7.38 U

1 7.38 U, §1 Asked

Asked: Find the unsteady heat conduction in a disk if the perimeter is insulated. The initial
temperature is given.

Mrasisoy

2 7.38 U, §2 PDE Model

Finite domain Q: 0 <r < a,0 <Y < 27

Unknown temperature u = u(r, 9, t)

Parabolic PDE:

1 1
U = K (um« + —Uyp + —2u1919>
r r

One homogeneous Neumann BC at r = a:

ur(a,v,t) =0

One IC at t = 0:

u(r,d,0) = f(r,9)



We will solve using separation of variables in the form

u(r 0. 1) = z(zum Ro >)@n<19>

The eigenfunctions ©,, will get rid of the ) variable in the PDE, and the eigenfunctions R,,,,
will get rid of the r variable, leaving ODE for the Fourier coefficients ().

3 7.38 U, §3 Eigenfunctions

Let’s start trying to get rid of one variable first. We might try a solution of the form

u(r,9,t) Zunﬁt

where the R, would be the eigenfunctions and the w, (¥, t) the corresponding Fourier coeffi-
cients. Unfortunately, if we try to substitute a single term of the form C(¥,t)R,(r) into the
homogeneous PDE, we are not able to take all r terms to the same side of the equation and
0 and t terms to the other side. So we do not get a Sturm-Liouville problem for R,,.

Try again, this time
u(r, v, t) Zun r,1)©

If we substitute C(r,¢)O(d) into the homogeneous PDE w;/k = . + u, /7 + ugy/r* we get:
L " 1 / 1 "
-T0=C0"0+-C'0+ —CO
K r r

This, fortunately, can be separated:

2Cr// Cl ) C @//
r‘ —+r— —r“— = ——— = constant = \

C C kC )

So we have a Sturm-Liouville problem for ©:
-0" =)0

with boundary conditions that are periodic of period 27w. This problem was already fully
solved in 7.38. It was the standard Fourier series for a function of period 27. In particular,
the eigenfunctions were cos(nd), n =0,1,2,..., and sin(nd), n =1,2,....

Like we did in 7.38, in order to cut down on writing, we will indicate those eigenfunctions
compactly as ©F, where O} = cos(nd) and ©2 = sin(nd).

So we can concisely write

u=3ul(r,1)04()



Now, if you put this into the PDE, you will see that you get rid of the ¥ coordinate as usual,
but that still leaves you with r and ¢. So instead of ODE in ¢, you get PDE involving both r
and t derivatives. That is not good enough.

We must go one step further: in addition we need to expand each Fourier coefficient u? (r,t)
in a generalized Fourier series in r:

w5 0,0) = 3 (b 01)) 0400

nz

Now, if you put a single term of the form T,,(t) R, (r)©,() into the homogeneous PDE, you
get

1 1
lT’L RZ @Z Tl RZ @Z + T’L Rl @’L + T’l R’L @’L

n n n n n n
. ;1 ;
Since )" = —\O! = —n2@§l, this is separable:

i R R 1
T R + Y -n 2 constant = —u,

So we get a Sturm-Liouville problem for R with eigenvalue f,,
PR+ R+ (ar? — )R =0
with again the same homogeneous boundary conditions as u:
R! regular at r = 0 R (a) =0
We need to find all solutions to this problem.

Unfortunately, the ODE above is not a constant coefficient one, so we cannot write a char-
acteristic equation. However, we have seen the special case that u, = 0 before, 7.38. It was
a Euler equation. We found in 7.38 that the only solutions that are regular at r = 0 were
found to be A,r". But over here, the only one of that form that also satisfies the boundary
condition Rfl, =0 at r = a is the case n = 0. So, for p = 0, we only get a single eigenfunction

For the case p,, # 0, the trick is to define a stretched r coordinate p as

d?R! dR! ,
2 n 2 _ 02 YRE =0

p=\tar = p

This equation can be found in any mathematical handbook in the section on Bessel functions.
It says there that solutions are the Bessel functions of the first kind J,, and of the second kind
Y,.:

sz = Andn(VHnT) + BpYo(y/finr)



Now we need to apply the boundary conditions. Now if you look up the graphs for the
functions Y,,, or their power series around the origin, you will see that they are all singular at
r = 0. So, regularity at » = 0 requires B,, = 0.

The boundary condition at the perimeter is
R/(a) = 0 = Au/fin L (y/fim)
Since u,, is nonzero, nontrivial solutions only occur if
Jo(Viima) =0

Now if you look up the graphs of the various functions Jy, Ji, ..., you will see that they are all
oscillatory functions, like decaying sines, and have an infinity of maxima and minima where
the derivative is zero.

1 -4 J{.l:'-'-:'

Each of the extremal points gives you a value of u,, so you will get an infinite of values
Mnls Mn2s Hn3s - - Mom, ---- Lhere is no simple formula for these values, but you can read
them off from the graph. Better still, you can find them in tables for low values of n and
m. (Schaum’s gives a table containing both the zeros of the Bessel functions and the zeros of
their derivatives.)

So the r-eigenvalues and eigenfunctions are:

Lin1 I o Hnm
o () B () =)

where m is the counter over the nonzero stationary points of .J,,. To include the special case
pn = 0, we can simply add o = 0, Ri, = Jo(0) =1 to the list above.

In case of negative u,, the Bessel function J,, of imaginary argument becomes a modified
Bessel function I,, of real argument, and looking at the graph of those, you see that there are
no solutions.



4 7.38 U, §4 Solve

We again expand all variables in the problem in generaized Fourier series:

Let’s start with the initial condition:

Fr0) =323 FrmOn () Jn(VHinmr)

n,g m

To find the Fourier coefficients f? . we need orthogonality for both the r and ¥ eigenfunctions.
Now the ODE for the © eigenfunctions was in standard form,

—-0"=)6
but the one for R, was not:
R +rR — R = —p,r?R!

The derivative of the first coefficient is 2r, not r. To fix it up, we must divide the equation by
r. And that makes the weight factor 7 that we need to put in the orthogonality relationship
equal to r.

As a result, our orthogonality relation for the Fourier coefficients of initial condition f(r,1})

becomes .
oIS T Hr) [ 15T O5(0) f (r,0) A9 dr

S R ) e [§TO2(9) dY
The integral within the square brackets turns f(r,9) into its -Fourier coefficient f(r) and
the outer integral turns that coefficient in its generalized r-Fourier coefficient f! . Note
that the total numerator is an integral of f over the area of the disk against a mode shape

Jn(WT)@Z(ﬂ)-

The r-integral in the denominator can be worked out using Schaum’s Mathematical Handbook
24.88/27.88:

a n
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(setting the second term to zero for figp.)



Hence, while akward, there is no fundamental problem in evaluating as many f = as you want
numerically. We will therefor consider them now “known”.

Next we expand the desired temperature in a generalized Fourier series:

u(r,9,t) ZZunm ) In(\/onmT)

Put into PDE u/k = ty + /7 + wgy /72

7zzunm n MT)

- Z Z unm n V Iuan)
+ Z Z unm n \/ ,U,an')
n,g m
7,2 ; %: unm Zn (\/ ,uan)

Because of the SL equation satisfied by the O

_Zzunm n mm

+ ZZ Unin O () I (/o)
ZZH Unn O (0) T (v FommT)

Because of the SL equation satisfied by the J,,:

_ZZ Uy O ( \/MT)

Hence the ODE for the Fourier coefficients is:

with solution: A '
uy, (1) = u; (O)e"’“‘"mt

nm



At time zero, the series expansion for u must be the same as the one for the given initial
condition f:
Uy (0) = £

nm nm

Hence we have found the Fourier coefficients of u and solved the problem.

5 7.38 U, §5 Total

Find the set \/f,ma of positive stationary points of the Bessel functions J,, n = 0,1, 2, ... and
add Moo = 0.

Find the generalized Fourier coefficients of the initial condition:
1 /02’7 | 59 do( i) r v ar
Jom = ra’J¢ (\/Jtom@)
2llnm /ZW/ f(r,0) cos(n?) I (\/finmr) rdd dr
(,unma — n2> Jz Vnm@)
2fbnm /027r /Oa f(r,9) sin(nd) J,(\/tnmr)  dO dr
2

2 _
Jam = T <,unma2 — n2> I3 (VPnma)

1
nm

Then:

T 19 t Z fo _Huomt(]o (\/,U()m’l“)

+ 303 fame et cos(nd) Ty (\/inmr)
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+ fsme_““"mt sin(nd)J,, (\/tnm?)
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That was easy!



