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Related Assignments:
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After class challenge activities:
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% reduce n e e d l e s s wh i te space
format compact
% reduce i r r i t a t i o n s
more o f f
% s t a r t a d iary
diary l e c tureN . txt

THE PROBLEM WE WANT TO SOLVE
We want to solve Galileo’s problem of dropping iron spheres from a tall building
and seeing how fast they fall.
Without air resistance, all spheres would reach the ground in the same time.
This time follows from the relation

_s_ = 0.5 _g_ _t_^2
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The distance traveled s is the height of the tower of Pisa, 60 m. The acceleration
of gravity g is about 9.81 m/sˆ2. Putting in these numbers gives the time for
the sphere to reach the ground as 3.5 s.
With air resistance included, the above simple formula is no longer correct.
Now we must solve Newton’s second law to find the velocity v and from that
the distance s traveled. The two equations to solve are

d_s_/d_t_ = v
d_v_/d_t_ = ( FGravity − FAir ) /_m_

where the second equation is Newton’s second law for the sphere after dividing
by the mass. The above two equations are "a system of first order differential
equations" (ODE). "Differential equations" because there are detivatives in it.
"First order" because there are no second or higher order derivatives in them.
"System" because there is more than one equation.
Note that if you replace v by ds/dt you get

d^2_s_/d_t_^2 = ( FGravity − FAir ) /_m_

which is a single second order differential equation. But most numerical soft-
ware, including the relevant Matlab function ode45, solves only first order equa-
tions, not second order ones. So the system it is.
To solve the two equations, we must first note that the mass of a iron sphere of
radius r is

m = (4/3) pi _r_^3 rhoIron

while its "frontal area" is

A = pi _r_^2

where rhoIron is the density of iron, 7,820 kg/mˆ3. Also, the force of gravity is
given by

FGravity = _m__g_

while the drag force exerted by the air is

FAir = Cd A 0 .5 rhoAir _v_^2

Here rhoAir is the density of air, 1.225 kg/mˆ2 under standard sea-level condi-
tions. Also, Cd is the so-called drag coefficient, which can be assumed to be 0.5
as long as the diameter of the sphere is not much more than 10 cm.
To solve a system of first order ODE, we must put the unknowns, here s and v,
in a vector. Calling the vector ’unknowns’, its first component unknowns(1)=s
and its second component unknowns(2)=v.
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PUT THE SYSTEM OF ODE IN A FUNCTION GALLILEO

function unknownsDot = Ga l i l e o ( t , unknowns , r )

% Function t h a t d e s c r i b e s the ordinary d i f f e r e n t i a l
% equa t ions governing G a l l i l e o ’ s f a l l i n g i ron spheres .
%
% Input : t : the time s ince the s t a r t o f the f a l l .
% unknowns : v e c t o r wi th two components :
% unknowns (1) : the d i s t ance ’ s ’ t h a t the
% sphere has t r a v e l e d down .
% unknowns (2) : the downward v e l o c i t y ’ v ’ o f
% the sphere .
% r : rad ius o f the i ron sphere .
%
% Output : unknownsDot : the time d e r i v a t i v e s o f the
% unknowns , to be used by func t i on ode45 :
% unknownsDot (1) = ds/ dt = v
% unknownsDot (2) = dv/ dt = ( FGravity − FAir )/m
% where FGravity i s the f o r c e o f g rav i t y , FAir
% the f o r c e o f a i r r e s i s t ance , and m the mass o f
% the iron sphere .

% take s and v out o f unknowns f o r r e a d a b i l i t y
s=unknowns (1 ) ;
v=unknowns (2 ) ;

% a c c e l e r a t i o n o f g r a v i t y
g=9.81;

% d e n s i t y o f a i r a t sea l e v e l
rhoAir =1.225;

% d e n s i t y o f i ron
rhoIron =7272;

% mass o f the i ron sphere
m=(4/3)∗pi∗ r ^3∗ rhoIron ;

% f r o n t a l area o f the iron sphere
A=pi∗ r ^2 ;

% approximate drag c o e f f i c i e n t o f a normal s i z e sphere
Cd=0.5;

% forc e o f g r a v i t y
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FGravity=m∗g ;

% forc e o f a i r r e s i s t a n c e
FAir=Cd∗A∗0 .5∗ rhoAir ∗v^2;

% d e r i v a t i v e ds/ dt
dsdt=v ;

% d e r i v a t i v e dvdt
dvdt=(FGravity−FAir ) /m;

% return them as a ∗column∗ vec t o r
unknownsDot=[dsdt dvdt ] ’ ;

end

SOLVE THE SYSTEM USING ODE45
First we must select a starting vector y0 at time 0. Here that is easy, as both
the initial distance traveled s and the initial velocity v are zero.
Next we call ode45 and tell it to find the solution for times greater than zero
up to 3.5 seconds.

% the d i s t ance in 3.5 seconds wi thout a i r r e s i s t a n c e
sNoAir =0.5∗9.81∗3.5^2

% s e t the i n i t i a l cond i t i on
unknowns0=[0 0 ] ’ ;

% tr y a 20 cm rad ius
r=0.2
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , unknowns0 ) ;
plot ( tValues , unknownsValues ( : , 1 ) )
hold on
% p r i n t out the f i n a l va lue
unknownsValues (end , 1 )

% tr y a 10 cm rad ius
r=0.1
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , y0 ) ;
plot ( tValues , unknownsValues ( : , 1 ) )
hold on
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% p r i n t out the f i n a l va lue
unknownsValues (end , 1 )

% tr y a 5 cm rad ius
r =0.05
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , y0 ) ;
plot ( tValues , unknownsValues ( : , 1 ) )
% p r i n t out the f i n a l va lue
unknownsValues (end , 1 )

% tr y a 1 cm rad ius
r =0.01
% c a l l ode45 to f i n d the s o l u t i o n to t =3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , y0 ) ;
plot ( tValues , unknownsValues ( : , 1 ) )
% p r i n t out the f i n a l va lue
unknownsValues (end , 1 )

e r r o r : ’ y0 ’ undef ined near l i n e 2 column 62
in :

% the d i s t ance in 3 .5 seconds without a i r r e s i s t a n c e
sNoAir =0.5∗9.81∗3.5^2

% se t the i n i t i a l c ond i t i on
unknowns0=[0 0 ] ’ ;

% try a 20 cm rad iu s
r=0.2
% c a l l ode45 to f i nd the s o l u t i o n to t=3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , unknowns0 ) ;
p l o t ( tValues , unknownsValues ( : , 1 ) )
hold on
% pr in t out the f i n a l va lue
unknownsValues ( end , 1 )

% try a 10 cm rad iu s
r=0.1
% c a l l ode45 to f i nd the s o l u t i o n to t=3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , y0 ) ;
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p lo t ( tValues , unknownsValues ( : , 1 ) )
hold on
% pr in t out the f i n a l va lue
unknownsValues ( end , 1 )

% try a 5 cm rad iu s
r=0.05
% c a l l ode45 to f i nd the s o l u t i o n to t=3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , y0 ) ;
p l o t ( tValues , unknownsValues ( : , 1 ) )
% pr in t out the f i n a l va lue
unknownsValues ( end , 1 )

% try a 1 cm rad iu s
r=0.01
% c a l l ode45 to f i nd the s o l u t i o n to t=3.5
[ tValues , unknownsValues ] = ode45 (@( t , y ) Ga l i l e o ( t , y , r )

, [ 0 3 . 5 ] , y0 ) ;
p l o t ( tValues , unknownsValues ( : , 1 ) )
% pr in t out the f i n a l va lue
unknownsValues ( end , 1 )
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ADDITIONAL REMARKS
If the system of first order differential equations describes, say, a set of chemical
reactions, there may be a problem with using ode45. Typically, some reactions
proceed very quickly and others much more slowly. The slow reactions imply
that you have to solve the evolution for a relatively long time. But ode45 must
compute accurately over the shortest time scales in order not to get the fast
reactions all wrong. Having to compute accurately over very many short time
intervals is a problem for ode; the computation may take excessive computa-
tional time.
Such a problem, and any other problem where there is a very large spread in
typical time scales, is called "stiff". For stiff problems you want to use a solver
dedicated to such problems. One basic one provided by Matlab is ode15s.

End lesson 4
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