INTEGRATION USING THE TRAPEZIUM RULE

The following definitions, copied from the hot bar of lesson 5, are again needed:

$$
\begin{aligned}
& \text { ORIGIN }:=1 \quad \mathrm{i}:=1 . .6 \quad \mathrm{t}_{\mathrm{m}_{\mathrm{i}}}:=(\mathrm{i}-1) \cdot 0.5 \mathrm{~min} \quad \mathrm{zC}:=0^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{x}}(\mathrm{t}):=\mathrm{zC}+\exp \left(-\frac{\mathrm{t}}{3 \min }\right) \cdot 28.7 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{m}}:=\operatorname{round}\left[\left(\mathrm{T}_{\mathrm{x}}\left(\mathrm{t}_{\mathrm{m}}\right)-\mathrm{zC}\right) \cdot \mathrm{K}^{-1}\right] \mathrm{K}+\mathrm{zC}
\end{aligned}
$$

To find the total radiation emitted by the bar while it is cooling down to the 0 degree Celsius environment, we must integrate $\sigma\left(\mathrm{T}^{4}-(0 \mathrm{deg} \mathrm{C})^{4}\right)$ with respect to time. Here σ is the Stefan-Boltzmann constant:

$$
\sigma:=5.670400 \cdot 10^{-8} \cdot \frac{\text { watt }}{\mathrm{m}^{2} \cdot \mathrm{~K}^{4}}
$$

Our measured temperature values, and the corresponding integrand f to integrate are ORIGIN: $=0$

$$
\mathrm{T}_{\mathrm{m}}=\left(\begin{array}{c}
302.15 \\
297.15 \\
294.15 \\
290.15 \\
288.15 \\
285.15
\end{array}\right) \mathrm{K} \quad \mathrm{f}:=\sigma \cdot\left[\mathrm{T}_{\mathrm{m}}{ }^{4}-(273.15 \mathrm{~K})^{4}\right]=\left(\begin{array}{c}
156.952 \\
126.437 \\
108.852 \\
86.228 \\
75.261 \\
59.234
\end{array}\right) \cdot \frac{\mathrm{m}^{2}}{}
$$

The trapezium rule approximates the integral in each interval from one integrand value to the next by the average function value times the length of the interval. We have 5 time intervals, so define a range variable as:

$$
\mathrm{i}:=0 . . \operatorname{ast}\left(\mathrm{t}_{\mathrm{m}}\right)-1
$$

Now find the integrals over the time intervals:

$$
\operatorname{Trap}_{f_{i}}:=\frac{\mathrm{f}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}+1}}{2} \cdot\left(\mathrm{t}_{\mathrm{m}_{\mathrm{i}+1}}-\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\right) \quad \operatorname{Trap}_{\mathrm{f}}=\left(\begin{array}{c}
4.251 \times 10^{3} \\
3.529 \times 10^{3} \\
2.926 \times 10^{3} \\
2.422 \times 10^{3} \\
2.017 \times 10^{3}
\end{array}\right) \cdot \frac{\mathrm{J}}{\mathrm{~m}^{2}}
$$

For example, the first coefficient of Trap_{f} is the integral from $t_{m_{0}}$ to $t_{m_{1}}$. To get the total time integral, you must sum the results for all intervals together:

$$
\sum \operatorname{Trap}_{\mathrm{f}}=1.515 \times 10^{4} \cdot \frac{\mathrm{~J}}{\mathrm{~m}^{2}}
$$

This used the summation from the vector toolbar. If you want to avoid vectors, you can use the sum from the menu View / Toolbars / Calculus toolbar:

$$
\sum_{\mathrm{i}=0}^{\operatorname{last}\left(\mathrm{t}_{\mathrm{m}}\right)^{-1}}\left[\frac{\mathrm{f}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}+1}}{2} \cdot\left(\mathrm{t}_{\mathrm{m}_{\mathrm{i}+1}}-\mathrm{t}_{\mathrm{m}_{\mathrm{i}}}\right)\right]=1.515 \times 10^{4} \cdot \frac{\mathrm{~J}}{\mathrm{~m}^{2}}
$$

INTEGRATION OF FUNCTIONS, INCLUDING INTERPOLATING FUNCTIONS

As a possible more accurate way to integrate the radiation, you can have Mathcad integrate an approximating function of the temperature. The following data from lesson5 are again needed:

$$
\begin{gathered}
\text { funcs }_{\mathrm{qls}}(\mathrm{t}):=\left(\begin{array}{c}
1 \\
\mathrm{t} \\
\mathrm{t}^{2}
\end{array}\right) \\
\mathrm{C}_{\mathrm{qls}}:=\operatorname{linfit}\left(\mathrm{t}_{\mathrm{m}} \cdot \mathrm{~min}^{-1}, \mathrm{~T}_{\mathrm{m}} \cdot \mathrm{~K}^{-1}, \mathrm{funcs}_{\mathrm{qls}}\right)=\left(\begin{array}{c}
301.936 \\
-9.129 \\
1
\end{array}\right) \\
\mathrm{T}_{\mathrm{qls}}(\mathrm{t}):=\left[\mathrm{C}_{\mathrm{qls}_{0}}+\mathrm{C}_{\mathrm{qls}}^{1}\right. \\
\left.\cdot \mathrm{t} \cdot \mathrm{~min}^{-1}+\mathrm{C}_{\mathrm{qls}_{2}} \cdot\left(\mathrm{t} \cdot \mathrm{~min}^{-1}\right)^{2}\right] \cdot \mathrm{K} \\
\iint_{\mathrm{last}^{\mathrm{t}}\left(\mathrm{t}_{\mathrm{m}}\right)}^{\sigma \cdot\left(\mathrm{T}_{\mathrm{qls}}(\mathrm{t})^{4}-\mathrm{zC}^{4}\right) \mathrm{dt}=1.51 \times 10^{4} \cdot \frac{\mathrm{~J}}{\mathrm{~m}^{2}}}
\end{gathered}
$$

SYMBOLIC OPERATIONS

So far, we always had Mathcad find numbers. For example, we could integrate

$$
12+3 x-4 x^{2}
$$

between the limits 0 and 2 to find the number:

$$
\int_{0}^{2} 12+3 x-4 x^{2} d x=19.333
$$

But sometimes you do not want numbers but a symbolic expression. For example, what if you need to find an indefinite integral. That cannot be a number, for one because it has an undetermined integation constant. We can however let Mathcad find a symbolic answer by using Ctrl+. instead of $=$:

$$
\int 12+3 x-4 x^{2} d x \rightarrow \frac{3 \cdot x^{2}}{2}-\frac{4 \cdot x^{3}}{3}+12 \cdot x
$$

We can also let Mathcad find the roots of the integrand exactly if we want. Below, use Ctrl+= for the equation equals sign, and Ctrl+Shift+. for the symbolic evaluation. Or use the Symbolic toolbar for the latter.

$$
12+3 x-4 x^{2}=0 \text { solve } \rightarrow\binom{\frac{\sqrt{201}}{8}+\frac{3}{8}}{\frac{3}{8}-\frac{\sqrt{201}}{8}}
$$

If we give 12.0 instead of 12 , Mathcad assumes it is not an exact integer and reverts to numbers:

$$
12.0+3 \mathrm{x}-4 \mathrm{x}^{2}=0 \text { solve } \rightarrow\binom{2.1471808598447281504}{-1.3971808598447281504}
$$

We can also find derivatives symbolically:

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(12+3 \mathrm{x}-4 \mathrm{x}^{2}\right) \rightarrow 3-8 \cdot \mathrm{x}
$$

Mathcad can solve some simple nonpolynomial equations:

$$
\mathrm{e}^{\mathrm{x}}+1 \text { solve } \rightarrow \pi \cdot \mathrm{i} \quad \text { Mathcad assumes }=0 \text { if not specified }
$$

Sometimes we must specify which variable to solve for:

$$
\begin{aligned}
& 5 \cdot x \cdot y-9 \cdot x-1 \text { solve, } y \rightarrow \frac{9 \cdot x+1}{5 \cdot x} \\
& 5 \cdot x \cdot y-9 \cdot x-1 \text { solve, } x \rightarrow \frac{1}{5 \cdot y-9}
\end{aligned}
$$

$$
5 \cdot x \cdot y-9 \cdot x-1 \text { collect }, x \rightarrow(5 \cdot y-9) \cdot x-1
$$

Find a Taylor series:

$$
\begin{aligned}
& \mathrm{e}^{2 \mathrm{x}} \text { series } \rightarrow 1+2 \cdot \mathrm{x}+2 \cdot \mathrm{x}^{2}+\frac{4 \cdot \mathrm{x}^{3}}{3}+\frac{2 \cdot \mathrm{x}^{4}}{3}+\frac{4 \cdot \mathrm{x}^{5}}{15} \\
& \mathrm{e}^{2 \mathrm{x}} \text { series, } 10 \rightarrow 1+2 \cdot \mathrm{x}+2 \cdot \mathrm{x}^{2}+\frac{4 \cdot \mathrm{x}^{3}}{3}+\frac{2 \cdot x^{4}}{3}+\frac{4 \cdot \mathrm{x}^{5}}{15}+\frac{4 \cdot \mathrm{x}^{6}}{45}+\frac{8 \cdot x^{7}}{315}+\frac{2 \cdot x^{8}}{315}+\frac{4 \cdot x^{9}}{2835}
\end{aligned}
$$

Very useful: find partial fractions:

$$
\begin{aligned}
& \frac{2 x^{2}-3 x+1}{x^{3}+2 x^{2}-9 x-18} \text { parfrac } \rightarrow \frac{1}{3 \cdot(x-3)}-\frac{3}{x+2}+\frac{14}{3 \cdot(x+3)} \\
& \frac{1}{3 \cdot(x-3)}-\frac{3}{x+2}+\frac{14}{3 \cdot(x+3)} \text { simplify } \rightarrow \frac{(x-1) \cdot(2 \cdot x-1)}{(x+2) \cdot(x-3) \cdot(x+3)} \\
& \frac{(x-1) \cdot(2 \cdot x-1)}{(x+2) \cdot(x-3) \cdot(x+3)} \text { expand } \rightarrow-\frac{2 \cdot x^{2}-3 \cdot x+1}{9 \cdot x-2 \cdot x^{2}-x^{3}+18}
\end{aligned}
$$

Used before in lesson 4:

$$
\begin{aligned}
& {\left[(x+1)^{2}-2\right]\left[(x-2)^{2}+5\right] \text { expand } \rightarrow x^{4}-2 \cdot x^{3}+22 \cdot x-9} \\
& x^{4}-2 \cdot x^{3}+22 \cdot x-9 \text { solve } \rightarrow\left(\begin{array}{c}
\sqrt{2}-1 \\
-\sqrt{2}-1 \\
2+\sqrt{5} \cdot i \\
2-\sqrt{5} \cdot i
\end{array}\right) \quad \begin{array}{l}
\text { Note that } 5 \text { th order equations and higher } \\
\text { do not have a general analytic solution. }
\end{array}
\end{aligned}
$$

