
3 INTERPOLATION/FITTING
Contents

Initialization 1

THE PROBLEM WE WANT TO SOLVE 1

PLOT TO UNDERSTAND THE PROBLEM BETTER 2

INTERPOLATION 2

Compare the interpolations in a plot 3

EXTRAPOLATION 3

NOISY DATA 5

CURVE FITTING 6

Line fitting 7

Fitting with a parabola 8

Fitting with a quartic 10

Extrapolation again 11

Derivatives 12

Integrals 13

MORE MEASUREMENTS 16

Quartic fit with more noisy data 16

Quintic fit with more noisy data 17

Interpolation with more noisy data 18

ADDITIONAL REMARKS 19

End lesson 3 19

1

Initialization

% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s
more o f f
% s t a r t a d iary
%diary l ec tureN . t x t

THE PROBLEM WE WANT TO SOLVE
Assume that we have placed a hot bar with its ends in contact with ice water.
The temperature of the bar will then decay over time to 0 degrees Centigrade.
We have measured the temperature of the center of the bar at 6 times spaced
half a minute apart. Taking the first of these times as time zero, the measured
data are:

time : 0 0 .5 1 1 .5 2 minutes
Temperature : 14 .60 8 .42 4 .86 2 .80 1 .62 Centigrade

We will define tMeasured and TMeasured as the six measured times and tem-
peratures respectively.
Unknown to us, the exact temperature is given by

TExact = 14 .6 exp(− 1 .1 t)

However, we only know the measured temperatures.
To make things easier, we will create a function TExactFun to evaluate the
exact temperature that we pretend not to know. Since the function is very
simple and not intended for more general use, we do not need to create an m
file for it. Instead we can define TExactFun as a "handle" to an anonymous
function.

% de f i n e tMeasured and TMeasured as g iven
tMeasured=[0 0 .5 1 1 .5 2] ’ ;
TMeasured=[14.60 8 .42 4 .86 2 .80 1 . 6 2] ’ ;

% de f i n e TExactFun as a handle to an anonymous func t i on
TExactFun = @(t) 14 .6∗exp(−1.1∗ t) ;

PLOT TO UNDERSTAND THE PROBLEM BETTER
Let’s plot the measured five values versus the exact solution that we pretend
not to know.

2

% genera te 100 time va l u e s between 0 and 2
tP lo t=linspace (0 , 2 , 100) ’ ;
% genera te corresponding exac t temperatures
TExactPlot=TExactFun (tP lot) ;

% crea t e the p lo t , us ing c i r c l e s f o r the measured po in t s
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’)
legend (’ Exact ’ , ’Measured ’)
t i t l e (’Measured ver sus exact temperatures ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

INTERPOLATION
We would like to be able to evaluate the temperature at times in between the
measured five times. This is called "interpolation".
For example, let’s assume that we want to know the temperature at time 0.7,
which is in between measured times 0.5 and 1.
Matlab provides ’interp1’ or ’spline’ to find it.

3

% l e t ’ s e va l ua t e T at t =0.7 us ing two d i f f e r e n t methods
t=0.7
TLinear=interp1 (tMeasured , TMeasured , t)
TSpline=spline (tMeasured , TMeasured , t)

% two reasonab l e va lues , but which one i s b e s t ???
TExact=TExactFun (t)
disp (’ For a n i c e smooth curve , s p l i n e i n t e r p o l a t i o n i s ’)
disp (’much more accurate than l i n e a r i n t e r p o l a t i o n ! ’)

t = 0.70000
TLinear = 6.9960
TSpline = 6.7513
TExact = 6.7600
For a n i c e smooth curve , s p l i n e i n t e r p o l a t i o n i s
much more accurate than l i n e a r i n t e r p o l a t i o n !

Compare the interpolations in a plot

% f ind the i n t e r p o l a t e d va l u e s at the p l o t t imes
TLinearPlot=interp1 (tMeasured , TMeasured , tP lo t) ;
TSpl inePlot=spline (tMeasured , TMeasured , tP lo t) ;

% compare the i n t e r p o l a t i o n s in a p l o t
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TLinearPlot , ’ r ’ , . . .
tPlot , TSpl inePlot , ’b ’)

legend (’ Exact ’ , ’Measured ’ , ’ L inear ’ , ’ Sp l ine ’)
t i t l e (’ L inear and s p l i n e i n t e r p o l a t i o n ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

EXTRAPOLATION
Suppose that the time at which we want to know the temperature is t = 5.
This time is not inside the measured range from 0 to 2. If that happens, we talk
about extrapolation instead of interpolation.

Extrapo la t ion i s much t r i c k i e r than i n t e r p o l a t i o n .

For that reason, interp1 refuses to do it unless you specify an additional "extrap"
parameter.

4

% eva l ua t e the va l u e s at t = 5
t=5
TLinear=interp1 (tMeasured , TMeasured , t , ’ l i n e a r ’ , ’ extrap ’)
TSpline=spline (tMeasured , TMeasured , t)
TExact=TExactFun (t)
disp (’ Extrapo la t ion i s u sua l l y bad news ! ’)

% Note t ha t both l i n e a r and s p l i n e va l u e s are bad , and
% tha t the s p l i n e i s much worse than l i n e a r . But both
% va lue s are u s e l e s s .

t = 5
TLinear = −5.4600
TSpline = −14.700
TExact = 0.059667
Extrapo lat ion i s u sua l l y bad news !

NOISY DATA
What if the measured data have random errors? Suppose, for example, that the
digital thermometer used to to measure the data only displays whole degrees

5

C? Then the measured data:

Temperature : 14 .60 8 .42 4 .86 2 .80 1 .62 Centigrade

become:

Temperature : 15 8 5 3 2 Centigrade

Then what happens to our interpolations?

% cor r e c t the measured data l i s t
TMeasured=[15 8 5 3 2] ’ ;

% in t e r p o l a t e again at 0 .7
t=0.7
TLinear=interp1 (tMeasured , TMeasured , t)
TSpline=spline (tMeasured , TMeasured , t)
TExact=TExactFun (t)
disp (’Now the l i n e a r i n t e r p o l a t i o n i s a c t ua l l y b e t t e r ! ’) ;

% compare the i n t e r p o l a t i o n s in a p l o t
TLinearPlot=interp1 (tMeasured , TMeasured , tP lo t) ;
TSpl inePlot=spline (tMeasured , TMeasured , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TLinearPlot , ’ r ’ , . . .
tPlot , TSpl inePlot , ’b ’)

legend (’ Exact ’ , ’Measured ’ , ’ L inear ’ , ’ Sp l ine ’)
t i t l e (’ L inear ver sus s p l i n e i n t e r p o l a t i o n ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

% Because o f the noise , the s p l i n e can be worse than
% l i n e a r . The s p l i n e may a l s o s t a r t o s c i l a t i n g i f t h i n g s
% ge t r e a l l y bad . Note the poor s l o p e o f the s p l i n e near
% time 2 .

% compare the _maximum_ dev i a t i on s
ErrLinear=max(abs (TLinearPlot−TExactPlot))
ErrSp l ine=max(abs (TSpl inePlot−TExactPlot))
disp (’ There i s no l onge r a r e a l d i f f e r e n c e . ’)

% The maximum dev i a t i on s are p r a c t i c a l l y speak ing the
% same . There i s no good reason to use s p l i n e
% i n t e r p o l a t i o n in s t ead o f the s imp ler l i n e a r
% i n t e r p o l a t i o n .

6

t = 0.70000
TLinear = 6.8000
TSpline = 6.5300
TExact = 6.7600
Now the l i n e a r i n t e r p o l a t i o n i s a c t u a l l y b e t t e r !
ErrLinear = 0.52550
ErrSp l ine = 0.44453
There i s no l onge r a r e a l d i f f e r e n c e .

CURVE FITTING
If we want to get a better predictions for the temperature given the noisy data,
we must drop the assumption in interp1 and spline that the approximating curve
goes to through all the measured points.
What we can do instead is find a relatively simple curve that is as close as
possible to the data points. That is called "curve fitting".
In particular, recall that the exact temperature curve is given by

TExact = 14 .6 exp(− 1 .1 t)

However, we are assuming that we do not know that. And given only our noisy
data, there is no way to figure out that the above is the exact temperature.

7

But suppose that we assume (based on theoretical arguments not of importance
here) that the desired temperature is of the form

T = A exp(B t)

and we then choose values for the constants A and B as well as we can based on
our noisy data? That is likely to give a much better approximation than linear
or spline interpolation.
Of course, the devil is in the details. Note first that with only 2 constants A
and B and 5 noisy temperatures, there is no way that the expression above
can reproduce all 5 noisy temperatures. You cannot solve 5 equations for 2
unknowns. You could select only 2 of the 5 temperatures and ignore the other
3, but which 2? If you are very lucky you could get a quite good approximation,
but if you are not, you would get unnecessarily big errors.
It is a much better idea to use all the 5 data you have, and make TExpFit
approximate them on average as well as it can. Typically, numerical analysist
take "on average" to mean that they make the average square error as small as
possible. There are both theoretical and practical reasons to do that. Theo-
retically, in simple cases where the errors are really random, this gives the best
approximation possible. Practically, the mathematics of making the average
square error as small as possible is a lot simpler than other possibilities (like
making the maximum error as small as possible).
We do not really need to worry about the latter anyway, as Matlab does that
work for us. What we should get away with is that what we are going to do is
popularly known as the "Method of Least Squares". (Though "Method of Least
Average Square Error" would be more accurate.)

Line fitting
Finding the best exponential approximation of the form

T = A exp(B t) , c a l l i t TExpFit

is actually somewhat messy. So we will restrict ourself to simpler approxima-
tions. And the simplest possible one is surely approximation be a straight line,

T = C1 t + C2 , c a l l i t TLinFit

Note that the expression above is linear in the coefficients C1 and C2 to find.
That is unlike TExpFit where the coefficient B is inside an exponential, and then
multiplied by A to boot. If the expression is linear in terms of the unknown
coefficients, numerical analysists speak of "linear regression". That is another
term you should try to remember.
Noting that a straight line is a polynomial of degree 1 (since the highest power
of x is 1), we can first use Matlab function ’polyfit’ to find the coefficients C1
and C2 and then ’polyval’ to find the approximate temperature values

% f ind the c o e f f i c i e n t s C1 and C2 o f the l i n e

8

n=1;
CoefLin=polyf it (tMeasured , TMeasured , n)

% in t e r p o l a t e again at 0 .7
t=0.7
TLinFit=polyval (CoefLin , t)
TExact=TExactFun (t)
disp (’That i s h o r r i b l e ! ’)

% l e t ’ s see the l i n e a r f i t in a p l o t
TLinFitPlot=polyval (CoefLin , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TLinFitPlot , ’ r ’)

legend (’ Exact ’ , ’Measured ’ , ’ L inear f i t ’)
t i t l e (’ L inear l e a s t −square approximation ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

% pr in t the error
ErrLinFit=max(abs (TLinFitPlot−TExactPlot))
disp (’That i s ho r r i b l e , but what do you expect ? ’)

% Clear ly , a s t r a i g h t l i n e cannot approximate the exac t
% curve to a reasonab l e amount .

CoefLin =
−6.2000 12.8000

t = 0.70000
TLinFit = 8.4600
TExact = 6.7600
That i s h o r r i b l e !
ErrLinFit = 1.8000
That i s ho r r i b l e , but what do you expect ?

Fitting with a parabola
We can improve things quite a lot by approximating with a quadratic polyno-
mial, i.e. a parabola,

T = C1 t^2 + C2 t + C3 , c a l l i t TParFit

instead of a straight line.

% f ind c o e f f i c i e n t s C1 , C2 , and C3
n=2;

9

CoefPar=polyf it (tMeasured , TMeasured , n)

% in t e r p o l a t e again at 0 .7
t=0.7
TParFit=polyval (CoefPar , t)
TExact=TExactFun (t)
disp (’That i s much be t t e r than the l i n e a r f i t . ’)

% l e t ’ s see the quadra t i c f i t in a p l o t
TParFitPlot=polyval (CoefPar , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TParFitPlot , ’ r ’)

legend (’ Exact ’ , ’Measured ’ , ’ Quadratic f i t ’)
t i t l e (’ Quadratic l e a s t −square approximation ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

% pr in t the error
ErrParFit=max(abs (TParFitPlot−TExactPlot))

% summarize the conc lu s ion

10

disp (’Not too bad , but the maximum error , at t=2, i s
qu i t e b ig . ’)

CoefPar =
3.7143 −13.6286 14.6571

t = 0.70000
TParFit = 6.9371
TExact = 6.7600
That i s much be t t e r than the l i n e a r f i t .
ErrParFit = 0.63942
Not too bad , but the maximum error , at t=2, i s qu i t e b ig

.

Fitting with a quartic
Let’s try fitting with a quartic,

TQuartFit = C1 x^4 + C2 x^3 + C3 x^2 + C4 x + C5

Note however, that now we are no longer fitting, but interpolating. With 5
unknown coefficients, the quartic can go through all 5 measured data points.
This is usually a very bad idea.

11

In this particular case, the results below are much better than I expected. Fit-
ting curves with too many coefficients can give very bad results. In this case
the only real problem is the slope at t = 2. It might have been much worse.
The general rule of thumb is:

Do not i n t e r p o l a t e a polynomial o f degree more than
about the square root o f the number o f data po in t s

Since we have 5 data points and sqrt(5) is about 2, we should not fit a polynomial
of a degree greater than 2. Exceptions confirm the rule.

% f ind the 5 c o e f f i c i e n t s
n=4;
CoefQuart=polyf it (tMeasured , TMeasured , n)

% in t e r p o l a t e again at 0 .7
t=0.7
TQuartFit=polyval (CoefQuart , t)
TExact=TExactFun (t)

% l e t ’ s see the qua r t i c f i t in a p l o t
TQuartFitPlot=polyval (CoefQuart , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TQuartFitPlot , ’ r ’)

legend (’ Exact ’ , ’Measured ’ , ’ Quart ic f i t ’)
t i t l e (’ Quart ic l e a s t −square approximation ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

% pr in t the error
ErrQuartFit=max(abs (TQuartFitPlot−TExactPlot))

CoefQuart =
2.0000 −10.0000 19.5000 −21.5000 15.0000

t = 0.70000
TQuartFit = 6.5552
TExact = 6.7600
ErrQuartFit = 0.47325

Extrapolation again
We already saw that extrapolation, i.e. evaluating outside the given range is
fraught with peril. Let’s try the fitted polynomials now.

% ex t r a p o l a t e again at t = 5
t=5

12

TLinear=interp1 (tMeasured , TMeasured , t , ’ l i n e a r ’ , ’ extrap ’)
TSpline=spline (tMeasured , TMeasured , t)
TParFit=polyval (CoefPar , t)
TQuartFit=polyval (CoefQuart , t)
TExact=TExactFun (t)

t = 5
TLinear = −4
TSpline = 59
TParFit = 39.371
TQuartFit = 395.00
TExact = 0.059667

Derivatives
Sometimes we are interested in the derivative of the quantity in question. In
the present example, it is a measure of how much heat leaks out of the bar per
unit time.
Since

TExact = 14 .6 exp (− 1 .1 t)

its derivative is simply

13

− 1 .1 TExact

(That follows from differentiating the exponential using the chain rule.)
For the linear, quadratic, and quartic fits, we can use the fact that ’polyder’
will find the coefficients of the derivative polynomial for us.
How about the derivative of your beloved interpolated spline? Well, linear and
spline interpolation are described by "piecewise polynomials": there is a different
polynomial in each segment between measured points. The bad thing is that the
idiots at MathWorks never defined a function to find the derivatives of piecewise
polynomials. If you want the derivative of your spline, look for ’ppder’ or ’ppdiff’
provided by third parties, (where pp is an acronym for "piecewise polynomial".)
(Octave provides ppder.)

% de r i v a t i v e o f TExact
derTExactPlot=−1.1∗TExactPlot ;

% de r i v a t i v e o f TParFit
derCoefPar=polyder (CoefPar) ;
derTParFitPlot=polyval (derCoefPar , tP lo t) ;

% de r i v a t i v e o f TQuartFit
derCoefQuart=polyder (CoefQuart) ;
derTQuartFitPlot=polyval (derCoefQuart , tP lo t) ;

% p l o t i t
plot (tPlot , derTExactPlot , ’ : k ’ , . . .

tPlot , derTParFitPlot , ’ r ’ , . . .
tPlot , derTQuartFitPlot , ’b ’)

legend (’ Exact ’ , ’ Quadratic f i t ’ , ’ Quart ic f i t ’)
t i t l e (’ Comparison o f p r ed i c t ed f i r s t d e r i v a t i v e ’)
xlabel (’ t (minutes) ’)
ylabel (’dT/dt (Cent igrade /min) ’)
legend (’ l o c a t i o n ’ , ’ southeas t ’)

Integrals
Suppose we want to know how much radiation the bar emits per unit surface
area while cooling down. Assuming that the bar surface is perfectly black, the
Stefan-Boltzmann law says that the radiation emitted per unit area and unit
time is given by

qdot = sigma T^4

where sigma is the Stefan-Boltzmann constant with value given below, and T is
the absolute temperature.

14

So to get the desired radiation q, given our temperature,

• convert Centigrade to Kelvin by adding T0 = 273.15

• raise that to power 4 (square twice)

• integrate that from t = 0 to t = 2

• multiply by 60 to convert dt to seconds

• multiply by sigma (let’s do that last)

Matlab can do the integration of the temperatures for us using ’integral’ if we
provide the function to integrate.
Note: Octave still uses the old name ’quad’ instead of ’integral’.
Note that all values below are pretty accurate. This is typical:

Numerical e r r o r s tend to become l e s s important
in i n t e g r a l s , and more important in d e r i v a t i v e s .

% the Stefan−Boltzmann cons tant in W/m^2 K^4:
sigma=5.670373E−8;

% 0 degrees Cent igrade in Kelv in
T0=273.15;

15

% Let ’ s f i nd the exac t i n t e g r a l f i r s t us ing our
% knowledge o f Ca lcu lus I . To i n t e g r a t e
% i n t e g r a l (A exp (Bt)+T0)^4 dt
% change v a r i a b l e to u = A exp (Bt) , e t c :

% names f o r the cons tan t s in TExact = A exp (B t)
A=14.6;
B=−1.1;

% eva l ua t e the end va l u e s o f u
u1=A;
u2=A∗exp(B∗2) ;

% eva l ua t e the i n t e g r a l as found by c a l c u l u s
qExactExact = (. . .

1/4∗(u2^4−u1^4) + . . .
4/3∗T0∗(u2^3−u1^3) + . . .
3∗T0^2∗(u2^2−u1^2) + . . .
4∗T0^3∗(u2−u1) + . . .
T0^4∗(log (u2)−log (u1))) /B∗60∗ sigma

% Next l e t ’ s use numerical i n t e g ra t i on , i . e . ’ i n t e g r a l ’
% or ’ quad ’ , to f i nd the i n t e g r a l . Note t ha t t h e r e w i l l
% be an error crea t ed by the numerical i n t e g ra t i on , even
% i f we i n t e g r a t e the exac t temperature .

% t r y numerical i n t e g r a t i o n o f the exac t temperature
qExactNum=quad(@(t) (TExactFun (t)+T0) .^4 , 0 , 2) ∗60∗ sigma
disp (’As shown , numerica l i n t e g r a t i o n f o r a smooth ’)
disp (’ f unc t i on l i k e t h i s w i l l be very accurate . ’)
disp (’The e r r o r i s sma l l e r than the round−o f f . ’)

% try numerical i n t e g r a t i o n o f the l i n e a r i n t e r p o l a t i o n
qLinNum=quad(@(t) (interp1 (tMeasured , TMeasured , t)+T0)

.^4 , 0 , 2) ∗60∗ sigma

% try numerical i n t e g r a t i o n o f the s p l i n e i n t e r p o l a t i o n
qSplineNum=quad(@(t) (spline (tMeasured , TMeasured , t)+T0)

.^4 , 0 , 2) ∗60∗ sigma

% try numerical i n t e g r a t i o n o f the pa ra bo l i c f i t
qParNum=quad(@(t) (polyval (CoefPar , t)+T0) .^4 , 0 , 2) ∗60∗

sigma

% try numerical i n t e g r a t i o n o f the qua r t i c f i t

16

qQuartNum=quad(@(t) (polyval (CoefQuart , t)+T0) .^4 , 0 , 2) ∗60∗
sigma

qExactExact = 4.1302 e+04
qExactNum = 4.1302 e+04
As shown , numerica l i n t e g r a t i o n f o r a smooth
func t i on l i k e t h i s w i l l be very accurate .
The e r r o r i s sma l l e r than the round−o f f .
qLinNum = 4.1434 e+04
qSplineNum = 4.1307 e+04
qParNum = 4.1352 e+04
qQuartNum = 4.1297 e+04

MORE MEASUREMENTS
If we would measure a lot more points than the five we have, and the errors in
these measurements would be random, we could get a much better approxima-
tion.
Unfortunately, rounding of temperatures to whole degrees is not random. It
creates a deterministic "staircase" of numbers. But we can try anyway.

% Note : We w i l l cheat , and use the exac t so l u t i on , which
% we are not supposed to know , to avoid doing and typ ing
% in 50 measurements .

% crea t e the new "measured " data
tMeasured=linspace (0 , 2 , 50) ’ ;
% ’ round ’ rounds to whole numbers
TMeasured=round(TExactFun (tMeasured)) ;

% use some more p l o t po in t s now
tP lo t=linspace (0 , 2 , 200) ’ ;
TExactPlot=TExactFun (tP lot) ;

Quartic fit with more noisy data

% repea t the qua r t i c f i t
n=4;
CoefQuart=polyf it (tMeasured , TMeasured , n)

% compare the i n t e r p o l a t i o n s in a p l o t
TQuartFitPlot=polyval (CoefQuart , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

17

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TQuartFitPlot , ’ r ’)

legend (’ Exact ’ , ’Measured ’ , ’ Quart ic f i t ’)
t i t l e (’ Quart ic l e a s t −square approximation ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)
ErrQuartFit=max(abs (TQuartFitPlot−TExactPlot))

CoefQuart =
0.87772 −4.44749 10.65526 −16.93789 14.74753

ErrQuartFit = 0.33872

Quintic fit with more noisy data
With the additional data, we can try a quitic (5th degree) fit now.
But do not even think about interpolating a polynomial of degree 49. It would
just crash.

% crea t e the f i t
n=5;
CoefQuint=polyf it (tMeasured , TMeasured , n)

18

% compare the i n t e r p o l a t i o n s in a p l o t
TQuintFitPlot=polyval (CoefQuint , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TQuintFitPlot , ’ r ’)

legend (’ Exact ’ , ’Measured ’ , ’ Quint ic f i t ’)
t i t l e (’ Quint ic l e a s t −square approximation ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)
ErrQuintFit=max(abs (TQuintFitPlot−TExactPlot))
disp (’The d i s appo in t i ng r e s u l t i s due to the f a c t that ’)
disp (’The f i n a l " measured " po in t s are a l l too high . ’)
disp (’Have a good look at the end o f the graph ! ’)

CoefQuint =
0.27835 −0.51404 −1.98510 8.83513 −16.43811

14.71890
ErrQuintFit = 0.36735
The d i s appo in t ing r e s u l t i s due to the f a c t that
The f i n a l " measured " po in t s are a l l too high .
Have a good look at the end o f the graph !

19

Interpolation with more noisy data
Note also that interpolations would not improve if we used more points.

% compare the i n t e r p o l a t i o n s in a p l o t
TLinearPlot=interp1 (tMeasured , TMeasured , tP lo t) ;
TSpl inePlot=spline (tMeasured , TMeasured , tP lo t) ;
plot (tPlot , TExactPlot , ’ : k ’ , . . .

tMeasured , TMeasured , ’om ’ , . . .
tPlot , TLinearPlot , ’ r ’ , . . .
tPlot , TSpl inePlot , ’b ’)

legend (’ Exact ’ , ’Measured ’ , ’ L inear ’ , ’ Sp l ine ’)
t i t l e (’ L inear and s p l i n e i n t e r p o l a t i o n ’)
xlabel (’ t (minutes) ’)
ylabel (’T (Centigrade) ’)

% Note t ha t here the s p l i n e i n t e r p o l a t i o n i s d e f i n i t e l y
% worse than l inea r , though not by much . (Except i f you
% looked at the d e r i v a t i v e .)

20

ADDITIONAL REMARKS
Often you would want your spline to satisfy end conditions. For example, you
might want it to have given derivatives at the ends. Or be periodic. Given
derivatives at the ends can be achieved using ’spline’ if you add the desired two
values to the function values list. For more complicated cases, consider function
’csape’.

End lesson 3

21

	Initialization
	THE PROBLEM WE WANT TO SOLVE
	PLOT TO UNDERSTAND THE PROBLEM BETTER
	INTERPOLATION
	Compare the interpolations in a plot
	EXTRAPOLATION
	NOISY DATA
	CURVE FITTING
	Line fitting
	Fitting with a parabola
	Fitting with a quartic
	Extrapolation again
	Derivatives
	Integrals
	MORE MEASUREMENTS
	Quartic fit with more noisy data
	Quintic fit with more noisy data
	Interpolation with more noisy data
	ADDITIONAL REMARKS
	End lesson 3

