Up: Return
Heat Equation

\begin{displaymath}
{\partial u \over \partial t} - \nu {\partial^2 u \over \partial x^2} =
f(x,t) \qquad \nu\gt \end{displaymath}

\begin{displaymath}
t^n \equiv t^0 + n\Delta t\quad x_j \equiv x_0 + j\Delta x\quad
u^n_j \equiv u(x_j,t^n) \quad
f^n_j \equiv f(x_j,t^n)\end{displaymath}

\begin{displaymath}
N \equiv {\nu \Delta t\over \Delta x^2}\end{displaymath}

\begin{displaymath}
\begin{tabular}
{\vert c\vert c\vert c\vert}
\hline\hline
\m...
 ...\ Stable. \\ Accurate.\end{tabular}\\ \hline\hline\end{tabular}\end{displaymath}

\begin{displaymath}
\begin{tabular}
{\vert c\vert c\vert c\vert}
\hline\hline
\m...
 ...accuracy.\end{center}}\end{tabular}\\ \hline\hline\end{tabular}\end{displaymath}

\begin{displaymath}
\begin{tabular}
{\vert c\vert c\vert c\vert}
\hline\hline
\m...
 ...\ Stable. \\ Accurate.\end{tabular}\\ \hline\hline\end{tabular}\end{displaymath}

\begin{displaymath}
\begin{tabular}
{\vert c\vert c\vert c\vert}
\hline\hline
\m...
 ...urate. \\ Dissipative.\end{tabular}\\ \hline\hline\end{tabular}\end{displaymath}


Up: Return