∫ 2π
ϑ=0 f(ϑ) sin(nϑ) dϑ
∫ 2π
ϑ=0 sin2(nϑ) dϑ

(n = 1, 2, . . .)

(the bottoms are equal to π.)

Since I hate typing big formulae, allow me to write the Fourier series for f(ϑ) much more
compactly as

f(ϑ) =
∞
∑

n,i

f i
nΘi

n(ϑ)



where Θ1
n = cos(nϑ) and Θ2

n = sin(nϑ). Also, all three formulae for the Fourier coefficients
can be summarized as

f i
n =

∫ 2π
ϑ=0 f(ϑ)Θi

n(ϑ) dϑ
∫ 2π
ϑ=0 Θi2

n (ϑ) dϑ
(n = 1, 2, 3, . . . ; i = 1, 2)

For n = 0, only the value i = 1 is relevant, of course; Θ1
0 = cos(0ϑ) = 1 = Θ0. There is no

Θ2
0 = sin(0ϑ) = 0.

Next, let’s write the unknown u(r, ϑ) as a compact Fourier series:

u(r, ϑ) =
∑

n,i

ui
n(r)Θi

n(ϑ)

We put this into P.D.E. urr + ur/r + uϑϑ/r
2 = 0:

∑

n,i

ui
n(r)′′Θi

n(ϑ) +
1

r

∑

n,i

ui
n(r)′Θi

n(ϑ) +
1

r2

∑

n,i

ui
n(r)Θi

n(ϑ)′′ = 0

Using the Sturm-Liouville equation Θi
n(ϑ)′′ = −λΘi

n(ϑ), where λ was found to be n2, this
simplifies to

∑

n,i

ui
n(r)′′Θi

n(ϑ) +
1

r

∑

n,i

ui
n(r)′Θi

n(ϑ) − 1

r2

∑

n,i

n2ui
n(r)Θi

n(ϑ) = 0

We get the following ODE for ui
n(r):

ui
n(r) +

1

r
ui

n(r)′ − n2

r2
ui

n(r) = 0

or multiplying by r2:
r2ui

n(r) + rui
n(r)′ − n2ui

n(r) = 0

This is not a constant coefficient equation. Writing down a characteristic equation is no good.

Fortunately, we have seen this one before: it is the Euler equation. You solved that one by
changing to the logaritm of the independent variable, in other words, by rewriting the equation
in terms of

ρ ≡ ln r

instead of r. The r-derivatives can be converted as in:

dui
n

dr
=

dui
n

dρ

dρ

dr
=

dui
n

dρ

1

r

d2ui
n

dr2
=

d

dr

[

dui
n

dρ

1

r

]

=
d

dr

[

dui
n

dρ

]

1

r
− dui

n

dρ

1

r2



=
d

dρ

[

dui
n

dρ

]

dρ

dr

1

r
− dui

n

dρ

1

r2
=

d2ui
n

dρ2

1

r2
− dui

n

dρ

1

r2

The ODE becomes in terms of ρ:
d2ui

n

dρ2
− n2ui

n = 0

This is now a constant coefficient equation, so we can write the characteristic polynomial,
k2 − n2 = 0, or k = ±n, which has a double root when n = 0. So we get for n = 0:

u1
0 = A1

0 + B1
0ρ = A1

0 + B1
0 ln r

while for n 6= 0:
ui

n = Ai
nenρ + Bi

ne
−nρ = Ai

nrn + Bi
nr

−n

Now both ln r as well as r−n are infinite when r = 0. But that is in the middle of our flow
region, and the flow is obviously not infinite there. So from the ‘boundary condition’ at r = 0
that the flow is not singular, we conclude that all the B-coefficients must be zero. Since
r0 = 1, all coefficients are of the form Ai

nrn, including the one for n = 0.

Hence our solution can be more precisely written

u(r, ϑ) =
∑

n,i

Ai
nr

nΘi
n(ϑ)

Next we expand the boundary condition ur(1, ϑ) = f(ϑ) at r = 1 in a Fourier series:
∑

n,i

nAi
nΘi

n(ϑ) =
∑

n,i

f i
nΘi

n(ϑ)

producing
nAi

n = f i
n

For n = 0, we see immediately that A0 can be anything, but we need f0 = 0 for a solution to
exist! According to the orthogonality relationship for f0, this requires:

∫ 2π

0
f(ϑ) dϑ = 0

Are you surprised that the net outflow through the perimeter must be zero for this steady
flow?

For nonzero n:

Ai
n =

f i
n

n
and our solution becomes

u = A0 +
∑

n,i

f i
n

rn

n
Θn(ϑ)

where A0 can be anything.



5 7.38, §5 Total

Let’s summarize our results, and write the eigenfunctions out in terms of the individual sines
and cosines.

Required for a solution is that:
∫ 2π

0
f(ϑ) dϑ = 0

Then:

f 1
n =

1

π

∫ 2π

ϑ=0
f(ϑ) cos(nϑ) dϑ (n = 1, 2, . . .)

f 2
n =

1

π

∫ 2π

ϑ=0
f(ϑ) sin(nϑ) dϑ (n = 1, 2, . . .)

u = A0 +
∞
∑

n=1

{

f 1
n

rn

n
cos(nϑ) + f 2

n

rn

n
sin(nϑ)

}

where A0 can be anything.

6 7.38, §6 Notes

(The material in this section is elective).

It may be interesting to see exactly how functions are similar to vectors. Let’s start with a
vector in two dimensions, like the vector ~v = (3, 4). I can represent this vector graphically as
a point in a plane, but I can also represent it as the ’spike function’ in the first figure below:

The first coefficient, v1, is 3, giving a spike of height of 3 when the subscript, call it i, is
1. The second coefficient v2 = 4, so we have a spike of height 4 at i = 2. Similarly, the
three-dimensional vector ~v = (3, 4, 2) can be graphed as the three-spike function in the second
figure. If I keep adding more dimensions, going to the limit of infinite-dimensional space,
my spike graph vi becomes a function graph f of a continuous coordinate x instead of i.
You can think of function f(x) as a column vector of numbers, with the numbers being the



successive values of f(x). In this way, vectors become functions. And vector analysis turns
into functional analysis.

To take the dot product of two vectors ~v and ~w, we multiply corresponding coefficients and
sum:

~v · ~w ≡
n

∑

i=0

viwi

For functions f(x) and g(x), the sum over i becomes an integral over x:

(f, g) ≡
∫ `

x=0
f(x)g(x) dx

Since we now have a dot product, or inner product, for functions we can define the “norm”

of a function, ||f || ≡
√

(f, f), corresponding to length for vectors. More importantly, we can
define orthogonality for functions. Functions f and g are orthogonal if the integral above is
zero.

For vectors we have matrices that turn vectors into other vectors: a matrix A turns a vector
~v into another vector A~v. For functions we have “operators” that turn functions into other
functions. For example, the operator ∂2/∂x2 turns a function f(x) into another function
f ′′(x). Among the functions of period 2π, a function such as cos(nx) is an eigenfunction of
this operator:

∂2

∂x2
cos(nx) = −n2 cos(nx)

The eigenvalue is n2.

Symmetry for matrices can be expressed as ~v · (A~w) = (A~v) · ~w because this can be written
using matrix multiplication as ~vT A~w = ~vT AT ~w, which can only be true for all vectors ~v and ~w
if A = AT . And since (f, ∂2g/∂x2) = (∂2f/∂x2, g), as can be seen from integration by parts,
∂2/∂x2 is a symmetric, or “self-adjoint”, operator, with orthogonal eigenfunctions.

How about orthogonality relations? Given eigenfunctions Xn, we have seen that you get the
Fourier coefficients of an arbitrary function f(x) by the following formula:

fn =

∫

fXn dx
∫

X2
n dx

≡ (Xn, f)

(Xn, Xn)

But where does this come from? Remember that we get the coordinates in the new coordinate
system, (here, the Fourier coefficients fn), by multiplying the original vector, (here f(x)), by
the inverse transformation matrix P 1.













f1

f2

f3
...













= P−1f(x)



Now the transformation matrix P has the eigenfunctions as columns:

P = (X1 X2 X3 . . .)

Since the eigenfunctions are orthogonal, you get P−1 by simply taking the transpose, so:













f1

f2

f3
...













=













XT
1

XT
2

XT
3
...













f(x) =













(X1, f)
(X2, f)
(X3, f)

...













giving fn = (Xn, f). The difference from fn = (Xn, f)/(Xn, Xn) above is simply due to the
fact that we usually do not normalize eigenfunctions to norm 1.

Note: I simply told you that the proper orthogonal eigenfunctions for the double eigenvalues
in 7.38 are cos(nx) and sin(nx), but I could actually have derived it from Gram-Schmidt!
There is really nothing new for PDE, if you think of it this way.

7 7.38, §7 More Fun

Our final result was

u = A0 +
∞
∑

n=1

{

f 1
n

rn

n
cos(nϑ) + f 2

n

rn

n
sin(nϑ)

}

We can write it directly in terms of the given f(x) if we substitute in the expressions for the
Fourier coefficients:

u = A0 +
∞
∑

n=1

∫ 2π

0
f(φ) cos(nφ) dφ

rn

nπ
cos(nϑ) +

∫ 2π

0
f(φ) sin(nφ) dφ

rn

nπ
sin(nϑ)

We can clean it up by combining terms and interchanging integration and summation:

u = A0 +
∫ 2π

0

∞
∑

n=1

{

rn

nπ
[cos(nφ) cos(nϑ) + sin(nφ) sin(nϑ)]

}

f(φ) dφ

u = A0 +
∫ 2π

0

{

∞
∑

n=1

rn

nπ
cos(n[ϑ − φ])

}

f(φ) dφ

This we can clean up even more by giving a name to the function within the curly brackets:

u = A0 +
∫ 2π

0
G(r, ϑ − φ)f(φ) dφ



Nice, not? We can even simplify G by converting to complex exponentials and differentiating:

G(r, ϑ) =
∞
∑

n=1

rn

nπ
cos(nϑ) =

∞
∑

n=1

{

rn

2nπ
einϑ +

rn

2nπ
e−inϑ

}

2π
∂G

∂r
=

∞
∑

n=1

{

r−1
(

reiϑ
)n

+ r−1
(

re−iϑ
)n}

=
eiϑ

1 − reiϑ
+

e−iϑ

1 − re−iϑ

The last because the sums are geometric series.

Integrating and cleaning up produces

G(r, ϑ) = − 1

2π
ln

(

1 − 2r cos(ϑ) + r2
)

So, we finally have the following Poisson-type integral expression giving u directly in terms of
the given f(ϑ), with no sums:

u(r, ϑ) = A0 −
1

2π

∫ 2π

0
ln

(

1 − 2r cos(ϑ − φ) + r2
)

f(φ) dφ

Neat!



Introduction
Description:
The Laplace transform pairs a function of a real coordinate, call it t, with 0 < t < ∞, with

a different function of a complex coordinate s:

u(t, ·)
L

=⇒
⇐=
L−1

û(s, ·)

The pairing is designed to get rid of derivatives with respect to t in equations for the function
u. This works as long as the coefficients do not depend on t (or at the very most are low degree
powers of t.) The transformation is convenient since pairings can be looked up in tables.

Typical procedure:
Use tables to find the equations satisfied by û from these satisfied by u. Solve for û and

look up the corresponding u in the tables.
About coordinate t:
In many cases, t is physically time, since time is most likely to satisfy the constraints 0 <

t < ∞ and coefficients independent of t. Also, the Laplace transform likes initial conditions
at t = 0, not boundary conditions at both t = 0 and t = ∞.

1



Table 6.3: Properties of the Laplace transform:

u(t) û(s)

0.
1

2πi

∫ c+i∞

c−i∞
e−stû(s) ds

∫ ∞

0
u(t)e−st dt

1. C1u1(t) + C2u2(t) C1û1(s) + C2û2(s)

2. u(at) a−1û(s/a)

3.
∂nu

∂tn
(t) snû(s) − sn−1u(0) − . . . − ∂n−1u

∂tn−1
(0)

4. tnu(t) (−1)n ∂nû

∂sn

5. ectu(t) û(s − c)

6.

ū(t − b) ≡ H(t − b)u(t − b)

=
{ u(t − b) (t − b > 0)

0 (t − b < 0)

e−bsû(s)

7. (f ∗ g)(t) ≡
∫ t

0
f(t − τ)g(τ) dτ f̂(s)ĝ(s)

Here a > 0, b > 0, c are constants, and n is a natural number.

2



Table 6.4: Laplace transform pairs:

u(t) û(s)

1. 1
1

s

2. tn
n!

sn+1

3. ebt 1

s − b

4. sin(at)
a

s2 + a2

5. cos(at)
s

s2 + a2

6.
1√
πt

1√
s

7.
1√
πt

e−k2/(4t) 1√
s
e−k

√
s

8.
k√
4πt3

e−k2/(4t) e−k
√

s

9. erfc

(

k

2
√

t

)

1

s
e−k

√
s

Here k > 0, a and b are constants, n is a natural number, and

erfc(x) ≡ 2√
π

∫ ∞

x
e−ξ2

dξ

3



7.24

1 7.24, §1 Asked

Asked: Find the flow velocity in a viscous fluid being dragged along by an accelerating plate.

2 7.24, §2 PDE Model

• Semi-infinite domain Ω̄: 0 ≤ x < ∞

• Unknown vertical velocity u = u(x, t)

• Parabolic

• One homogeneous initial condition

• One Neumann boundary condition at x = 0 and a regularity constraint at x = ∞

• Constant kinematic viscosity κ

Try a Laplace transform in t.



3 7.24, §3 Transform

Transform the PDE:

ut = κuxx
Table 6.3, # 3

==========⇒ sû − u(x, 0) = κûxx

Transform the BC:
ux = g(t) ==========⇒ ûx = ĝ(s)

4 7.24, §4 Solve

Solve the PDE:
sû = κûxx

This is a constant coefficient ODE in x, with s simply a parameter. Solve from the charac-
teristic equation:

s = κk2 =⇒ k = ±
√

s/κ

û = Ae
√

s/κ x + Be−
√

s/κ x

Apply the BC at x = ∞ that u must be regular there:

A = 0

Apply the given BC at x = 0:

ûx = ĝ(s) =⇒ −B

√

s

κ
= ĝ

Solving for B and plugging it into the solution of the ODE, û has been found:

û = −
√

κ

s
e−

√
s/κ xĝ

5 7.24, §5 Back

We need to find the original function u corresponding to the transformed

û = −
√

κ

s
e−

√
s/κ xĝ



We do not really know what ĝ is, just that it transforms back to g. However, we can find the
other part of û in the tables.

−
√

κ

s
e−

√
s/κ x Table 6.4, # 7

==========⇒ −
√

κ

πt
e−x2/4κt

How does ĝ times this function transform back? The product of two functions, say f̂(s)ĝ(s),
does not transform back to f(t)g(t). The convolution theorem Table 6.3 # 7 is needed:

u(x, t) = −
∫ t

0

√

κ

π(t − τ)
e−x2/4κ(t−τ)g(τ) dτ



7.36

1 7.36, §1 Asked

Asked: Find the horizontal perturbation velocity in a supersonic flow above a membrane
overlaying a compressible variable medium.

2 7.36, §2 PDE Model

• Domain Ω̄: 0 ≤ x < ∞, 0 ≤ y < ∞

• Unknown horizontal perturbation velocity u = u(x, y)

• Hyperbolic

• Two homogeneous initial conditions



• One mixed boundary condition at y = 0 and a regularity constraint at y = ∞

• Constant a = tan µ, where µ is the Mach angle.

Try a Laplace transform. The physics and the fact that Laplace transforms like only initial
conditions suggest that x is the one to be transformed. Variable x is our “time-like” coordinate.

3 7.36, §3 Transform

Transform the PDE:

uxx = a2uyy
Table 6.3, # 3

==========⇒ s2û − su(0, y) − ux(0, y) = a2ûyy

Transform the BC:

uy − pu = f(x) ==========⇒ ûy − pû = f̂(s)

4 7.36, §4 Solve

Solve the PDE, again effectively a constant coefficient ODE:

s2û = a2ûyy

s2 = a2k2 =⇒ k = ±s/a

û = Aesy/a + Be−sy/a

Apply the BC at y = ∞:
A = 0

Apply the BC at y = 0:

ûy − pû = f̂ =⇒ −s

a
B − pB = f̂

Solving for B and plugging it into the expression for û gives:

û = − af̂

s + ap
e−sy/a



5 7.36, §5 Back

We need to find the original to

û = − a

s + ap
f̂e−sy/a

Looking in the tables:
1

s + ap

Table 6.4, # 3
==========⇒ e−apx

The other factor is a shifted function f , restricted to the interval that its argument is positive:

e−sy/af̂
Table 6.3, # 6

==========⇒ f̄
(

x − y

a

)

With the bar, I indicate that I only want the part of the function for which the argument is
positive. This could be written instead as

f
(

x − y

a

)

H
(

x − y

a

)

where the Heaviside step function H(x) = 0 if x is negative and 1 if it is positive.

Use convolution, Table 6.3, # 7. again to get the product.

u(x, y) = −
∫ x

0
af̄

(

ξ − y

a

)

e−ap(x−ξ) dξ

This must be cleaned up. I do not want bars or step functions in my answer.

I can do that by restricting the range of integration to only those values for which f̄ is nonzero.



(Or H is nonzero, if you prefer)

Two cases now exist:

u(x, y) = −
∫ x

y/a
af

(

ξ − y

a

)

e−ap(x−ξ) dξ (x >
y

a
)

u(x, y) = 0 (x <
y

a
)

It is neater if the integration variable is the argument of f . So, define φ = ξ−y/a and convert:

u(x, y) = −
∫ x−y/a

0
af (φ) e−apx+py+apφ dφ (x >

y

a
)

u(x, y) = 0 (x <
y

a
)

This allows me to see which physical f values I actually integrate over when finding the flow
at an arbitrary point:

6 7.36, §6 Alternate

An alternate solution procedure is to define a new unknown:

v ≡ uy − pu



You must derive the problem for v:

The boundary condition is simply:
v(x, 0) = f(x)

To get the PDE for v, use

∂[PDE]

∂y
− p[PDE] =⇒ vtt = a2vxx

Similarly, for the initial conditions:

∂[ICs]

∂y
− p[ICs] =⇒ v(0, y) = vx(0, y) = 0

After finding v, I still need to find u from the definition of v:

v ≡ uy − pu

Where do you get the integration constant??



7.19

1 7.19, §1 Asked

Asked: Find the unsteady temperature distribution in the bar below for arbitrary position
and time if the initial distribution at time zero and the heat fluxes out of the ends are known.

2 7.19, §2 P.D.E. Model

• Finite domain Ω̄: 0 ≤ x ≤ `

• Unknown temperature u = u(x, t)

• Parabolic

• One initial condition

• Two Neumann boundary conditions

• Constant κ



As usual, we would like to use separation of variables to write the solution in a form that
looks roughly like:

u(x, t) =
∑

n

Tn(t)Xn(x)

The problems with that are:

• We will not find a Sturm-Liouville for Tn(t) since the time coordinate is semi-infinite.
(A Laplace transform in time is somewhat similar, but it would be a mess in this case.)

• We will not find a Sturm Liouville problem for Xn(x) since the boundary conditions at
the x-ends, ux(0, t) = g0(t) and ux(`, t) = g1(t), are inhomogeneous, assuming g0 and g1

are nonzero.

We will apply a trick to get around the second problem.

3 7.19, §3 Boundary Fix

To get rid of the inhomogeneous boundary conditions at x = 0 and x = `, use the following
trick:

Trick: Find any u0 that satisfies the inhomogeneous boundary conditions at x = 0 and x = `
and substract it from u. The remainder will have homogeneous boundary conditions.

So, we first try to find a u0(x, t) that satisfies the same boundary conditions as u(x, t):

u0x(0, t) = g0(t) u0x(`, t) = g1(t)

This u0 does not have to satisfy the PDE nor IC, which allows us to take something simple
for it.

A linear function of x often works:

u0(x, t) = A(t) + B(t)x

Unfortunately, if we put this in the two boundary conditions above, we get two equations for
B alone, since A differentiates away.

Let’s try quadratic:
u0(x, t) = A(t) + B(t)x + C(t)x2

If we put this in the two boundary conditions, we get two equations for B and C:

B(t) = g0(t) B(t) + 2C(t)` = g1(t)



We can solve this for B and C, (and take A = 0), which then gives u0:

u0(x, t) = g0(t)x +
g1(t) − g0(t)

2`
x2

This u0 satisfies the BC but not the PDE or IC.

Please keep in mind what we know, and what we do not know. Since we (supposedly) have
been given functions f(x), g0(t), and g1(t), function u0 is from now on a known quantity, given
above.

You might find a suitable u0 in other ways. In problems with steady boundary conditions, the
steady solution of the problem is often the best choice for u0. Unfortunately, our boundary
conditions are not steady. (Since g0 and g1 depend on time.) Also, a steady solution might
be less easy to write down than a polynomial in x, for some problems.

Having found u0, define a new unknown v as the remainder when u0 is substracted from u:

v ≡ u − u0

We now solve the problem by finding v. When we have found v, we simply add u0, already
known, back in to get u.

To do so, first, of course, we need the problem for v to solve. We get it from the problem for
u by everywhere replacing u by u0 + v. Let’s take the picture of the problem for u in front of
us and start converting.

First take the boundary conditions at x = 0 and x = `:

ux(0, t) = g0(t) ux(`, t) = g1(t)



Replacing u by u0 + v:

u0x(0, t) + vx(0, t) = g0(t) u0x(`, t) + vx(`, t) = g1(t)

But since by construction u0x(0, t) = g0 and u0x(`, t) = g1,

vx(0, t) = 0 vx(`, t) = 0

Note the big thing: while the boundary conditions for v are similar to those for u, they are
homogeneous. We will get a Sturm-Liouville problem in the x-direction for v where we did
not for u. That is what u0 does for us.

We continue finding the rest of the problem for v. We replace u by u0 + v into the PDE
ut = κuxx and take all u0 terms to the right hand side:

vt = κvxx + q

where q is the collection of all the u0 terms; q(x, t) = −u0t + κu0xx, or, written out

q(x, t) = −g′
0(t)x − g′

1(t) − g′
0(t)

2`
x2 + κ

g1(t) − g0(t)

`

Hence q is now a known function, just like u0.

Note that the homogeneous PDE for u turned into an inhomogeneous PDE for v. But sepa-
ration of variables can handle inhomogeneous PDEs just fine.

The final part of the problem for u that we have not converted yet is the initial condition. We
replace u by u0 + v in u(x, 0) = f(x) and take u0 to the other side:

v(x, 0) = f̄(x)

where f̄(x) is f(x) − u0(x, 0):

f̄(x) = f(x) − g0(0)x − g1(0) − g0(0)

2`
x2

Again, f̄ is now a known function.

The problem for v can now be summarized as in the graph below, noting that f̄ and q are



known functions:

Using separation of variables, we can find the solution for v in the form:

v(x, t) =
∑

n

vn(t)Xn(x).

We already know how to do that! (Don’t worry, we will go over the steps anyway.) Having
found v, we will simply add u0 to find the asked temperature u.

4 7.19, §4 Eigenfunctions

To find the eigenfunctions Xn, substitute a trial solution v = T (t)X(x) into the homogeneous
part of the PDE, vt = κvxx + q. Remember: ignore the inhomogeneous part q when finding
the eigenfunctions.

T ′X = κTX ′′

Separate variables:
T ′

κT
=

X ′′

X
= constant = −λ

As always, λ cannot depend on x since the left hand side does not. Also, λ cannot depend on
t since the middle does not. So λ must be a constant.

We get the following Sturm-Liouville problem for the eigenfunctions X(x):

−X ′′ = λX X ′(0) = 0 X ′(`) = 0

The last two equations are the boundary conditions on v which we made homogeneous: the
x-derivative is zero at both ends of the bar. It is a constant coefficient ODE, so we write the
characteristic equation:

k2 + λ = 0 =⇒ k = ±
√
−λ = ±i

√
λ



We again examine each possibility for λ in turn.

Case λ < 0:

Since k = ±
√
−λ

X = Ae
√
−λx + Be−

√
−λx

Boundary conditions:

X ′(0) = 0 = A
√
−λ − B

√
−λ =⇒ B = A

X ′(`) = 0 = A
(√

−λe
√
−λ` −

√
−λe−

√
−λ`

)

=⇒ A = 0

No nontrivial (nonzero) solutions.

Case λ = 0:

Since k1 = k2 = 0:
X = A + Bx

Boundary conditions:
X ′(0) = 0 = B X ′(`) = 0 = B

hence X = A. No undetermined constants in eigenfunctions! Get a basis by choosing any
nonzero value for A. Simplest is to choose 1:

X0(x) = 1

Case λ > 0:

Since k = ±
√
−λ = ±i

√
λ:

X = A sin
(√

λx
)

+ B cos
(√

λx
)

Boundary conditions:
X ′(0) = 0 = A

√
λ

We see that A must be zero, so X will be a cosine. The other boundary condition is:

X ′(`) = 0 = −B
√

λ sin
(√

λ`
)

Nontrivial solutions B 6= 0 exist only if

sin
(√

λ`
)

= 0

A sine is zero when its argument,
√

λ`, equals π, 2π, 3π, so we get the eigenvalues:

√

λ1 =
π

`
,
√

λ2 =
2π

`
,
√

λ3 =
3π

`
, . . .



and corresponding eigenfunctions, taking each B = 1:

X1 = cos
(

πx

`

)

, X2 = cos
(

2πx

`

)

, X3 = cos
(

3πx

`

)

, . . .

Total:

We found eigenfunctions both for λ = 0 and λ > 0, but we can write a single formula that
works for all of them:

λn =
n2π2

`2
Xn = cos

(

nπx

`

)

(n = 0, 1, 2, 3, . . .)

The case n = 0 gives the eigenvalue and eigenfunction for λ = 0, and the other values of n
the ones for λ > 0.

5 7.19, §5 Solve

We again expand everything in the problem for v in a Fourier series:

v =
∞
∑

n=0

vn(t)Xn(x) f̄ =
∞
∑

n=0

f̄nXn(x) q =
∞
∑

n=0

qn(t)Xn(x)

Since q(x) and f̄(x) are known functions, we can find their Fourier coefficients from orthogo-
nality:

f̄n =

∫ `
0 f̄(x) cos(nπx/`) dx
∫ `
0 cos2(nπx/`) dx



qn(t) =

∫ `
0 q̄(x, t) cos(nπx/`) dx

∫ `
0 cos2(nπx/`) dx

Don’t get caught! The integral in the bottom equals π except for n = 0, when it equals 2π.
Do these two integral yourself and figure out why the answer for arbitrary n is not correct for
n = 0.

(It is always a good idea to check that what you are doing for arbitrary n also works for
n = 0.)

So the Fourier coefficients fn are now known constants, and the qn(t) are now known functions
of t. Though in actual application, numerical integration may be needed to find them. During
finals, I usually make the functions f , g0 and g1 simple enough that you can do the integrals
analytically.

Now write the PDE using the Fourier series: vt = κvxx + q:

∞
∑

n=0

v̇n(t)Xn(x) = κ
∞
∑

n=0

vn(t)X ′′
n(x) +

∞
∑

n=0

qn(t)Xn(x)

Looking in the previous section, the Sturm-Liouville ODE was −X ′′ = λX, so the PDE
simplifies to:

∞
∑

n=0

v̇n(t)Xn(x) = −κ
∞
∑

n=0

λnvn(t)Xn(x) +
∞
∑

n=0

qn(t)Xn(x)

It will always simplify or you made a mistake.

Don’t start dividing by the sum now. A sum is a symbol, not a number, and you cannot
divide by symbols. Instead, bring all terms together in one sum:

∞
∑

n=0

(v̇n(t) + κλnvn(t) − qn(t)) Xn(x) = 0

Since the eigenfunctions are independent, they can only produce zero if every single coefficient
is zero:

v̇n(t) + κλnvn(t) = qn(t)

The result is still like we “divided” the previous equations by
∑

n Xn, but you would of course
never want to be heard saying that!

In any case, we have obtained an ODE for each vn which is again constant coefficient, but is
inhomogeneous. Solve the homogeneous equation first. The characteristic polynomial is

k + κλ = 0

so the homogeneous solution is
vnh = Ane

−κλnt



For the inhomogeneous equation, since we do not know the actual form of the functions q,
undetermined constants is not a possibility. So we use variation of parameter:

vn = An(t)e−κλnt

Plugging into the ODE produces

A′
ne

−κλnt + 0 = qn(t)

We integrate this equation to find An. I could write the solution using an indefinite integral:

An(t) =
∫

qn(t)eκλnt dt

But that has the problem that the integration constant is not explicitly shown, which makes
it impossible to apply the initial condition. We can however write the anti-derivative using
an integral with limits and an explicit integration constant as:

An(t) =
∫ t

τ=0
qn(τ)eκλnτ dτ + An0

You can check using Leibnitz that the derivative is exactly what it should be. (Also, the lower
limit does not really have to be zero; you could start the integration from 1, if it would be
simpler. The important thing is that the upper limit is the independent variable t.)

Putting this in
vn = An(t)e−κλnt

we get, cleaned up:

vn(t) =
∫ t

τ=0
qn(τ)e−κλn(t−τ) dτ + An0e

−κλnt

Next, write the IC v(x, 0) = f̄(x) using Fourier series:

∞
∑

n=0

vn(0)Xn(x) =
∞
∑

n=0

f̄nXn(x)

This gives us initial conditions for the vn:

vn(0) = f̄n = An0

the latter from above, and hence

vn(t) =
∫ t

τ=0
qn(τ)e−κλn(t−τ) dτ + f̄ne

−κλnt



6 7.19, §6 Total

Collecting it all together, the solution is to compute the f̄n:

f̄0 =
1

2π

∫ `

0
f̄(x) cos(nπx/`) dx

f̄n =
1

π

∫ `

0
f̄(x) cos(nπx/`) dx (n > 0)

where

f̄(x) = f(x) − g0(0)x − g1(0) − g0(0)

2`
x2

Also compute:

q0(t) =
1

2π

∫ `

0
q(x, t) cos(nπx/`) dx

qn(t) =
1

π

∫ `

0
q(x, t) cos(nπx/`) dx (n > 0)

where

q(x, t) = −g′
0(t)x − g′

1(t) − g′
0(t)

2`
x2 + κ

g1(t) − g0(t)

`

Then the temperature is:

u(x, t) = g0(t)x +
g1(t) − g0(t)

2`
x2

+
∞
∑

n=0

[∫ t

τ=0
qn(τ)e−κn2π2(t−τ)/`2 dτ + f̄ne

−κn2π2t/`2
]

cos(nπx/`)

7 7.19, §7 More Fun

We can, if we want, write the solution for v in other ways that may be more efficient numeri-
cally. The solution was:

v(x, t) =
∞
∑

n=0

[∫ t

τ=0
qn(τ)e−κn2π2(t−τ)/`2 dτ + f̄ne−κn2π2t/`2

]

cos(nπx/`)

The first part is due to the inhomogeneous term q in the PDE, the second due to the initial
condition v(x, 0) = f̄(x)

Looking at the second term first,

vf ≡
∞
∑

n=0

f̄ne
−κn2π2t/`2 cos(nπx/`)



we can substitute in the orthogonality relationship for f̄(x):

vf =
∞
∑

n=0

1

[2]π

∫ `

0
f̄(ξ) cos(nπξ/`) dξ e−κn2π2t/`2 cos(nπx/`)

and change the order of the terms to get:

vf =
∫ `

0

[

∞
∑

n=0

1

[2]π
cos(nπξ/`)e−κn2π2t/`2 cos(nπx/`)

]

f̄(ξ)dξ

We define a shorthand symbol for the term within the square brackets:

G(x, t, ξ) ≡
∞
∑

n=0

1

[2]π
cos(nπξ/`) cos(nπx/`)e−κn2π2t/`2

Since this does not depend on what function f̄(x) is, we can evaluate G once and for. For any
f̄(x), the corresponding temperature is then simply found as:

vf =
∫ `

0
G(x, t, ξ)f̄(ξ)dξ

Function G(x, t, ξ) by itself is the temperature v(x, t) if f̄ is a single spike of heat initially
located at x = ξ. Mathematically, G is the solution for v if f̄(x) is the “delta function”
δ(x − ξ).

Now look at the first term,

vq ≡
∞
∑

n=0

∫ t

τ=0
qn(τ)e−κn2π2(t−τ)/`2 dτ cos(nπx/`)

We again plug in the orthogonality expression for qn:

vq =
∞
∑

n=0

∫ t

τ=0

1

[2]π

∫ `

0
q(ξ, τ) cos(nπξ/`) dξ e−κn2π2(t−τ)/`2 dτ cos(nπx/`)

and rewrite

vq =
∫ t

τ=0

∫ `

0

[

∞
∑

n=0

αn cos(nπξ/`) cos(nπx/`)e−κn2π2(t−τ)/`2
]

q(ξ, τ) dξ dτ

We see that

vq =
∫ t

τ=0

∫ `

0
G(x, t − τ, ξ)q(ξ, τ) dξ dτ

where the function G is exactly the same as it was before. However, G(x, t − τ, ξ) describes
the temperature due to a spike of heat added to the bar at a time τ and position ξ; it is called
the Green’s function.

The fact that solving the initial value problem (f̄), also solves the inhomogeneous PDE prob-
lem (q) is known as Duhamel principle. The idea behind this principle is that fuction q(x, t)
can be “sliced up” as a cake. The contribution of each slice τ ≤ t ≤ τ + dτ of the cake to the
solution v can be found as an initial value problem with q dτ as the initial condition at time
τ .



Procedure

1 Description

This document describes the separation of variables method to solve some partial (not ordi-
nary) differential equations. You might want to look at one or two examples first and then
read this.

2 Form of the solution

Before starting the process, you should have some idea of the form of the solution you are
looking for. Some experience helps here.

For example, for unsteady heat conduction in a bar of length `, with homogeneous end
conditions, the temperature u would be written

u(x, t) =
∑

n

un(t)Xn(x)

where the Xn are chosen eigenfunctions and the un are computed Fourier coefficients of u.
The separation of variables procedure allows you to choose the eigenfunctions cleverly.

For a uniform bar, you will find sines and/or cosines for the functions Xn. In that case the
above expansion for u is called a Fourier series. In general it is called a generalized Fourier
series.

After the functions Xn have been found, the Fourier coefficients un can simply be found
from substituting the expression above for u in the given PDE and initial conditions. (The
boundary conditions are satisfied when you choose the eigenfunctions Xn.) If there are other
functions in the PDE or IC, they too need to be expanded in a Fourier series.

If the problem was axially symmetric heat conduction through the wall of a pipe, the
temperature would still be written

u(r, t) =
∑

n

un(t)Rn(r)

but the expansion functions Rn would now be found to be Bessel functions, not sines or
cosines.

For heat conduction through a pipe wall without axial symmetry, still with homogeneous
boundary conditions, the temperature would be written

u(r, θ, t) =
∑

n,i

ui
n(r, t)Θi

n(θ) =
∑

n,i

∑

m

ui
nm(t)Rnm(r)Θi

n(θ)

where the eigenfunctions Θi
n turn out to be sines and cosines and the eigenfunctions Rnm

Bessel functions. Note that in the first sum, the temperature is written as a simple Fourier
series in θ, with coefficients un that of course depend on r and t. Then in the second sum,
these coefficients themselves are written as a (generalized) Fourier series in r with coefficients
unm that depend on t.

1



(For steady heat conduction, the coordinate “t” might actually be a second spatial coor-
dinate. For convenience, we will refer to conditions at given values of t as “initial conditions”,
even though they might physically really be boundary conditions.)

3 Limitations

First, the equation must be linear. (After all, the solution is found as an sum of simple
solutions.)

The PDE does not necessarily have to be a constant coefficient equation, but the coefficients
cannot be too complicated. You should be able to separate variables. Something like sin(xt)
is not separable.

Further, the boundaries must be at constant values of the coordinates. For example, for
the heat conduction in a bar, the ends of the bar must be at fixed locations x = 0 and x = `.
The bar cannot expand, since then the end points would depend on time.

You may be able to find fixes for problems such as the ones above, though. For example,
the nonlinear Burger’s equation can be converted into the linear heat equation.

4 Procedure

The general lines of the procedure are to choose the eigenfunctions and then to find the
(generalized) Fourier coefficients of the desired solution u. In more detail, the steps are:

1. Make the boundary conditions for the eigenfunctions Xn homogeneous

For heat conduction in a bar, this means that if nonzero end temperatures or heat
fluxes through the ends are given, you will need to eliminate these.

Typically, you eliminate nonzero boundary conditions for the eigenfunctions by sub-
stracting a function u0 from u that satisfies these boundary conditions. Since u0 only
needs to satisfy the boundary conditions, not the partial differential equation or the
initial conditions, such a function is easy to find.

If the boundary conditions are steady, you can try substracting the steady solution, if
it exists. More generally, a low degree polynomial can be tried, say u0 = A + Bx + Cx2,
where the coefficients are chosen to satisfy the boundary conditions.

Afterwards, carefully identify the partial differential equation and initial conditions sat-
isfied by the new unknown v = u − u0. (They are typically different from the ones for
u.)

2. Identify the eigenfunctions Xn

To do this substitute a single term TX into the homogeneous partial differential equa-
tion. Then take all terms involving X and the corresponding independent variable to

2



one side of the equation, and T and the other independent variables to the other side. (If
that turns out to be impossible, the PDE cannot be solved using separation of variables.)

Now, since the two sides of the equation depends on different coordinates, they must
both be equal to some constant. The constant is called the eigenvalue.

Setting the X-side equal to the eigenvalue gives an ordinary differential equation. Solve
it to get the eigenfunctions Xn. In particular, you get the complete set of eigenfunctions
Xn by finding all possible solutions to this ordinary differential equation. (If the ordi-
nary differential equation problem for the Xn turns out to be a regular Sturm-Liouville
problem of the type described in the next section, the method is guaranteed to work.)

The equation for T is usually safest ignored. The book tells you to also solve for the
Tn, to get the Fourier coefficients vn, but if you have an inhomogeneous PDE, you have
to mess around to get it right. Also, it is confusing, since the eigenfunctions Xn do
not have undetermined constants, but the coefficients vn do. It are the undetermined
constants in vn that allow you to satisfy the initial conditions. They probably did not
make this fundamental difference between the functions Xn and the coefficients un clear
in your undergraduate classes.

There is one case in which you do need to use the equation for the Tn: in problems
with more than two independent variables, where you want to expand the Tn themselves
in a generalized Fourier series. That would be the case for the pipe wall without axial
symmetry. Simply repeat the above separation of variables process for the PDE satisfied
by the Tn.

3. Find the coefficients

Now find the Fourier coefficients vn (or vnm for three independent variables) by putting
the Fourier series expansion into the PDE and IC.

While doing this, you will also need to expand the inhomogeneous terms in the PDE
and IC into a Fourier series of the same form. You can find the coefficients of these
Fourier series using the orthogonality property described in the next section.

You will find that the PDE produces ordinary differential equations for the individ-
ual coefficients. And the integration constants in solving those equations follow from
the initial conditions.

Afterwards you can play around with the solution to get other equivalent forms. For
example, you can interchange the order of summation and integration (which results from the
orthogonality property) to put the result in a Green’s function form, etcetera.

3



5 Sturm-Liouville Problems

The eigenvalue problems you get for the eigenfunctions may vary, and sometimes that produces
a different orthogonality expression. You can figure out what is the correct expression by
writing your ODE in the standard form of a Sturm-Liouville problem:

−pX ′′ − p′X ′ + qX = λr̄X,

where X(x) is the eigenfunction to be found and p(x) > 0, q(x), and r̄(x) > 0 are given
functions. The distinguishing feature is that the coefficient of the second, X ′, term is the
derivative of the coefficient of the first, X ′′ term.

Starting with an arbitrary second order linear O.D.E., you can achieve such a form by
multiplying the entire O.D.E. with a suitable factor.

The boundary conditions may either be periodic ones,

X(b) = X(a) X ′(b) = X ′(a),

or they can be homogeneous of the form

AX(a) + BX ′(a) = 0 CX(b) + DX ′(b) = 0,

where A, B, C, and D are given constants. Note the important fact that a Sturm-Liouville
problem must be completely homogeneous: X = 0 must be a solution.

If you have a Sturm-Liouville problem, simply (well, simply ...) solve it. The solutions
only exists for certain values of λ. Make sure you find all solutions, or you are in trouble.
They will form an infinite sequence of ‘eigenfunctions’, say X1(x), X2(x), X3(x), ... with
corresponding ‘eigenvalues’ λ1, λ2, λ3, ... that go off to positive infinity.

You can represent arbitrary functions, say f(x), on the interval [a, b] as a generalized
Fourier series:

f(x) =
∑

n

fnXn(x).

If you know f(x), the orthogonality relation that gives the generalized Fourier coefficients fn

is

fn =

∫ b
a f(x)Xn(x)r̄(x)dx

∫ b
a X2

n(x)r̄(x)dx

Now you know why you need to write your Sturm-Liouville problem in standard form: it
allows you to pick out the weight factor r̄ that you need to put in the orthogonality relation!
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7.22

1 7.22, §1 Asked

Asked: Find the unsteady temperature distribution in the moving bar below for arbitrary
position and time if the initial distribution at time zero and the temperatures of the ends are
known.

2 7.22, §2 PDE Model

• Finite domain Ω̄: 0 ≤ x ≤ `

• Unknown temperature u = u(x, t)

• Parabolic

• One initial condition



• Two Dirichlet boundary conditions

• Constant κ

Try separation of variables:
∑

n

Cn(t)Xn(x)

3 7.22, §3 Boundaries

Find u0:

The x-boundary conditions are inhomogeneous:

u(0, t) = g0(t) u(`, t) = g1(t)

Try finding a u0 satisfying these boundary conditions:

u0(0, t) = g0(t) u0(`, t) = g1(t)

Try a linear expression:
u0 = A(t) + B(t)x

A(t) = g0(t) A(t) + B(t)` = g1(t)

This can be solved to find

u0(x, t) = g0(t) +
g1(t) − g0(t)

`
x

Identify the problem for the remainder:

Substitute u = u0 + v into the boundary conditions:

u0(0, t) + v(0, t) = g0(t) u0(`, t) + v(`, t) = g1(t)

gives
v(0, t) = 0 v(`, t) = 0

Substitute u = u0 + v into the PDE ut = κuxx + bux + cu:

vt = κvxx + bvx + cv + q

where

q(x, t) = −g′
0(t) −

g′
1(t) − g′

0(t)

`
x + b

g1(t) − g0(t)

`
+ c

(

g0(t) +
g1(t) − g0(t)

`
x

)



Substitute u = u0 + v into the IC u(x, 0) = f(x):

v(x, 0) = f̄(x)

f̄(x) = f(x) − g0(0) − g1(0) − g0(0)

`
x

The problem for v is therefor:

4 7.22, §4 Eigenfunctions

Substitute v = T (t)X(x) into the homogeneous PDE vt = κvxx + bvx + cv:

T ′X = κTX ′′ + bTX ′ + cTX

Separate:
T ′

T
= κ

X ′′

X
+ b

X ′

X
+ c = constant = −λ

The Sturm-Liouville problem for X is now:

−κX ′′ − bX ′ − cX = λX X(0) = 0 X(`) = 0

This is a constant coefficient ODE, with a characteristic polynomial:

κk2 + bk + (c + λ) = 0



The fundamentally different cases are now two real roots (discriminant positive), a double
root (discriminant zero), and two complex conjugate roots (discriminant negative.) We do
each in turn.

Case b2 − 4κ(c + λ) > 0:

Roots k1 and k2 real and distinct:

X = Aek1x + Bek2x

Boundary conditions:
X(0) = 0 = A + B =⇒ B = −A

X(`) = 0 = A
(

ek1` − ek2`
)

= 0

No nontrivial solutions since the roots are different.

Case b2 − 4κ(c + λ) = 0:

Since k1 = k2 = k:
X = Aekx + Bxekx

Boundary conditions:
X(0) = 0 = A X(`) = 0 = B`ek`

No nontrivial solutions.

Case b2 − 4κ(c + λ) < 0:

For convenience, we will write the roots of the characteristic polynomial more concisely as:

k1 = −µ + iω k2 = −µ − iω

where according to the solution of the quadratic

µ =
b

2κ
ω =

√

4κ(c + λ) − b2

2κ

Since it can be confusing to have too many variables representing the same thing, let’s agree
that µ is our “representative” for b, and ω our “representative” for λ. In terms of these
representatives, the solution is, after clean-up,

X = e−µx (A cos(ωx) + B sin(ωx))

Boundary conditions:

X(0) = 0 = A X(`) = 0 = e−µ`B sin(ω`)



Nontrivial solutions B 6= 0 can only occur if

sin(ω`) = 0 =⇒ ωn = nπ/` (n = 1, 2, . . .)

which gives us our eigenvalues, by substituting in for ω:

λn =
κn2π2

`2
+

b2

4κ
− c (n = 1, 2, 3, ...)

Also, choosing each B = 1:

Xn = e−µx sin (nπx/`) (n = 1, 2, 3, ...)

5 7.22, §5 Solve

Expand all variables in the problem for v in a Fourier series:

v =
∞
∑

n=1

vn(t)Xn(x) f̄ =
∞
∑

n=1

f̄nXn(x) q =
∞
∑

n=1

qn(t)Xn(x)

We want to first find the Fourier coefficients of the known functions f̄ and q. Unfortunately,
the ODE found in the previous section,

−κX ′′ − bX ′ − cX = λX



is not in standard Sturm-Liouville form: the derivative of the first, X ′′, coefficient, −κ, is zero,
not −b. Let’s try to make it OK by multiplying the entire equation by a factor, which will
then be our r̄.

−r̄κX ′′ − r̄bX ′ − r̄cX = λr̄X

We want that the second coefficient is the derivative of the first:

r̄b =
d

dx
(r̄κ)

This is a simple ODE for the r̄ we are trying to find, and a valid solution is:

r̄ = ebx/κ = e2µx

Having found r̄, we can write the orthogonality relationships for the generalized Fourier coef-
ficients of f̄ and q (remember that Xn = e−µx sin(nπx/`)):

f̄n =

∫ `
x=0 eµxf̄(x) sin(nπx/`) dx

∫ `
x=0 sin2(nπx/`) dx

qn(t) =

∫ `
x=0 eµxq(x, t) sin(nπx/`) dx

∫ `
x=0 sin2(nπx/`) dx

The integrals in the bottoms equal `/2.

Expand the PDE vt = κvxx + bvx + cv + q in a generalized Fourier series:

∞
∑

n=1

v̇n(t)Xn(x) =

κ
∞
∑

n=1

vn(t)X ′′
n(x) + b

∞
∑

n=1

vn(t)X ′
n(x) + c

∞
∑

n=1

vn(t)Xn(x)

+
∞
∑

n=1

qn(t)Xn(x)

Because of the choice of the Xn, κX ′′ + bX ′ + cX = −λX:

∞
∑

n=1

v̇n(t)Xn(x) = −
∞
∑

n=1

λnvn(t)Xn(x) +
∞
∑

n=1

qn(t)Xn(x)

So, the ODE for the generalized Fourier coefficients of v becomes:

v̇n(t) + λnvn(t) = qn(t)

Expand the IC v(x, 0) = f̄(x) in a generalized Fourier series:

∞
∑

n=1

vn(0)Xn(x) =
∞
∑

n=1

f̄nXn(x)



so
vn(0) = f̄n

Solve this O.D.E. and initial condition for vn:

Homogeneous equation:
vnh = Ane−λnt

Inhomogeneous equation:
A′

ne
−λnt + 0 = qn(t)

An =
∫ t

τ=0
qn(τ)eλnτ dτ + An0

vn = Ane
−λnt

vn =
∫ t

τ=0
qn(τ)e−λn(t−τ) dτ + An0e

−λnt

Initial condition: An0 = f̄n.

vn =
∫ t

τ=0
qn(τ)e−λn(t−τ) dτ + f̄ne

−λnt

6 7.22, §6 Total

Total solution:

µ =
b

2κ
λn =

κn2π2

`2
+ λ0 λ0 =

b2

4κ
− c

f̄(x) = f(x) − g0(0) − g1(0) − g0(0)

`
x

f̄n =
2

`

∫ `

x=0
f̄(x)eµx sin(nπx/`) dx

q(x, t) = −g′
0(t) −

g′
1(t) − g′

0(t)

`
x + b

g1(t) − g0(t)

`
+ c

(

g0(t) +
g1(t) − g0(t)

`
x

)

qn(t) =
2

`

∫ `

x=0
q(x, t)eµx sin(nπx/`) dx

u = g0(t) +
g1(t) − g0(t)

`
x

+
∞
∑

n=1

[∫ t

τ=0
qn(τ)e−λn(t−τ) dτ + f̄ne−λnt

]

e−µx sin(nπx/`)

Solution in the book is no good (check the boundary conditions.)



7 7.22, §7 Poor Method

Define a new unknown w by u = we−αx−βt. Put this in the PDE for u and choose α and β so
that the wx and w terms drop out. This requires:

u = we−µx−λ0t

Then:

wt = κwxx w(x, 0) = eµxf(x) w(0, t) = eλ0tg0(t) w(`, t) = eµ`+λ0tg1(t)

No fun! Note that the generalized Fourier series coefficients for u become normal Fourier
coefficients for w.



7.37

1 7.37, §1 Asked

Asked: Find the steady temperature distribution in the square plate/cross section below if
the heat fluxes out of the sides are known.



2 7.37, §2 P.D.E. Model

• Finite domain Ω̄: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

• Unknown temperature u = u(x, y)

• Elliptic

• Four Neumann boundary conditions

• Integral constraint due to all Neumann B.C.s:

∫ 1

0
p(x) dx −

∫ 1

0
g(y) dy −

∫ 1

0
q(x) dx +

∫ 1

0
f(y) dy = 0

Try separation of variables:

∑

n

un(y)Xn(x) or
∑

n

un(x)Yn(y)



3 7.37, §3 Boundaries

Standard approach:

All boundary conditions are inhomogeneous. Our standard approach would be to set u = u0+v

where
u0x(0, y) = f(y) u0x(1, y) = g(y)

and then set
v =

∑

n

vn(y)Xn(x)

This would work without any problems. A u0 quadratic in x would be fine. Of course, this
choice for u0 is quite arbitrary.

Alternative approach:

Instead, we will follow a more elegant procedure that does not require us to arbitrarily choose
a u0. Unfortunately, this alternative procedure will get us into some trouble.

The idea is that the given problem can be seen as the sum of two problems, each with



homogeneous boundary conditions in one direction.

If we add the solutions u to the two problems together, we should get the solution to the
original problem.

The instructor will solve the left hand problem. The students will solve the right hand problem,
identify the difficulty, and fix it. Note that the four-problem procedure in the book has the
problem even worse.

4 7.37, §4 Eigenfunctions

Substitute u = T (y)X(x) into the homogeneous P.D.E. uxx + uyy = 0:

TX ′′ + T ′′X = 0

T ′′

T
= −X ′′

X
= constant = λ

Since the instructor’s x-boundary conditions are homogeneous, he has a Sturm-Liouville prob-
lem for X:

−X ′′ = λX X ′(0) = 0 X ′(1) = 0

This was already solved in problem 7.19. Looking back there, substituting ` = 1,

λn = n2π2 Xn = cos (nπx) (n = 0, 1, 2, 3, . . .)



5 7.37, §5 Solve

Expand all variables in the problem for u in a Fourier series:

u =
∞
∑

n=0

un(y)Xn(x) p(x) =
∞
∑

n=0

pnXn(x) q(x) =
∞
∑

n=0

qnXn(x)

pn =

∫ 1
0 p(x)Xn(x) dx
∫ 1
0 X2

n(x) dx

qn =

∫ 1
0 q(x)Xn(x) dx
∫ 1
0 X2

n(x) dx

Remember that the expression you find for the integrals in the bottom, 1
2
, does not work for

n = 0, in which case it turns out to be 1.

Fourier-expand the PDE uxx + uyy = 0:

∞
∑

n=0

un(y)Xn(x)′′ +
∞
∑

n=0

un(y)′′Xn(x) = 0



Because of the Sturm-Liouville equation in the previous section

−
∞
∑

n=0

λnun(y)Xn(x) +
∞
∑

n=0

un(y)′′Xn(x) = 0

giving the ODE
un(y)′′ − λnun(y) = 0

or substituting in the eigenvalue

un(y)′′ − n2π2un(y) = 0

Fourier-expand the BC uy(x, 0) = p(x):

∞
∑

n=0

un(0)′Xn(x) =
∞
∑

n=0

pnXn(x) =⇒ u′
n(0) = pn

Fourier-expand the BC uy(x, 1) = q(x):

∞
∑

n=0

un(1)′Xn(x) =
∞
∑

n=0

qnXn(x) =⇒ u′
n(1) = qn

Solve the above ODE and boundary conditions for un. It is a constant coefficient one, with a
characteristic equation

k2 − n2π2 = 0

Caution! Note that both roots are the same when n = 0. So we need to do the n = 0 case
separately.

For n 6= 0 the solution is
un = Anenπy + Bne

−nπy

The boundary conditions above give two linear equations for An and Bn:

(

nπ −nπ pn

nπenπ −nπe−nπ qn

)

whic are best solved using Gaussian elimination. Rewriting the various exponentials in terms
of sinh and cosh, the solution for the Fourier coefficients of u except n = 0 is:

un = −cosh(nπ[y − 1])

nπsinh(nπ)
pn +

cosh(nπy)

nπsinh(nπ)
qn (n = 1, 2, 3, . . .)

For n = 0 the solution of the ODE is

u0 = A0 + B0y



Put in the boundary conditions to get equations for the integration constants A0 and B0:

u′
0(0) = B0 = p0 u′

0(1) = B0 = q0

Oops! We can only solve this if
p0 = q0

Looking above for the definition of those Fourier coefficients, we see we only have a solution if

∫ 1

0
p(x) dx =

∫ 1

0
q(x) dx

Unfortunately, these two integrals will normally not be equal! Also, A0 remains unknown. No
problem! Students will explain and fix the problem.

6 7.37, §6 Total

First compute the Fourier coefficients of the given boundary conditions:

p0 =
∫ 1

0
p(x) dx pn = 2

∫ 1

0
p(x) cos(nπx) dx (n = 1, 2, . . .)

q0 =
∫ 1

0
q(x) dx qn = 2

∫ 1

0
q(x) cos(nπx) dx (n = 1, 2, . . .)

Then the solution is equal to:

u = A0 + p0x

+
∞
∑

n=1

[

−cosh(nπ[y − 1])

nπsinh(nπ)
pn +

cosh(nπy)

nπsinh(nπ)
qn

]

cos(nπx)

But this only satisfies the BC on the top of the plate if

∫ 1

0
q(x) dx =

∫ 1

0
p(x) dx



7.38 U

1 7.38 U, §1 Asked

Asked: Find the unsteady heat conduction in a disk if the perimeter is insulated. The initial
temperature is given.

2 7.38 U, §2 PDE Model

• Finite domain Ω̄: 0 ≤ r ≤ a, 0 ≤ ϑ < 2π

• Unknown temperature u = u(r, ϑ, t)

• Parabolic PDE:

ut = κ
(

urr +
1

r
ur +

1

r2
uϑϑ

)

• One homogeneous Neumann BC at r = a:

ur(a, ϑ, t) = 0

• One IC at t = 0:
u(r, ϑ, 0) = f(r, ϑ)



We will solve using separation of variables in the form

u(r, ϑ, t) =
∑

n

(

∑

m

unm(t)Rnm(r)

)

Θn(ϑ)

The eigenfunctions Θn will get rid of the ϑ variable in the PDE, and the eigenfunctions Rnm

will get rid of the r variable, leaving ODE for the Fourier coefficients unm(t).

3 7.38 U, §3 Eigenfunctions

Let’s start trying to get rid of one variable first. We might try a solution of the form

u(r, ϑ, t) =
∑

n

un(ϑ, t)Rn(r)

where the Rn would be the eigenfunctions and the un(ϑ, t) the corresponding Fourier coeffi-
cients. Unfortunately, if we try to substitute a single term of the form C(ϑ, t)Rn(r) into the
homogeneous PDE, we are not able to take all r terms to the same side of the equation and
θ and t terms to the other side. So we do not get a Sturm-Liouville problem for Rn.

Try again, this time
u(r, ϑ, t) =

∑

n

un(r, t)Θn(ϑ)

If we substitute C(r, t)Θ(ϑ) into the homogeneous PDE ut/κ = urr + ur/r + uϑϑ/r
2 we get:

1

κ
ṪΘ = T ′′Θ +

1

r
T ′Θ +

1

r2
TΘ′′

This, fortunately, can be separated:

r2T ′′

T
+ r

T ′

T
− r2 Ṫ

κT
= −Θ′′

Θ
= constant = λ

So we have a Sturm-Liouville problem for Θ:

−Θ′′ = λΘ

with boundary conditions that are periodic of period 2π. This problem was already fully
solved in 7.38. It was the standard Fourier series for a function of period 2π. In particular,
the eigenfunctions were cos(nϑ), n = 0, 1, 2, . . ., and sin(nϑ), n = 1, 2, . . ..

Like we did in 7.38, in order to cut down on writing, we will indicate those eigenfunctions
compactly as Θi

n, where Θ1
n ≡ cos(nϑ) and Θ2

n ≡ sin(nϑ).

So we can concisely write
u =

∑

n,i

ui
n(r, t)Θi

n(ϑ)



Now, if you put this into the PDE, you will see that you get rid of the ϑ coordinate as usual,
but that still leaves you with r and t. So instead of ODE in t, you get PDE involving both r
and t derivatives. That is not good enough.

We must go one step further: in addition we need to expand each Fourier coefficient ui
n(r, t)

in a generalized Fourier series in r:

u(r, ϑ, t) =
∑

n,i

(

∑

m

ui
nm(t)Ri

nm(r)

)

Θi
n(ϑ)

Now, if you put a single term of the form Tn(t)Rn(r)Θn(ϑ) into the homogeneous PDE, you
get

1

κ
Ṫ i

nRi
nΘi

n = T i
nRi

n

′′
Θi

n +
1

r
T i

nR
i
n

′
Θi

n +
1

r2
T i

nRi
nΘi

n

′′

Since Θi
n
′′

= −λΘi
n = −n2Θi

n, this is separable:

Ṫ i
n

κT i
n

=
Ri

n
′′

Ri
n

+
Ri

n
′

rRi
n

− n2 1

r2
= constant = −µn

So we get a Sturm-Liouville problem for Ri
n with eigenvalue µn

r2Ri
n
′′
+ rRi

n
′
+ (µnr

2 − n2)Ri
n = 0

with again the same homogeneous boundary conditions as u:

Ri
n regular at r = 0 Ri

n
′
(a) = 0

We need to find all solutions to this problem.

Unfortunately, the ODE above is not a constant coefficient one, so we cannot write a char-
acteristic equation. However, we have seen the special case that µn = 0 before, 7.38. It was
a Euler equation. We found in 7.38 that the only solutions that are regular at r = 0 were
found to be Anr

n. But over here, the only one of that form that also satisfies the boundary
condition Ri

n
′
= 0 at r = a is the case n = 0. So, for µ = 0, we only get a single eigenfunction

R00 = 1

For the case µn 6= 0, the trick is to define a stretched r coordinate ρ as

ρ =
√

µnr =⇒ ρ2 d2Ri
n

dρ2
+ ρ

dRi
n

dρ
+ (ρ2 − n2)Ri

n = 0

This equation can be found in any mathematical handbook in the section on Bessel functions.
It says there that solutions are the Bessel functions of the first kind Jn and of the second kind
Yn:

Ri
n = AnJn(

√
µnr) + BnYn(

√
µnr)



Now we need to apply the boundary conditions. Now if you look up the graphs for the
functions Yn, or their power series around the origin, you will see that they are all singular at
r = 0. So, regularity at r = 0 requires Bn = 0.

The boundary condition at the perimeter is

Ri
n

′
(a) = 0 = An

√
µnJ

′
n(
√

µna)

Since µn is nonzero, nontrivial solutions only occur if

J ′
n(
√

µna) = 0

Now if you look up the graphs of the various functions J0, J1, . . ., you will see that they are all
oscillatory functions, like decaying sines, and have an infinity of maxima and minima where
the derivative is zero.

Each of the extremal points gives you a value of µn, so you will get an infinite of values µn1,
µn2, µn3, . . ., µnm, . . .. None of those values will be simple, but you can read them off from
the graph. Better still, you can find tables of values for low values of n and m, which is often
all you need.

So the r-eigenvalues and eigenfunctions are:

µn1 µn2 . . . µnm . . .

Ri
n1 = Jn

(√
µn1r

)

Ri
n2 = Jn

(√
µn2r

)

. . . Ri
nm = Jn

(√
µn3r

)

. . .

where m is the counter over the nonzero stationary points of Jn. To include the special case
µn = 0, we can simply add µ00 = 0, Ri

00 = J0(0) = 1 to the list above.



4 7.38 U, §4 Solve

We again expand all variables in the problem in generaized Fourier series:

Let’s start with the initial condition:

f(r, ϑ) =
∑

n,i

∑

m

f i
nmΘi

n(ϑ)Jn(
√

µnmr)

To find the Fourier coefficients f i
nm, we need orthogonality for both the r and ϑ eigenfunctions.

Now the ODE for the Θ eigenfunctions was in standard form,

−Θ′′ = λΘ

but the one for Rn was not:

r2Ri
n
′′
+ rRi

n
′ − n2Ri

n = −µnr
2Ri

n

The derivative of the first coefficient is 2r, not r. To fix it up, we must divide the equation by
r. And that makes the weight factor r̄ that we need to put in the orthogonality relationship
equal to r.

As a result, our orthogonality relation for the Fourier coefficients of initial condition f(r, ϑ)
becomes

f i
nm =

∫ a
0 Jn(

√
µnmr)

[

∫ 2π
0 Θi

n(ϑ)f(r, ϑ) dϑ
]

r dr
∫ a
0 J2

n(
√

µnmr) r dr
∫ 2π
0 Θi2

n (ϑ) dϑ

The integral within the square brackets turns f(r, ϑ) into its θ-Fourier coefficient f i
n(r) and

the outer integral turns that coefficient in its generalized r-Fourier coefficient f i
nm. Note

that the total numerator is an integral of f over the area of the disk against a mode shape
Jn(

√
µnmr)Θi

n(ϑ).

The r-integral in the denominator can be worked out using Schaum’s Mathematical Handbook
24.88/27.88:

∫ a

0
J2

n(
√

µnmr) r dr =

(

a2

2
− n2

2µnm

)

J2
n (

√
µnma)

(setting the second term to zero for µ00.)



Hence, while akward, there is no fundamental problem in evaluating as many f i
nm as you want

numerically. We will therefor consider them now “known”.

Next we expand the desired temperature in a generalized Fourier series:

u(r, ϑ, t) =
∑

n,i

∑

m

ui
nm(t)Θi

n(ϑ)Jn(
√

µnmr)

Put into PDE ut/κ = urr + ur/r + uϑϑ/r
2:

1

κ

∑

n,i

∑

m

u̇i
nmΘi

n(ϑ)Jn(
√

µnmr)

=
∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′′

+
1

r

∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′

+
1

r2

∑

n,i

∑

m

ui
nmΘi

n(ϑ)′′Jn(
√

µnmr)

Because of the SL equation satisfied by the Θi
n:

1

κ

∑

n,i

∑

m

u̇i
nmΘi

n(ϑ)Jn(
√

µnmr)

=
∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′′

+
1

r

∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′

− 1

r2

∑

n,i

∑

m

n2ui
nmΘi

n(ϑ)Jn(
√

µnmr)

Because of the SL equation satisfied by the Jn:

1

κ

∑

n,i

∑

m

u̇i
nmΘi

n(ϑ)Jn(
√

µnmr)

= −
∑

n,i

∑

m

µnmui
nmΘi

n(ϑ)Jn(
√

µnmr)

Hence the ODE for the Fourier coefficients is:

u̇i
nm + κµnmui

nm = 0

with solution:
ui

nm(t) = ui
nm(0)e−κµnmt



At time zero, the series expansion for u must be the same as the one for the given initial
condition f :

ui
nm(0) = f i

nm

Hence we have found the Fourier coefficients of u and solved the problem.

5 7.38 U, §5 Total

Find the set
√

µnma of positive stationary points of the Bessel functions Jn, n = 0, 1, 2, ... and
add µ00 = 0.

Find the generalized Fourier coefficients of the initial condition:

f 1
0m =

∫ 2π

0

∫ a

0
f(r, ϑ)J0(

√
µ0mr) r dϑ dr

πa2J2
0 (

√
µ0ma)

f 1
nm =

2µnm

∫ 2π

0

∫ a

0
f(r, ϑ) cos(nϑ)Jn(

√
µnmr) r dϑ dr

π
(

µnma2 − n2
)

J2
n (

√
µnma)

f 2
nm =

2µnm

∫ 2π

0

∫ a

0
f(r, ϑ) sin(nϑ)Jn(

√
µnmr) r dϑ dr

π
(

µnma2 − n2
)

J2
n (

√
µnma)

Then:

u(r, ϑ, t) =
∞
∑

m=0

f0me−κµ0mtJ0 (
√

µ0mr)

+
∞
∑

n=1

∞
∑

m=1

f 1
nme−κµnmt cos(nϑ)Jn (

√
µnmr)

+
∞
∑

n=1

∞
∑

m=1

f 2
nme−κµnmt sin(nϑ)Jn (

√
µnmr)

That was easy!


