
Matlab Homework 9c

The same requirements as for homework 3c apply.

1. In the previous homework, you printed out the roots ωn of function drumFreqEq, “drumFre-
qEq.m” being

function error = drumFreqEq(omega,k)

error = besselj(0,omega) - k*omega.*besselj(1,omega);

end

using a for loop over the root counter n, going from 1 to a value nmax. Repeat this, but
now make Matlab stop printing out roots when it sees that the error in the guessed value has
become less than 0.03. Take k = 0.5 again. Make sure the output is lined up in columns and
neat; this time output the frequencies with 2 digits behind the decimal point

Frequencies for k = 1.1

Frequency 1: approximate: 12.12, exact: 12.12

Frequency 2: approximate: 12.12, exact: 12.12

...

Octave users: The Octave fzero does not always find the closest root for some reason. This
can be fixed up by providing it a complete search interval [guess guess+1] instead of just
the initial guess guess.

2. In the previous homework, you created matrices like

A =



−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2


by initializing a zero matrix, putting in the nonzero elements in rows 2 to m−1, (with m the
size of the matrix) in a for loop, and manually adding the nonzero elements in rows 1 and
m. This time do the same, but put in all nonzero elements in a for loop over all m rows.
Use if statements to ensure that you do not write nonzero values outside the boundaries of
the matrix in rows 1 and m, as you would normally do. Check for m = 6 and 10

3. Some mathematician claims that the sum

∞∑
i=1

1

i

in other words
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ . . .



is infinite. Let’s check that out. Write a for loop that sums until Matlab finds that the
estimated error has become less than 0.05, or up to say 100,000 terms, as many terms as
Matlab will sum in a reasonable time. Take the estimated error to be i times the first
neglected term. If the estimated error does become less than 0.05, print a message “The
mathematician seems to be wrong. The sum seems to be equal to VALUE to an estimated
error of 0.05.” For VALUE print out the actual obtained value of the sum with 2 digits
behind the decimal point. (If the estimated error is 0.05, it is useless and confusing to print
out more that two decimals.)

The same mathematician claims that the sum

I∑
i=1

1

i2

is finite for infinite I, and in fact equal to π2/6. To check this, copy over the code for the
series above and in that, change the 1/i term into 1/i2, and “wrong” into “right”. If the
mathematician is right, also check whether the found sum is equal to π2/6 within an error of
about 0.05

4. In the previous homework you summed the Taylor series of the sine integral,

Si(x) =
x

1!1
− x3

3!3
+
x5

5!5
− x7

7!7
+ . . .

at x = 5π to get the correct value 1.6339648 to that many digits. Repeat this, but this time let
Matlab itself decide when to finish summing based on the allowed tolerance of 0.00000005 that
you provide this. Warning: this is an alternating series; use the appropriate error estimate
for that. Print out how many terms Matlab ended up doing and its final value for Si(5π).

Next copy the code and then make it keep summing until the accuracy no longer improves.
Compare the result you get then with the accurate value 1.633964846102835 (obtained from
Matlab’s sinint function). If the Taylor series result is not as accurate as you would expect,
comment on what you think is the reason. Remember that normal Matlab numbers have a
relative error of about 10−16. In other words, there are about 16 good digits starting from
the first nonzero digit.


