
Lecture 5 Leon van Dommelen 9/15

"VECTORS" AS COLUMNS OF DATA

Often Mathcad "vectors" are used to simply hold columns of data values. Obviously,

those columns do not normally have anything to do with a vector in the normal sense.

For example, dot products and cross products of such data columns are usually

meaningless, as are multiplication by matrices, rotation, eigenvalues, etcetera.

To illustrate this, assume that we have placed a hot bar with its ends in contact with

ice water. The temperature of the bar will then decay over time to 0 degrees

Centigrade. We have measured the temperature in the final decay stages at 6 times

spaced half a minute apart. Taking the first of these times as time zero, the measured

(subscript m) times are:

ORIGIN 1:= i 1 6..:= tm
i

i 1−() 0.5⋅ min:=

i

1

2

3

4

5

6

=

Subscript m means Measured.

tm

0

0.5

1

1.5

2

2.5



















min⋅=
Note that i is a range variable but tm
a vector. That allows the times to be

unequally spaced, if needed. And

you can change a time, if it is wrong.

Unknown to us, the exact temperature in this range of times is given by (open the

measuring cup to get the degrees Centigrade):

Tx t() 0 °C exp
t

3min
−








28.7 °C 0 °C−()⋅+:= Subscript x means eXact

Our thermometer is very well calibrated, and measures the 6 temperatures with

negligible error. But its digital display only shows the temperatures rounded to whole

degrees. That means that the temperatures that we measure will be:

Tm round Tx tm() 0 °C−() ∆°C
1−

⋅



∆°C 0 °C+:=

So the only thing we know is the following measured times and temperatures:

Note that Tm could not even be a

range variable, because the values

are not equally spaced. Also, you

want it to be a "vector", so that you

can enter and modify the individual

temperatures.

tm

0

0.5

1

1.5

2

2.5



















min⋅= Tm

29

24

21

17

15

12



















°C⋅=

Page 1 of 14

Lecture 5 Leon van Dommelen 9/15

Let's plot the measured data against the exact temperature:

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅,

The presentation quality version would be:

0 1 2
10

15

20

25

30

exact

measured

Measured temperature versus exact one.

Time (minutes)

T
em

p
er

at
u

re
 (

°C
)

Note the errors caused by rounding the temperature to whole degrees. Let's quantify

these errors. The individual errors are:

errm Tm Tx tm()−:= errm

0.3

0.294−

0.436

0.407−

0.265

0.473−



















K=

Page 2 of 14

Lecture 5 Leon van Dommelen 9/15

In quantifying these errors, we are interested in the absolute values of the individual

errors. But to get those, it is not enough to enclose errm between absolute signs, by

typing |err.m=:

errm 0.909 K= Mathcad gives us the length of the 6-dimensional vector errm!

To get the individual absolute errors, as a "vector", we must Vectorize the absolute sign

operation using Ctrl+-. Try typing |err.mSPACECtrl+-=:

errm

→

0.3

0.294

0.436

0.407

0.265

0.473



















K=

Use the "Vectorize" operator to apply operations for each element separately,

(producing a vector result), instead of in the normal vector way.

Now we can let Mathcad find the largest of these errors using the "max" function.

max errm

→



 0.473 K= cannot exceed 0.5, of course

Or it can find the average, by summing them (sum in the vector and matrix toolbar)

and dividing that sum by the number of terms. The number of terms is available as

the "last" function, which really gives the index of the last term of the vector (6 in

this case):

smaller than the maximum error, of course
errm

→

∑
last errm()

0.362 K=

The very useful "last" function gives you the index value of the last element of a vector.

For various reasons, it is often more convenient to find the "root-mean-square" (rms) error

instead of the plain average error above. To find the rms error, you first find the average

square error, then take a square root of that. The plain dot product of errm with itself

already gives you the sum of the squares of the errors. So you only need to divide that by

the number of terms and take a square root:

errm errm⋅

last errm()
0.371 K= always in between the average and maximum error

Page 3 of 14

Lecture 5 Leon van Dommelen 9/15

 Linear interpolation

Suppose, say, that you want the temperature after 85 seconds. You did not measure

the temperature at that time. And you do not know the exact solution. To get a value for

the temperature at 85 s, you must use some form of "interpolation".Linear interpolation is

the simplest form of interpolation, and the most robust one. Mathcad uses linerp to do it.

Let's first define a function to evaluate the linear interpolation and the desired time:

Tli t() linterp tm Tm, t, ():= li means linear interpolation

Now print out the linearly interpolated temperature at the desired time:

Tli 85s() 17.667 °C⋅=

The error in this approximation is:

Tli 85s() Tx 85s()− 0.231− ∆°C⋅= Use the measuring cup for ∆°C.

Let's plot the linear interpolation versus the measurements and exact temperature (copy

over the previous plot and modify):

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tli t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t,

Let's also check the errors in general. To do so, we will use 101 times spread out over

the entire measured range;

i 1 101..:= tc
i

i 1−() 0.025⋅ min:= the c means check errli Tli tc() Tx tc()−:=

max errli

→



 0.473 K=

errli

→

∑
last errli()

0.192 K=

errli errli⋅

last errli()
0.225K=

Page 4 of 14

Lecture 5 Leon van Dommelen 9/15

 Spline interpolation

Since the temperature curve is nonlinear, you would normally get better results using

a cubic spline. This uses curved cubics instead of straight lines between measured

points:

spline cspline tm Tm, ():= You must create the spline first.

Create a function to simplify evaluation;

si is for spline interpolation.
Tsi t() interp spline tm, Tm, t, ():=

Unfortunately, the "random" round-off errors in the temperatures make the error in the

spline value greater than that in linear interpolation (copy and paste from above and

change li into si):

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tsi t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t, t,

The smooth spline, in trying to weave through all these inaccurate data points, swings further

away from the correct solution than the linear interpolation.

errsi Tsi tc() Tx tc()−:=

max errsi

→



 0.489 K=

errsi

→

∑
last errsi()

0.278K=

errsi errsi⋅

last errsi()
0.311 K=

Normally spline interpolation will be very much more accurate that linear interpolation

for a smooth, nonlinear function.

But if the data has significant random errors, that is not necessarily true.

Page 5 of 14

Lecture 5 Leon van Dommelen 9/15

 Extrapolation

How about finding the temperature at later times than 2.5 minutes? It is supposed to

go to zero for large enough times? Let's see what we get.

Tli 5min() 3− °C⋅= Bad, the temperature should not become negative.

Tsi 5min() 193− °C⋅= Much, much worse still.

Be very, very, careful when evaluating approximating

functions outside the range of the measured data!

Page 6 of 14

Lecture 5 Leon van Dommelen 9/15

 Linear least square approximation

If we want a more accurate approximation of the true temperature, (while still not knowing

the exact solution), we must stop demanding that the temperature curve goes exactly

through those nonexact measured points.

So what we will do is:

1) Prescribe some non-swinging, smooth curve with some adjustable coefficients in it.

2) Find these coefficients from the demand that the root-mean-square error from the

 measured values is as small as possible.

The above procedure called the "method of least squares". We will indicate it as "ls".

You may also find the method referred to as "linear regression," but that is really a

somewhat more general term.

As a first try, let's take the non-swinging curve to be a straight line:

 Tlls = C0 + C1 t

Constant C0 is called the "intercept" of the line, because that is the y-value where the line

intercepts the T-axis. C1 is called the slope for reasons given in Calculus 1. Mathcad will

give you these two coefficients using functions of those names. But it is shorter to use

the "line" function that gives you the two coefficients as a vector:

ORIGIN 0:= It is now more concenient to number the coefficients from 0

Clls line tm min
1−

⋅ Tm K
1−

⋅, 





301.102

6.629−









=:= Note: do not use units!

Tlls t() Clls
0

Clls
1

t⋅ min
1−

⋅+





K⋅:=

The "stderr" function gives you some average error in the approximation of the data points:

stderr tm min
1−

⋅ Tm, 



 0.881K=

That is bad, because the actual error in the measured data is less than half a degree.

The temperature is not well approximated by a straight line in the measured region. To

verify, let's compute errors and plot as before:

Page 7 of 14

Lecture 5 Leon van Dommelen 9/15

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tlls t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t,

errlls Tlls tc() Tx tc()−:=

errlls

→

∑
last errlls() 1+

0.498 K=

errlls errlls⋅

last errlls() 1+
0.56 K=

max errlls

→



 1.092K=

Page 8 of 14

Lecture 5 Leon van Dommelen 9/15

 Higher order least square approximation

We can get a better approximation if we approximate the temperature by a quadratic

(parabola) instead of a straight line:

 Tqls = C0 + C1 t + C2 t2

Such a function is called a linear combination of the 1, t, and t2 functions.

You might say that instead of taking one term in the Taylor series, we take two. But

actually, any function can be accurately approximated by a polynomial (power series)

over a finite interval. It does not have to have a converging Taylor series on that interval.

First we must tell Mathcad that we want to approximate with a linear combination of 1,

t, and t2. That is done by defining a vector function of them:

funcsqls t()

1

t

t
2













:=

After all, if your variable would be periodic of a known period, you would probably want

to approximate with sines and/or cosines of that period, instead of with powers.

Finding the quadratic regression now proceeds as follows:

Cqls linfit tm min
1−

⋅ Tm K
1−

⋅, funcsqls, 





301.936

9.129−

1











=:=

Tqls t() Cqls
0

Cqls
1

t⋅ min
1−

⋅+ Cqls
2

t min
1−

⋅()
2

⋅+








K⋅:=

errqls Tqls tc() Tx tc()−:=

Note: if you evaluate using a dot product between Cqls and funcsqls(t min), you need to

evaluate errqls using a range subscript i on it and tc.

Tqls t() Cqls funcsqls t min
1−

⋅()⋅ K⋅:=

i 0 last tc()..:= errqls
i

Tqls tc
i







Tx tc
i







−:=

max errqls

→



 0.259 K=

errqls

→

∑
last errqls() 1+

0.144 K=

errqls errqls⋅

last errqls() 1+
0.16 K=

That is a lot better. A quarter of a degree error is pretty good.

Page 9 of 14

Lecture 5 Leon van Dommelen 9/15

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tqls t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t,

Page 10 of 14

Lecture 5 Leon van Dommelen 9/15

Try cubic:

funcscls t()

1

t

t
2

t
3















:=

Ccls linfit tm min
1−

⋅ Tm K
1−

⋅, funcscls, 





302.102

10.651−

2.667

0.444−













=:=

Tcls t() Ccls
0

Ccls
1

t⋅ min
1−

⋅+ Ccls
2

t min
1−

⋅()
2

⋅+ Ccls
3

t min
1−

⋅()
3

⋅+








K⋅:=

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tcls t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t,

errcls Tcls tc() Tx tc()−:=

max errcls

→



 0.425 K=

errcls

→

∑
last errcls() 1+

0.084 K=

errcls errcls⋅

last errcls() 1+
0.118 K=

Oops, the maximum error went up again! The rule of thumb is:

The number of coefficients in your least square expression (here 4) should not be

larger than roughly the square root of your number of measured points (here 6).

It's not too bad yet, but do not try higher than cubic!

Page 11 of 14

Lecture 5 Leon van Dommelen 9/15

 Non-polynomial least square approximation

You can often get better results if you use some physical knowledge about your

problem. For heat conduction, the final stages will be an exponential decay in time.

So it is probably a much better idea to approximate the temperature curve as:

 T = C0 exp(C1 t) + C2

That can be done with the "expfit" function:

Cels expfit tm min
1−

⋅ Tm K
1−

⋅, 





30.667

0.313−

271.334











=:=

Tels t() Cels
0

exp Cels
1

t⋅ min
1−

⋅





⋅ Cels
2

+





K⋅:=

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tels t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t,

errels Tels tc() Tx tc()−:=

max errels

→



 0.271 K=

errels

→

∑
last errels() 1+

0.112 K=

errels errels⋅

last errels() 1+
0.131 K=

The accuracy is about the same as we get from the quadratic approximation. So that

worked pretty well. But note that the third coefficient is not quite right. C3 should be

273.15, not 271.

Page 12 of 14

Lecture 5 Leon van Dommelen 9/15

 If we put that in explicitly, we may get a better solution:

 T = C0 exp(C1 t) + 273.15

We need to define a function the following way:

The approximation

Its C0 partial derivative
funcsgls t C0, C1, ()

C0 exp C1 t⋅()⋅ 273.15+

exp C1 t⋅()

C0 t⋅ exp C1 t⋅()⋅













:=

Its C1 partial derivative

Watch those partial derivatives ! It is easy to start differentiating with respect to t

instead of the coefficients.

Since expfit does not work any more, we must use the more general "genfit" function.

Then you must provide initial guesses for the coefficients. We will use the expfit ones

for that.

Cgls
0

Cels
0

:= Cgls
1

Cels
1

:=

Now we are ready to use genfit:

Cgls genfit tm min
1−

⋅ Tm K
1−

⋅, Cgls, funcsgls, 





28.916

0.342−









=:=

Tgls t() Cgls
0

exp Cgls
1

t⋅ min
1−

⋅





⋅ 273.15+





K⋅:=

0 1 2
10

15

20

25

30

Tx t min⋅() 0 °C−() ∆°C
1−

⋅

Tm 0 °C−() ∆°C
1−

⋅

Tgls t min⋅() 0 °C−() ∆°C
1−

⋅

t tm min
1−

⋅, t,

Page 13 of 14

Lecture 5 Leon van Dommelen 9/15

errgls Tgls tc() Tx tc()−:=

max errgls

→



 0.216 K=

errgls

→

∑
last errgls() 1+

0.106 K=

errgls errgls⋅

last errgls() 1+
0.12 K=

If you compare, you will agree that this is clearly the best solution of all.

Note that the maximum error in the measured data is 0.5 degrees, either way, so the

average error would be something like 0.25 degrees. The maximum error in the

exponential fit is smaller than the average error in the measured data. Least squares will

do that for you. Assuming the errors are random, they will average away in the least

square approximation.

Increasing the number of measured points is good for least square approximation.

However, increasing the number of points beyond a certain level will not improve linear

interpolation, and will make cubic spline interpolation worse.

Page 14 of 14

