
Lecture 3 Leon van Dommelen 9/8

VECTORS

 A vector is a matrix with only 1 column.

To enter a vector, use menu Insert / Matrix, or quicker, hit Ctrl+m. Use the tab key to go

from coefficient to coefficient while entering the numbers:

v

1

10

100

1000

1000000

















:= v

1

10

100

1 10
3

×

1 10
6

×



















=

To change the format of the result, use menu Format / Result. Or more quickly, double

click:

This used the "decimal"

format, (or "exponential

treshold" 7).

This used the

"engineering" format.
v

1

10

100

1000

1000000

















= v

1 10
0

×

10 10
0

×

100 10
0

×

1 10
3

×

1 10
6

×



















=

Page 1 of 10

Lecture 3 Leon van Dommelen 9/8

MATRICES AND SOLVING SYSTEMS OF LINEAR EQUATIONS

Consider the following system of equations for three unknowns x1, x2, and x3:

 2 x2 + 3 x3 = 9

 2 x1 + 3 x2 + 4 x3 = 8

 5 x1 + 6 x2 + 7 x3 = 9

The coefficients multiplying the unknowns form a "matrix", (some table), call it A. The

right hand sides form a right hand side vector, call it b. The unknowns form a vector of

unknowns, call it x.

Note that the unknowns must be ordered and you must enter a zero for missing unknowns:

A

0

2

5

2

3

6

3

4

7











:= b

9

8

9











:=

If the equations have units, make sure that all unknowns are scaled to the same units and all

right hands sides are. Also scale so that these quantities are not very large or small.

You can let Mathcad find the solution for you. The WRONG way to do it is by pre-

multiplying b by the inverse matrix after checking that the determinant is nonzero:

Wrong: A 3= x A
1−
b

1.333−

4−

5.667











=:=

Until you become an expert in Numerical Linear Algebra, (or are told so), you should

never compute a determinant or an inverse matrix. That is normally a very bad idea!

The only reason it worked above is because the matrix is so small.

Instead, first check the condition number of the matrix:

cnd cond2 A():= cnd 85.824=

This result implies that the relative error in x may be up to 86 times larger than the

relative error in b. That is not bad, because b will have a very small relative error like

10-16. So we can proceed to solve the equations. You should normally use an "LU
decomposition" algorithm to do so. Mathcad provides "lsolve":

x lsolve A b, ():= x

1.333−

4−

5.667











=

Let's also try this for a singular matrix. The above matrix becomes singular if we replace
the zero in it by a 1. Let's do so. Individual matrix elements can be selected as:

 A[row_number,column_numberSPACE Remember that.

The element of A that we want to change is in the first row and the first column, so we

want to enter A[1,1SPACE. Unfortunately, if the variable ORIGIN is set to zero, the

default, counting of rows and columns starts at 0, not 1. So to use normal counting. we
must first set ORIGIN to 1:

ORIGIN 1:= You MUST set ORIGIN and MUST have a box around it!

Page 2 of 10

Lecture 3 Leon van Dommelen 9/8

Warning: Please keep matrix indices apart from text subscripts. For example,

 do not confuse b[2SPACE: b
2
, from b.2: b2.

A
1 1,

1:= Note that the [1,1SPACE shows up as subscripts!

Note that the first coefficient of A is now

1 while the others are unchanged.
A

1

2

5

2

3

6

3

4

7











= b

9

8

9











=

In the first case, the 2 means "the second element of vector b", in the second

case the 2 is just part of the name b2.

Now that we have made A singular, try solving the system again The proper way to do

that, that you must use in your work is to first define a couple of functions if you did not
already:

Note: use Ctrl+= for equals signs in conditions:

badmat cnd() if cnd 0.001+ cnd= "The matrix is bad! The solution will be inaccurate!", "OK", ():=

singmat cnd() if cnd 0.25+ cnd= "The matrix is singular to machine precision!!", badmat cnd(), ():=

Then compute and show the condition number:

cnd cond2 A():= cnd 2.774 10
16

×=

That is very bad, because the relative error in x will no longer be small! Use singmat

now::
singmat cnd() "The matrix is singular to machine precision!!"=

If we would stick our head out, and solve anyway, we would get it

chopped off:

x lsolve A b, ():= x

2.252− 10
15

×

4.504 10
15

×

2.252− 10
15

×















=

Note that those numbers are complete nonsense. The correct solution is infinite, not

something like 1015. Better not put a block around these numbers!

Page 3 of 10

Lecture 3 Leon van Dommelen 9/8

MATRIX MANIPULATIONS

Let's reset A and recompute x: A
1 1,

0:=

A

0

2

5

2

3

6

3

4

7











= b

9

8

9











= x lsolve A b, ():= x

1.333−

4−

5.667











=

If that is the right solution, then A x should be b. It is

indeed:

A

0

2

5

2

3

6

3

4

7











= x

1.333−

4−

5.667











= A x⋅

9

8

9











=

Note however how the product product A x is computed. We have here a 3 x 3 (3 rows

x 3 columns) matrix A times a 3 x 1 (3 rows x 1 column) matrix x (.i.e. a vector x).

The first element, 9, of b is the dot product of the first row of A times the column of x:

0 x
1

⋅ 2 x
2

+ 3 x
3

+ 9= or written

out:
0

4

3
−








⋅ 2 4−()⋅+ 3 5
2

3
+









⋅+ 9=

Similarly the second element of b is the dot product of the second row of A times the

column of x. And the third element of b is the dot product of the third row of A times

the column of x.

 Matrix multiplication is always row-column.

Next note that x A is not the same as A x:

Matrix multiplication does not commute; AB is not normally the same as BA

In fact, x A cannot even be computed, because the rows of x contain only one element,

and the columns of A contain 3. There is no way to take a dot product between them.

(Try it!)

A

0

2

5

2

3

6

3

4

7











= x

1.333−

4−

5.667











= x

1.333−

4−

5.667











= A

0

2

5

2

3

6

3

4

7











=

rows x columns

 3 x 3

rows x columns

 3 x 1

rows x columns

 3 x 1

rows x columns

 3 x 3

^------------------^

OK

^---------------------^

BAD

 The "inner dimensions" of multiplied matrices must be

equal.

Alternatively, the row dimension (number of elements in a row) of the first factor must

equal the column dimension (number of elements in a column) of the second factor.

We cannot even matrix-multiply x by itself to get the square length of the

vector:

x

1.333−

4−

5.667











= x

1.333−

4−

5.667











=

Page 4 of 10

Lecture 3 Leon van Dommelen 9/8

3 x 1 3 x 1

We can however matrix-multiply x by itself if we turn the column in the first factor into a row:

The "transpose" of a matrix A, called AT, has the

columns of A turned into rows, and vice versa.

Note: use the View / Toolbars / Matrix toolbar or Ctrl+1 to get the transpose:

x
T

1.333− 4− 5.667()= x

1.333−

4−

5.667











= x
T

x⋅ 7.063= x 7.063=

1 x 3 3 x 1

^---------------------------------^

OK

As seen above, x
T

x gives the square length of vector x.

One more thing:

For complex vectors, you want to take the "Hermitian Transpose".

That means that you want to take complex conjugate in addition to transpose

Let's see how that works for some example complex vector.

To enter i, the square root of -1, hit i immediately after a number (use 1 if needed):

y
1

i








:= y
1

i








=

To take complex conjugate, use " on the variable.

y
T

1 i()= y
1

i








= y
T

y 0= y
T()



1 i−()= y
1

i








= y
T()



y 2=

You see why the complex conjugate is needed: without it, the nonzero vector y would

have a zero length!

Let's try the Hermitian product with some other complex vector:

z
i−

1









:= y
T()



1 i−()= z
i−

1









= y
T()



z 2i−=

Now suppose that you multiply x by itself without taking transpose. Since a matrix

multiplication is then not possible, Mathcad assumes that you want the dot product:

x x⋅ 49.889= x x⋅ 7.063=

So far, so good. How about complex vectors?

y y⋅ 2= y z⋅ 2i=

Note that the second product has the wrong sign. And that older versions of Mathcad

would give the first product also wrongly, as zero.

 Do not rely on Mathcad to do Hermitian products properly.

Page 5 of 10

Lecture 3 Leon van Dommelen 9/8

Returning to real vectors, while as noted we cannot pre-multiply (left-multiply) A by x

, we can pre-multiply both A and A
T
 with x

T
:

x
T

1.333− 4− 5.667()= A

0

2

5

2

3

6

3

4

7











= x
T

A 20.333 19.333 19.667()=

1 x 3 Not the transpose of A x!

3 x 3

x
T

A
T

9 8 9()=
x
T

1.333− 4− 5.667()= A
T

0

2

3

2

3

4

5

6

7











=

1 x 3

3 x 3

This illustrates that to transpose a product, you must invert the order of the factors in

addition to taking the transpose of each:

 (AB)T = BTAT

To illustrate how these things work out if both A and B are matrices, let's define a 3 x 2

matrix X that contains x and 2x inside

A

0

2

5

2

3

6

3

4

7











= X augment x 2x, ()

1.333−

4−

5.667

2.667−

8−

11.333











=:=

A X⋅

9

8

9

18

16

18











= Is that what you

expected?
X

T
A

T 9

18

8

16

9

18









=

Page 6 of 10

Lecture 3 Leon van Dommelen 9/8

IDENTITY MATRICES

While you are never supposed to compute an inverse matrix in numerical work, what

happens if you do anyway and multiply A by its inverse?

A

0

2

5

2

3

6

3

4

7











= A
1−

1−

2

1−

1.333

5−

3.333

0.333−

2

1.333−











=

A A
1−

⋅

1

0

2.665− 10
15−

×

0

1

7.105 10
15−

×

0

0

1













= A
1−

A⋅

1

0

0

0

1

0

0

1.776− 10
15−

×

1













=

You see here another reason not to compute inverse matrices; round-off errors! Both of

these results should have been equal to the 3 x 3 "identity matrix".

identity 3()

1

0

0

0

1

0

0

0

1











=

An identity matrix is the generalization of the number 1 to matrices. Multiplying by the

unit matrix, if possible, does not do anything:

A

0

2

5

2

3

6

3

4

7











= identity 3() A

0

2

5

2

3

6

3

4

7











= A identity 3()⋅

0

2

5

2

3

6

3

4

7











=

X

1.333−

4−

5.667

2.667−

8−

11.333











= identity 2()
1

0

0

1









= X identity 2()⋅

1.333−

4−

5.667

2.667−

8−

11.333











=

Page 7 of 10

Lecture 3 Leon van Dommelen 9/8

EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors are important in many areas of engineering. For

example, in vibrations, the eigenvalues give the frequencies of vibration, and the

eigenvectors the mode shapes. Mathcad provides various functions to get them.

In general, if for some vector v. A v⋅ equals λ v⋅ , then v is an eigenvector of A and λ

the corresponding eigenvector.

Let's go back to the singular matrix, because then we know one eigenvalue, namely

zero. If a matrix is singular, there is at least one vector that pre-multiplied by A

produces zero. So that is an eigenvector of eigenvalue zero.

A
1 1,

1:=

What we get from Mathcad is:

eigenvals A()

12

1−

0











= Yes, one of the three sigenvalues is indeed zero.

eigenvec A 0, ()

0.408−

0.816

0.408−











= A eigenvec A 0, ()⋅

0

0

0











= Told you so.

E eigenvecs A()

0.31−

0.443−

0.841−

0.667−

0.333−

0.667

0.408

0.816−

0.408











=:=

The matrix in the right hand side contains all three eigenvectors, as columns. To get

them out use the View / Toolbars / Matrix toolbar or Ctrl+6:

E
1〈 〉

0.31−

0.443−

0.841−











= E
2〈 〉

0.667−

0.333−

0.667











= E
3〈 〉

0.408

0.816−

0.408











=

Let's check these vectors,

A E
3〈 〉

⋅

0

0

0











=
A E

1〈 〉
⋅

3.72−

5.314−

10.096−











= 12 E
1〈 〉

3.72−

5.314−

10.096−











= A E
2〈 〉

⋅

0.667

0.333

0.667−











=

Yes, OK; 12 times the vector, -1 times the vector, and 0 times the

vector.

Page 8 of 10

Lecture 3 Leon van Dommelen 9/8

ROTATION MATRICES

If you want to rotate things around an axis, you can do it with matrix multiplication. First

define a unit vector n along the direction of the desired axis of rotation. The vector should

point in the direction that a normal screw would move when rotated that way. Then form

the rotation matrix R as shown below.

As an example, let's assume that we want to rate around the axis that makes equal

angles with the x, y, and z axes of our coordinate system. A unit vector in that direction

is:

n

1

3

1

3

1

3



















:= n

0.577

0.577

0.577











=

Next we want to define a matrix n_x so that n_x r gives the vectorial product between

vectors n and r:

n_x

0

n
3

n
2

−

n
3

−

0

n
1

n
2

n
1

−

0













:= n_x

0

0.577

0.577−

0.577−

0

0.577

0.577

0.577−

0











=

We also need to select an angle to rotate over. Let's choose 120 degrees:

alp 120°:= alp 2.094=

Now we are ready to create the rotation matrix

R n n
T

⋅ cos alp() n_x⋅ n_x⋅− sin alp() n_x+:= R

0

1

0

0

0

1

1

0

0











=

Let's try it out. If we rotate a point on the x-axis, like x=2, y=0, z=0 over 120 degrees

around the given axis, it should become a point on the y axis. If we rotate once more, it

should get on the z-axis, and after a third time (total of 360 degrees) it should be back

where it was on the x-axis.

r

2

0

0











:= R r⋅

0

2

0











= R R⋅ r⋅

0

0

2











= R R⋅ R⋅ r⋅

2

0

0











=

Rotation matrices are unitary; their transpose is also their inverse:

Page 9 of 10

Lecture 3 Leon van Dommelen 9/8

R
T

0

0

1

1

0

0

0

1

0











= R
1−

0

0

1

1

0

0

0

1

0











=

Page 10 of 10

