
7.22

1 7.22, §1 Asked

Asked: Find the unsteady temperature distribution in the moving bar below for arbitrary
position and time if the initial distribution at time zero and the temperatures of the ends are
known.

2 7.22, §2 PDE Model

• Finite domain Ω̄: 0 ≤ x ≤ `

• Unknown temperature u = u(x, t)

• Parabolic

• One initial condition



• Two Dirichlet boundary conditions

• Constant κ

Try separation of variables:
∑

n

Cn(t)Xn(x)

3 7.22, §3 Boundaries

Find u0:

The x-boundary conditions are inhomogeneous:

u(0, t) = g0(t) u(`, t) = g1(t)

Try finding a u0 satisfying these boundary conditions:

u0(0, t) = g0(t) u0(`, t) = g1(t)

Try a linear expression:
u0 = A(t) + B(t)x

A(t) = g0(t) A(t) + B(t)` = g1(t)

This can be solved to find

u0(x, t) = g0(t) +
g1(t) − g0(t)

`
x

Identify the problem for the remainder:

Substitute u = u0 + v into the boundary conditions:

u0(0, t) + v(0, t) = g0(t) u0(`, t) + v(`, t) = g1(t)

gives
v(0, t) = 0 v(`, t) = 0

Substitute u = u0 + v into the PDE ut = κuxx + bux + cu:

vt = κvxx + bvx + cv + q

where

q(x, t) = −g′

0(t) −
g′

1(t) − g′

0(t)

`
x + b

g1(t) − g0(t)

`
+ c

(

g0(t) +
g1(t) − g0(t)

`
x

)



Substitute u = u0 + v into the IC u(x, 0) = f(x):

v(x, 0) = f̄(x)

f̄(x) = f(x) − g0(0) −
g1(0) − g0(0)

`
x

The problem for v is therefor:

4 7.22, §4 Eigenfunctions

Substitute v = T (t)X(x) into the homogeneous PDE vt = κvxx + bvx + cv:

T ′X = κTX ′′ + bTX ′ + cTX

Separate:
T ′

T
= κ

X ′′

X
+ b

X ′

X
+ c = constant = −λ

The Sturm-Liouville problem for X is now:

−κX ′′ − bX ′ − cX = λX X(0) = 0 X(`) = 0

This is a constant coefficient ODE, with a characteristic polynomial:

κk2 + bk + (c + λ) = 0



The fundamentally different cases are now two real roots (discriminant positive), a double
root (discriminant zero), and two complex conjugate roots (discriminant negative.) We do
each in turn.

Case b2 − 4κ(c + λ) > 0:

Roots k1 and k2 real and distinct:

X = Aek1x + Bek2x

Boundary conditions:
X(0) = 0 = A + B =⇒ B = −A

X(`) = 0 = A
(

ek1` − ek2`
)

= 0

No nontrivial solutions since the roots are different.

Case b2 − 4κ(c + λ) = 0:

Since k1 = k2 = k:
X = Aekx + Bxekx

Boundary conditions:
X(0) = 0 = A X(`) = 0 = B`ek`

No nontrivial solutions.

Case b2 − 4κ(c + λ) < 0:

For convenience, we will write the roots of the characteristic polynomial more concisely as:

k1 = −µ + iω k2 = −µ − iω

where according to the solution of the quadratic

µ =
b

2κ
ω =

√

4κ(c + λ) − b2

2κ

Since it can be confusing to have too many variables representing the same thing, let’s agree
that µ is our “representative” for b, and ω our “representative” for λ. In terms of these
representatives, the solution is, after clean-up,

X = e−µx (A cos(ωx) + B sin(ωx))

Boundary conditions:

X(0) = 0 = A X(`) = 0 = e−µ`B sin(ω`)



Nontrivial solutions B 6= 0 can only occur if

sin(ω`) = 0 =⇒ ωn = nπ/` (n = 1, 2, . . .)

which gives us our eigenvalues, by substituting in for ω:

λn =
κn2π2

`2
+

b2

4κ
− c (n = 1, 2, 3, ...)

Also, choosing each B = 1:

Xn = e−µx sin (nπx/`) (n = 1, 2, 3, ...)

5 7.22, §5 Solve

Expand all variables in the problem for v in a Fourier series:

v =
∞
∑

n=1

vn(t)Xn(x) f̄ =
∞
∑

n=1

f̄nXn(x) q =
∞
∑

n=1

qn(t)Xn(x)

We want to first find the Fourier coefficients of the known functions f̄ and q. Unfortunately,
the ODE found in the previous section,

−κX ′′ − bX ′ − cX = λX



is not in standard Sturm-Liouville form: the derivative of the first, X ′′, coefficient, −κ, is zero,
not −b. Let’s try to make it OK by multiplying the entire equation by a factor, which will
then be our r̄.

−r̄κX ′′ − r̄bX ′ − r̄cX = λr̄X

We want that the second coefficient is the derivative of the first:

r̄b =
d

dx
(r̄κ)

This is a simple ODE for the r̄ we are trying to find, and a valid solution is:

r̄ = ebx/κ = e2µx

Having found r̄, we can write the orthogonality relationships for the generalized Fourier coef-
ficients of f̄ and q (remember that Xn = e−µx sin(nπx/`)):

f̄n =

∫ `
x=0 eµxf̄(x) sin(nπx/`) dx

∫ `
x=0 sin2(nπx/`) dx

qn(t) =

∫ `
x=0 eµxq(x, t) sin(nπx/`) dx

∫ `
x=0 sin2(nπx/`) dx

The integrals in the bottoms equal `/2.

Expand the PDE vt = κvxx + bvx + cv + q in a generalized Fourier series:

∞
∑

n=1

v̇n(t)Xn(x) =

κ
∞
∑

n=1

vn(t)X ′′

n(x) + b
∞
∑

n=1

vn(t)X ′

n(x) + c
∞
∑

n=1

vn(t)Xn(x)

+
∞
∑

n=1

qn(t)Xn(x)

Because of the choice of the Xn, κX ′′ + bX ′ + cX = −λX:

∞
∑

n=1

v̇n(t)Xn(x) = −
∞
∑

n=1

λnvn(t)Xn(x) +
∞
∑

n=1

qn(t)Xn(x)

So, the ODE for the generalized Fourier coefficients of v becomes:

v̇n(t) + λnvn(t) = qn(t)

Expand the IC v(x, 0) = f̄(x) in a generalized Fourier series:

∞
∑

n=1

vn(0)Xn(x) =
∞
∑

n=1

f̄nXn(x)



so
vn(0) = f̄n

Solve this O.D.E. and initial condition for vn:

Homogeneous equation:
vnh = Ane−λnt

Inhomogeneous equation:
A′

ne
−λnt + 0 = qn(t)

An =
∫ t

τ=0
qn(τ)eλnτ dτ + An0

vn = Ane
−λnt

vn =
∫ t

τ=0
qn(τ)e−λn(t−τ) dτ + An0e

−λnt

Initial condition: An0 = f̄n.

vn =
∫ t

τ=0
qn(τ)e−λn(t−τ) dτ + f̄ne

−λnt

6 7.22, §6 Total

Total solution:

µ =
b

2κ
λn =

κn2π2

`2
+ λ0 λ0 =

b2

4κ
− c

f̄(x) = f(x) − g0(0) −
g1(0) − g0(0)

`
x

f̄n =
2

`

∫ `

x=0
f̄(x)eµx sin(nπx/`) dx

q(x, t) = −g′

0(t) −
g′

1(t) − g′

0(t)

`
x + b

g1(t) − g0(t)

`
+ c

(

g0(t) +
g1(t) − g0(t)

`
x

)

qn(t) =
2

`

∫ `

x=0
q(x, t)eµx sin(nπx/`) dx

u = g0(t) +
g1(t) − g0(t)

`
x

+
∞
∑

n=1

[
∫ t

τ=0
qn(τ)e−λn(t−τ) dτ + f̄ne−λnt

]

e−µx sin(nπx/`)

Solution in the book is no good (check the boundary conditions.)



7 7.22, §7 Poor Method

Define a new unknown w by u = we−αx−βt. Put this in the PDE for u and choose α and β so
that the wx and w terms drop out. This requires:

u = we−µx−λ0t

Then:

wt = κwxx w(x, 0) = eµxf(x) w(0, t) = eλ0tg0(t) w(`, t) = eµ`+λ0tg1(t)

No fun! Note that the generalized Fourier series coefficients for u become normal Fourier
coefficients for w.


