
7.37

1 7.37, §1 Asked

Asked: Find the steady temperature distribution in the square plate/cross section below if
the heat fluxes out of the sides are known.



2 7.37, §2 P.D.E. Model

• Finite domain Ω̄: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

• Unknown temperature u = u(x, y)

• Elliptic

• Four Neumann boundary conditions

• Integral constraint due to all Neumann B.C.s:

∫

1

0

p(x) dx −

∫

1

0

g(y) dy −

∫

1

0

q(x) dx +
∫

1

0

f(y) dy = 0

Try separation of variables:

∑

n

un(y)Xn(x) or
∑

n

un(x)Yn(y)



3 7.37, §3 Boundaries

Standard approach:

All boundary conditions are inhomogeneous. Our standard approach would be to set u = u0+v

where
u0x(0, y) = f(y) u0x(1, y) = g(y)

and then set
v =

∑

n

vn(y)Xn(x)

This would work without any problems. A u0 quadratic in x would be fine. Of course, this
choice for u0 is quite arbitrary.

Alternative approach:

Instead, we will follow a more elegant procedure that does not require us to arbitrarily choose
a u0. Unfortunately, this alternative procedure will get us into some trouble.

The idea is that the given problem can be seen as the sum of two problems, each with



homogeneous boundary conditions in one direction.

If we add the solutions u to the two problems together, we should get the solution to the
original problem.

The instructor will solve the left hand problem. The students will solve the right hand problem,
identify the difficulty, and fix it. Note that the four-problem procedure in the book has the
problem even worse.

4 7.37, §4 Eigenfunctions

Substitute u = T (y)X(x) into the homogeneous P.D.E. uxx + uyy = 0:

TX ′′ + T ′′X = 0

T ′′

T
= −

X ′′

X
= constant = λ

Since the instructor’s x-boundary conditions are homogeneous, he has a Sturm-Liouville prob-
lem for X:

−X ′′ = λX X ′(0) = 0 X ′(1) = 0

This was already solved in problem 7.19. Looking back there, substituting ` = 1,

λn = n2π2 Xn = cos (nπx) (n = 0, 1, 2, 3, . . .)



5 7.37, §5 Solve

Expand all variables in the problem for u in a Fourier series:

u =
∞
∑

n=0

un(y)Xn(x) p(x) =
∞
∑

n=0

pnXn(x) q(x) =
∞
∑

n=0

qnXn(x)

pn =

∫

1

0
p(x)Xn(x) dx
∫

1

0
X2

n
(x) dx

qn =

∫

1

0
q(x)Xn(x) dx
∫

1

0
X2

n
(x) dx

Remember that the expression you find for the integrals in the bottom, 1

2
, does not work for

n = 0, in which case it turns out to be 1.

Fourier-expand the PDE uxx + uyy = 0:

∞
∑

n=0

un(y)Xn(x)′′ +
∞
∑

n=0

un(y)′′Xn(x) = 0



Because of the Sturm-Liouville equation in the previous section

−
∞
∑

n=0

λnun(y)Xn(x) +
∞
∑

n=0

un(y)′′Xn(x) = 0

giving the ODE
un(y)′′ − λnun(y) = 0

or substituting in the eigenvalue

un(y)′′ − n2π2un(y) = 0

Fourier-expand the BC uy(x, 0) = p(x):

∞
∑

n=0

un(0)′Xn(x) =
∞
∑

n=0

pnXn(x) =⇒ u′

n
(0) = pn

Fourier-expand the BC uy(x, 1) = q(x):

∞
∑

n=0

un(1)′Xn(x) =
∞
∑

n=0

qnXn(x) =⇒ u′

n
(1) = qn

Solve the above ODE and boundary conditions for un. It is a constant coefficient one, with a
characteristic equation

k2 − n2π2 = 0

Caution! Note that both roots are the same when n = 0. So we need to do the n = 0 case
separately.

For n 6= 0 the solution is
un = Anenπy + Bne

−nπy

The boundary conditions above give two linear equations for An and Bn:

(

nπ −nπ pn

nπenπ −nπe−nπ qn

)

whic are best solved using Gaussian elimination. Rewriting the various exponentials in terms
of sinh and cosh, the solution for the Fourier coefficients of u except n = 0 is:

un = −
cosh(nπ[y − 1])

nπsinh(nπ)
pn +

cosh(nπy)

nπsinh(nπ)
qn (n = 1, 2, 3, . . .)

For n = 0 the solution of the ODE is

u0 = A0 + B0y



Put in the boundary conditions to get equations for the integration constants A0 and B0:

u′

0
(0) = B0 = p0 u′

0
(1) = B0 = q0

Oops! We can only solve this if
p0 = q0

Looking above for the definition odf those Fourier coefficients, we see we only have a solution
if

∫

1

0

p(x) dx =
∫

1

0

q(x) dx

Unfortunately, these two integrals will normally not be equal! Also, A0 remains unknown. No
problem! Students will explain and fix the problem.

6 7.37, §6 Total

First compute the Fourier coefficients of the given boundary conditions:

p0 =
∫

1

0

p(x) dx pn = 2
∫

1

0

p(x) cos(nπx) dx (n = 1, 2, . . .)

q0 =
∫

1

0

q(x) dx qn = 2
∫

1

0

q(x) cos(nπx) dx (n = 1, 2, . . .)

Then the solution is equal to:

u = A0 + p0x

+
∞
∑

n=1

[

−
cosh(nπ[y − 1])

nπsinh(nπ)
pn +

cosh(nπy)

nπsinh(nπ)
qn

]

cos(nπx)

But this only satisfies the BC on the top of the plate if

∫

1

0

q(x) dx =
∫

1

0

p(x) dx


