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INTEGRATION USING THE TRAPEZIUM RULE

The following definitions, copied from the hot bar of lesson 5, are again needed:

ORIGIN 1:= i 1 6..:= tm
i

i 1−( ) 0.5⋅ min:= zC 0 °C:=

Tx t( ) zC exp
t

3min
−








28.7⋅ K+:=

Tm round Tx tm( ) zC−( ) K
1−

⋅



 K zC+:=

To find the total radiation emitted by the bar while it is cooling down to the 0 degree Celsius

environment, we must integrate σ(T4 - (0 deg C)4) with respect to time.  Here σ is the

Stefan-Boltzmann constant:

σ 5.670400 10
8−

⋅
watt

m
2

K
4

⋅

⋅:=

Our measured temperature values, and the corresponding integrand f to integrate are

ORIGIN 0:=

f σ Tm
4

273.15K( )
4

−



⋅
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












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m
2

⋅=:=
Tm
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



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







K=

The trapezium rule approximates the integral in each interval from one integrand value

to the next by the average function value times the length of the interval.  We have 5

time intervals, so define a range variable as:

i 0 last tm( ) 1−..:=

Now find the integrals over the time intervals:

Trapf
i

f
i

f
i 1+

+

2
tm

i 1+
tm

i
−





⋅:=
Trapf

4.251 10
3

×

3.529 10
3

×
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3

×
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3

×
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3

×
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m
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⋅=
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For example, the first coefficient of Trap
f
 is the integral from tm

0
 to tm

1.
  To get the total time

integral, you must sum the results for all intervals together:

Trapf∑ 1.515 10
4

×
J

m
2

⋅=

This used the summation from the vector toolbar.  If you want to avoid vectors, you can use

the sum from the menu View / Toolbars / Calculus toolbar:

0

last tm( ) 1−

i

f
i

f
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+

2
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


⋅


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

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=
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4

×
J

m
2

⋅=
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INTEGRATION OF FUNCTIONS, INCLUDING INTERPOLATING FUNCTIONS

As a possible more accurate way to integrate the radiation, you can have Mathcad

integrate an approximating function of the temperature.  The following data from lesson5

are again needed:

funcsqls t( )

1

t

t
2













:=

Cqls linfit tm min
1−

⋅ Tm K
1−

⋅, funcsqls, 





301.936

9.129−

1











=:=

Tqls t( ) Cqls
0

Cqls
1

t⋅ min
1−

⋅+ Cqls
2

t min
1−

⋅( )
2

⋅+








K⋅:=

tm
0

tm
last tm( )

tσ Tqls t( )
4

zC
4

−



⋅

⌠


⌡

d 1.51 10
4

×
J

m
2

⋅=
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SYMBOLIC OPERATIONS

So far, we always had Mathcad find numbers.  For example, we could integrate

12 3x+ 4x
2

−

between the limits 0 and 2 to find the number:

0

2

x12 3x+ 4x
2

−
⌠

⌡

d 19.333=

But sometimes you do not want numbers but a symbolic expression.  For example, what

if you need to find an indefinite integral.  That cannot be a number, for one because it has

an undetermined integation constant.  We can however let Mathcad find a symbolic

answer by using Ctrl+. instead of =:

x12 3x+ 4x
2

−

⌠


⌡

d
3 x

2
⋅

2

4 x
3

⋅

3
− 12 x⋅+→

We can also let Mathcad find the roots of the integrand exactly if we want.  Below, use

Ctrl+= for the equation equals sign, and Ctrl+Shift+. for the symbolic evaluation.  Or use

the Symbolic toolbar for the latter.

12 3x+ 4x
2

− 0= solve

201

8

3

8
+

3

8

201

8
−













→

If we give 12.0 instead of 12, Mathcad assumes it is not an exact integer and reverts

to numbers:

12.0 3x+ 4x
2

− 0= solve
2.1471808598447281504

1.3971808598447281504−









→

We can also find derivatives symbolically:

x
12 3x+ 4x

2
−( )d

d
3 8 x⋅−→

Mathcad can solve some simple nonpolynomial equations:

e
x

1+ solve π i⋅→ Mathcad assumes = 0 if not specified
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Sometimes we must specify which variable to solve for:

5 x⋅ y⋅ 9 x⋅− 1− solve y, 
9 x⋅ 1+

5 x⋅
→

5 x⋅ y⋅ 9 x⋅− 1− solve x, 
1

5 y⋅ 9−
→

5 x⋅ y⋅ 9 x⋅− 1− collect x, 5 y⋅ 9−( ) x⋅ 1−→

Find a Taylor series:

e
2x

series 1 2 x⋅+ 2 x
2

⋅+
4 x

3
⋅

3
+

2 x
4

⋅

3
+

4 x
5

⋅

15
+→

e
2x

series 10, 1 2 x⋅+ 2 x
2

⋅+
4 x

3
⋅

3
+

2 x
4

⋅

3
+

4 x
5

⋅

15
+

4 x
6

⋅

45
+

8 x
7

⋅

315
+

2 x
8

⋅

315
+

4 x
9

⋅

2835
+→

Very useful: find partial fractions:

2x
2

3x− 1+

x
3

2x
2

+ 9x− 18−

parfrac
1

3 x 3−( )⋅

3

x 2+
−

14

3 x 3+( )⋅
+→

1

3 x 3−( )⋅

3

x 2+
−

14

3 x 3+( )⋅
+ simplify

x 1−( ) 2 x⋅ 1−( )⋅

x 2+( ) x 3−( )⋅ x 3+( )⋅
→

x 1−( ) 2 x⋅ 1−( )⋅

x 2+( ) x 3−( )⋅ x 3+( )⋅
expand

2 x
2

⋅ 3 x⋅− 1+

9 x⋅ 2 x
2

⋅− x
3

− 18+

−→

Used before in lesson 4:

x 1+( )
2

2−  x 2−( )
2

5+  expand x
4

2 x
3

⋅− 22 x⋅+ 9−→

Note that 5th order equations and higher

do not have a general analytic solution.
x

4
2 x

3
⋅− 22 x⋅+ 9− solve

2 1−

2− 1−

2 5 i⋅+

2 5 i⋅−















→
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