3 01/30 W

  1. Derive $\vec n {\rm d}S$ in terms of ${\rm d}\theta$ and ${\rm d}\phi$, where $(r,\theta,\phi)$ are spherical coordinates, assuming that the surface is given in the implicit form $F(r,\theta,\phi)=0$ Use that:

    \begin{displaymath}
\vec r = r  \hat\imath_r
\quad
\frac{\partial \hat\imat...
...al \hat\imath_r}{\partial\phi} = \sin\theta \hat\imath_\phi
\end{displaymath}

    and that $\partial r/\partial\theta$ and $\partial r/\partial\phi$ can be found from the total differential

    \begin{displaymath}
\frac{\partial F}{\partial r} {\rm d}r +
\frac{\partial F}...
...m d}\theta +
\frac{\partial F}{\partial\phi} {\rm d}\phi = 0
\end{displaymath}

    Express the vector part of the final expression in terms of vector calculus.
  2. p104, q62 (Use the Cartesian expression for $\vec{n} {\rm d}S$ to formulate the integral, then switch to polar to do it.)
  3. p132, q42 (use Stokes)
  4. p132, q44 (use Stokes with $\vec v=(-y,x,0)$, then $x=a\cos^3\alpha$, $y=a\sin^3\alpha$.)
  5. p133, q56