
7.38 U

1 7.38 U, §1 Asked

Asked: Find the unsteady heat conduction in a disk if the perimeter is insulated. The initial
temperature is given.

2 7.38 U, §2 PDE Model

• Finite domain Ω̄: 0 ≤ r ≤ a, 0 ≤ ϑ < 2π

• Unknown temperature u = u(r, ϑ, t)

• Parabolic PDE:

ut = κ
(

urr +
1

r
ur +

1

r2
uϑϑ

)

• One homogeneous Neumann BC at r = a:

ur(a, ϑ, t) = 0

• One IC at t = 0:
u(r, ϑ, 0) = f(r, ϑ)



We will solve using separation of variables in the form

u(r, ϑ, t) =
∑

n

(

∑

m

unm(t)Rnm(r)

)

Θn(ϑ)

The eigenfunctions Θn will get rid of the ϑ variable in the PDE, and the eigenfunctions Rnm

will get rid of the r variable, leaving ODE for the Fourier coefficients unm(t).

3 7.38 U, §3 Eigenfunctions

Let’s start trying to get rid of one variable first. We might try a solution of the form

u(r, ϑ, t) =
∑

n

un(ϑ, t)Rn(r)

where the Rn would be the eigenfunctions and the un(ϑ, t) the corresponding Fourier coeffi-
cients. Unfortunately, if we try to substitute a single term of the form C(ϑ, t)Rn(r) into the
homogeneous PDE, we are not able to take all r terms to the same side of the equation and
θ and t terms to the other side. So we do not get a Sturm-Liouville problem for Rn.

Try again, this time
u(r, ϑ, t) =

∑

n

un(r, t)Θn(ϑ)

If we substitute C(r, t)Θ(ϑ) into the homogeneous PDE ut/κ = urr + ur/r + uϑϑ/r
2 we get:

1

κ
ṪΘ = C ′′Θ +

1

r
C ′Θ +

1

r2
CΘ′′

This, fortunately, can be separated:

r2
C ′′

C
+ r

C ′

C
− r2

Ċ

κC
= −Θ′′

Θ
= constant = λ

So we have a Sturm-Liouville problem for Θ:

−Θ′′ = λΘ

with boundary conditions that are periodic of period 2π. This problem was already fully
solved in 7.38. It was the standard Fourier series for a function of period 2π. In particular,
the eigenfunctions were cos(nϑ), n = 0, 1, 2, . . ., and sin(nϑ), n = 1, 2, . . ..

Like we did in 7.38, in order to cut down on writing, we will indicate those eigenfunctions
compactly as Θi

n, where Θ1

n ≡ cos(nϑ) and Θ2

n ≡ sin(nϑ).

So we can concisely write
u =

∑

n,i

ui
n(r, t)Θi

n(ϑ)



Now, if you put this into the PDE, you will see that you get rid of the ϑ coordinate as usual,
but that still leaves you with r and t. So instead of ODE in t, you get PDE involving both r
and t derivatives. That is not good enough.

We must go one step further: in addition we need to expand each Fourier coefficient ui
n(r, t)

in a generalized Fourier series in r:

u(r, ϑ, t) =
∑

n,i

(

∑

m

ui
nm(t)Ri

nm(r)

)

Θi
n(ϑ)

Now, if you put a single term of the form Tn(t)Rn(r)Θn(ϑ) into the homogeneous PDE, you
get

1

κ
Ṫ i

nRi
nΘi

n = T i
nRi

n

′′

Θi
n +

1

r
T i

nR
i
n

′

Θi
n +

1

r2
T i

nRi
nΘi

n

′′

Since Θi
n

′′

= −λΘi
n = −n2Θi

n, this is separable:

Ṫ i
n

κT i
n

=
Ri

n

′′

Ri
n

+
Ri

n

′

rRi
n

− n2
1

r2
= constant = −µn

So we get a Sturm-Liouville problem for Ri
n with eigenvalue µn

r2Ri
n

′′

+ rRi
n

′

+ (µnr
2 − n2)Ri

n = 0

with again the same homogeneous boundary conditions as u:

Ri
n regular at r = 0 Ri

n

′

(a) = 0

We need to find all solutions to this problem.

Unfortunately, the ODE above is not a constant coefficient one, so we cannot write a char-
acteristic equation. However, we have seen the special case that µn = 0 before, 7.38. It was
a Euler equation. We found in 7.38 that the only solutions that are regular at r = 0 were
found to be Anr

n. But over here, the only one of that form that also satisfies the boundary
condition Ri

n

′

= 0 at r = a is the case n = 0. So, for µ = 0, we only get a single eigenfunction

R00 = 1

For the case µn 6= 0, the trick is to define a stretched r coordinate ρ as

ρ =
√

µnr =⇒ ρ2
d2Ri

n

dρ2
+ ρ

dRi
n

dρ
+ (ρ2 − n2)Ri

n = 0

This equation can be found in any mathematical handbook in the section on Bessel functions.
It says there that solutions are the Bessel functions of the first kind Jn and of the second kind
Yn:

Ri
n = AnJn(

√
µnr) + BnYn(

√
µnr)



Now we need to apply the boundary conditions. Now if you look up the graphs for the
functions Yn, or their power series around the origin, you will see that they are all singular at
r = 0. So, regularity at r = 0 requires Bn = 0.

The boundary condition at the perimeter is

Ri
n

′

(a) = 0 = An

√
µnJ

′

n(
√

µna)

Since µn is nonzero, nontrivial solutions only occur if

J ′

n(
√

µna) = 0

Now if you look up the graphs of the various functions J0, J1, . . ., you will see that they are all
oscillatory functions, like decaying sines, and have an infinity of maxima and minima where
the derivative is zero.

Each of the extremal points gives you a value of µn, so you will get an infinite of values
µn1, µn2, µn3, . . ., µnm, . . .. There is no simple formula for these values, but you can read
them off from the graph. Better still, you can find them in tables for low values of n and
m. (Schaum’s gives a table containing both the zeros of the Bessel functions and the zeros of
their derivatives.)

So the r-eigenvalues and eigenfunctions are:

µn1 µn2 . . . µnm . . .

Ri
n1

= Jn

(√
µn1r

)

Ri
n2

= Jn

(√
µn2r

)

. . . Ri
nm = Jn

(√
µn3r

)

. . .

where m is the counter over the nonzero stationary points of Jn. To include the special case
µn = 0, we can simply add µ00 = 0, Ri

00
= J0(0) = 1 to the list above.

In case of negative µn, the Bessel function Jn of imaginary argument becomes a modified
Bessel function In of real argument, and looking at the graph of those, you see that there are
no solutions.



4 7.38 U, §4 Solve

We again expand all variables in the problem in generaized Fourier series:

Let’s start with the initial condition:

f(r, ϑ) =
∑

n,i

∑

m

f i
nmΘi

n(ϑ)Jn(
√

µnmr)

To find the Fourier coefficients f i
nm, we need orthogonality for both the r and ϑ eigenfunctions.

Now the ODE for the Θ eigenfunctions was in standard form,

−Θ′′ = λΘ

but the one for Rn was not:

r2Ri
n

′′

+ rRi
n

′ − n2Ri
n = −µnr

2Ri
n

The derivative of the first coefficient is 2r, not r. To fix it up, we must divide the equation by
r. And that makes the weight factor r̄ that we need to put in the orthogonality relationship
equal to r.

As a result, our orthogonality relation for the Fourier coefficients of initial condition f(r, ϑ)
becomes

f i
nm =

∫ a
0

Jn(
√

µnmr)
[

∫

2π
0

Θi
n(ϑ)f(r, ϑ) dϑ

]

r dr
∫ a
0

J2
n(
√

µnmr) r dr
∫

2π
0

Θi2
n (ϑ) dϑ

The integral within the square brackets turns f(r, ϑ) into its θ-Fourier coefficient f i
n(r) and

the outer integral turns that coefficient in its generalized r-Fourier coefficient f i
nm. Note

that the total numerator is an integral of f over the area of the disk against a mode shape
Jn(

√
µnmr)Θi

n(ϑ).

The r-integral in the denominator can be worked out using Schaum’s Mathematical Handbook
24.88/27.88:

∫ a

0

J2

n(
√

µnmr) r dr =

(

a2

2
− n2

2µnm

)

J2

n (
√

µnma)

(setting the second term to zero for µ00.)



Hence, while akward, there is no fundamental problem in evaluating as many f i
nm as you want

numerically. We will therefor consider them now “known”.

Next we expand the desired temperature in a generalized Fourier series:

u(r, ϑ, t) =
∑

n,i

∑

m

ui
nm(t)Θi

n(ϑ)Jn(
√

µnmr)

Put into PDE ut/κ = urr + ur/r + uϑϑ/r
2:

1

κ

∑

n,i

∑

m

u̇i
nmΘi

n(ϑ)Jn(
√

µnmr)

=
∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′′

+
1

r

∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′

+
1

r2

∑

n,i

∑

m

ui
nmΘi

n(ϑ)′′Jn(
√

µnmr)

Because of the SL equation satisfied by the Θi
n:

1

κ

∑

n,i

∑

m

u̇i
nmΘi

n(ϑ)Jn(
√

µnmr)

=
∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′′

+
1

r

∑

n,i

∑

m

ui
nmΘi

n(ϑ)Jn(
√

µnmr)′

− 1

r2

∑

n,i

∑

m

n2ui
nmΘi

n(ϑ)Jn(
√

µnmr)

Because of the SL equation satisfied by the Jn:

1

κ

∑

n,i

∑

m

u̇i
nmΘi

n(ϑ)Jn(
√

µnmr)

= −
∑

n,i

∑

m

µnmui
nmΘi

n(ϑ)Jn(
√

µnmr)

Hence the ODE for the Fourier coefficients is:

u̇i
nm + κµnmui

nm = 0

with solution:
ui

nm(t) = ui
nm(0)e−κµnmt



At time zero, the series expansion for u must be the same as the one for the given initial
condition f :

ui
nm(0) = f i

nm

Hence we have found the Fourier coefficients of u and solved the problem.

5 7.38 U, §5 Total

Find the set
√

µnma of positive stationary points of the Bessel functions Jn, n = 0, 1, 2, ... and
add µ00 = 0.

Find the generalized Fourier coefficients of the initial condition:

f 1

0m =

∫

2π

0

∫ a

0

f(r, ϑ)J0(
√

µ0mr) r dϑ dr

πa2J2

0
(
√

µ0ma)

f 1

nm =
2µnm

∫

2π

0

∫ a

0

f(r, ϑ) cos(nϑ)Jn(
√

µnmr) r dϑ dr

π
(

µnma2 − n2
)

J2

n (
√

µnma)

f 2

nm =
2µnm

∫

2π

0

∫ a

0

f(r, ϑ) sin(nϑ)Jn(
√

µnmr) r dϑ dr

π
(

µnma2 − n2
)

J2

n (
√

µnma)

Then:

u(r, ϑ, t) =
∞
∑

m=0

f0me−κµ0mtJ0 (
√

µ0mr)

+
∞
∑

n=1

∞
∑

m=1

f 1

nme−κµnmt cos(nϑ)Jn (
√

µnmr)

+
∞
∑

n=1

∞
∑

m=1

f 2

nme−κµnmt sin(nϑ)Jn (
√

µnmr)

That was easy!


