
6 FOR, IF, WHILE
Contents

Initialization 2

FOR LOOPS 2

A very simple loop 2

A slightly more elaborate version 2

This is great! 3

Forming matrices 4

Note 5

Try a bigger matrix like that 5

Doing sums 6

Summing a Taylor series 6

A better way to do the Taylor series 7

IF CONSTRUCTS 8

A couple of very simple examples 8

A more sophisticated example 9

Relational operators 9

Logical operators 10

This is great! 11

Use it also in summing 12

Oops! 13

Taylor series done more efficiently 14

WHILE LOOPS 15

A simple example 15

1

Doing the sum with a while loop 16

End lesson 6 16

Initialization

% reduce n e e d l e s s wh i te space
format compact
% reduce i r r i t a t i o n s
more o f f
% s t a r t a d iary
%diary l ec tureN . t x t

% ∗∗∗USE tes tN .m SCRIPTS!∗∗∗

FOR LOOPS
For loops are useful if you want to do the same sort of things multiple or many
times

A very simple loop

disp (’ Let ’ ’ s t ry i t ! ’)
for counter =1:3

disp (’Matlab i s g rea t ! ’)
end
disp (’Done . ’)
disp (’ Note how the " execut ion po in t e r " has moved ! ’)

Let ’ s t ry i t !
Matlab i s g rea t !
Matlab i s g rea t !
Matlab i s g rea t !
Done .
Note how the " execut ion po in t e r " has moved !

2

A slightly more elaborate version

n=5
fpr intf (’Remember these %i f a c t s about Matlab : \ n ’ ,n)
for counter=1:n

fpr intf (’%i : Matlab i s g rea t ! \ n ’ , counter)
end
disp (’Done ’)
disp (’ Note how Matlab proces sed those l i n e s . At the ’)
disp (’ " f o r " command i t did ∗not∗ s e t " counter " equal ’)
disp (’ to the vec to r [1 2 3 4 5] . Ins tead i t s e t ’)
disp (’ counter equal to the f i r s t number , 1 . Then ’)
disp (’Matlab went on to the f p r i n t statement . But when ’)
disp (’ i t saw the " end " command , i t jumped back to the ’)
disp (’ " f o r " command , and s e t counter equal to the ’)
disp (’ second number , 2 . And i t repeated these s t ep s ’)
disp (’ f o r 3 , 4 , and 5 . But when i t jumped back to the ’)
disp (’ " f o r " command a f t e r the 5 , the re were no more ’)
disp (’ numbers . So Matlab then jumped past the " end " ’)
disp (’ statement and went on with the " d i sp " command ’)
disp (’ and beyond . ’)

n = 5
Remember these 5 f a c t s about Matlab :
1 : Matlab i s g rea t !
2 : Matlab i s g rea t !
3 : Matlab i s g rea t !
4 : Matlab i s g rea t !
5 : Matlab i s g rea t !
Done
Note how Matlab proces sed those l i n e s . At the
" f o r " command i t did ∗not∗ s e t " counter " equal
to the vec to r [1 2 3 4 5] . Ins tead i t s e t
counter equal to the f i r s t number , 1 . Then
Matlab went on to the f p r i n t statement . But when
i t saw the " end " command , i t jumped back to the
" f o r " command , and s e t counter equal to the
second number , 2 . And i t repeated these s t ep s
f o r 3 , 4 , and 5 . But when i t jumped back to the
" f o r " command a f t e r the 5 , the re were no more
numbers . So Matlab then jumped past the " end "
statement and went on with the " d i sp " command
and beyond .

3

This is great!
Remember how messy it was in lesson2 to find and neatly print four frequencies
for the flexibly suspended string? Now we can easily find and print 10! Or much
more still.

% d e f i n e func t i on freqEq , the condensed ve r s i on
freqEq=@(omega , k) sin (omega) + k∗omega∗cos (omega) ;
% s e t the f l e x i b i l i t y
k=1
% p r i n t out the f i r s t 10 f r e q u e n c i e s
for n=1:10

guess=(n−0.5)∗pi ;
omega=fzero (@(omega) freqEq (omega , k) , guess) ;
fpr intf (. . .

’ Frequency %2i : guess : %6.3 f ; exact : %6.3 f \n ’ , . . .
n , guess , omega)

end

k = 1
Frequency 1 : guess : 1 . 5 7 1 ; exact : 2 .029
Frequency 2 : guess : 4 . 7 1 2 ; exact : 4 .913
Frequency 3 : guess : 7 . 8 5 4 ; exact : 7 .979
Frequency 4 : guess : 1 0 . 9 96 ; exact : 11 .086
Frequency 5 : guess : 1 4 . 1 37 ; exact : 14 .207
Frequency 6 : guess : 1 7 . 2 79 ; exact : 17 .336
Frequency 7 : guess : 2 0 . 4 20 ; exact : 20 .469
Frequency 8 : guess : 2 3 . 5 62 ; exact : 23 .604
Frequency 9 : guess : 2 6 . 7 04 ; exact : 26 .741
Frequency 10 : guess : 2 9 . 8 45 ; exact : 29 .879

Forming matrices
Remember the following matrix from lesson 5?

A = [1 2 3 ;
4 5 6 ;
7 8 9]

With a for loop, we can create it in a more systematic way that allows bigger
matrices like that to be formed.

% s i z e o f the matrix
n=3
% crea t e s t o rage f o r the matrix
A=zeros (n) ;
% loop over the rows

4

for i =1:n
% loop over the columns
for j =1:n

% g i v e the r i g h t va lue
A(i , j)=j+(i −1)∗n ;

end
end
% p r i n t i t out
A
% check t h a t i t i s s t i l l s i n g u l a r
condA=cond(A)

n = 3
A =

1 2 3
4 5 6
7 8 9

condA = 6.0262 e+16

Note
Without the A=zeros(n) line above, and no existing matrix A, Matlab would
on the first time in the loop reach the line A(1,1)=1. Since it has no matrix
A, Matlab would then create storage for a matrix A of size 1 by 1. Then after
reaching the end of the for j loop, it would return to for j, set j to its second
value 2, which makes the next line it sees A(1,2)=2. Since this cannot be stored
in the 1 by 1 matrix it has created, Matlab would then create storage for a
bigger 1 by 2 matrix A and give it the two values 1 and 2, deleting the old 1
by 1 matrix A. And so on. After j has reached it final value n, Matlab would
reach the second end, the one that ends the for i loop. It would then return
to the for i and give i its second value 2. Next it gives j again its starting
value 1, and then it would see the line A(2,1)=n+1. Since that would not fit
inside the 1 by n matrix it has, it would delete that matrix after creating a new
2 by n matrix. All this creating and deleting matrices is very inefficient. It is
much better to force Matlab to make matrix A the correct size immediately.
Also, without creating a new matrix A using A=zeros(n) the matrix would not
shrink if we made n smaller. Matlab will make matrices bigger if it needs more
storage locations, but it will not make matrices smaller by itself.

Try a bigger matrix like that

n=5
A=zeros (n) ;
for i =1:n

% loop over the columns

5

for j =1:n
% g i v e the r i g h t va lue
A(i , j)=j+(i −1)∗n ;

end
end
A
condA=cond(A)
disp (’Yes , t h i s b i gge r matrix i s s i n gu l a r too . ’)

n = 5
A =

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

condA = 8.3563 e+17
Yes , t h i s b i gge r matrix i s s i n gu l a r too .

Doing sums
Let’s say that we want to evaluate the sum

1
12 + 1

22 + 1
32 + . . .+ 1

10002

A for loop from 1 to 1000 will do it quite nicely. Note that term number i in
the sum equals 1/iˆ2.

% i n i t i a l i z e the t o t a l o f the terms summed so f a r to zero
t o t a l =0;
% in a f o r loop from 1 to 1000 , add each term in turn
for i =1:1000

t o t a l=t o t a l+1/ i ^2 ;
end
% p r i n t out the ob ta ined sum
sum=to t a l
disp (’ (I t should be l e s s than 1 .6449) ’)

sum = 1.6439
(I t should be l e s s than 1 .6449)

Summing a Taylor series
Not all mathematical functions are provided by Matlab, or any numerical soft-
ware, in canned form. When you encounter such a function, one option to

6

evaluate it is to sum its Taylor series. (That assumes that you know the Taylor
series, but usually you do. For example, the function might be the integral of a
function whose Taylor series you can easily find.)
As an example let’s evaluate e1 by summing its Taylor series. (We will ignore
the fact that you could get the value much more simply as exp(1).)
The Taylor series of ex is according to calculus:

ex = 1 + x1

1! + x2

2! + x3

3! + . . .

So term number i in the sum is xˆi/factorial(i). And there is in addition a
starting "term 0" that is 1.

% the x va lue at which we want the Taylor s e r i e s
x=1
% i n i t i a l i z e the t o t a l o f the terms so f a r to term 0
t o t a l =1;
% loop to add 100 more terms to t o t a l
for i =1:100

% add term number i to the t o t a l
t o t a l=t o t a l+x^ i / f a c t o r i a l (i) ;

end
% p r i n t out the ob ta ined va lue
expValue=t o t a l
% see how b i g the error r e a l l y i s
expError=exp(x)−t o t a l

x = 1
expValue = 2.7183
expError = −4.4409e−16

A better way to do the Taylor series
The previous way of doing the Taylor series of ex is not ideal. For one, to
evaluate xˆi requires (in the simplest case) that Matlab does i-1multiplications
x ∗ x ∗ x ∗ ... ∗ x. Similarly, finding factorial(i) requires i-1 multiplications.
That is a lot of multiplications for Matlab to do when i becomes larger. Not to
mention that factorial(i) "overflows" (becomes too big to store) for i greater
than 170. Similarly, if x was 10 instead of 1, xˆi would overflow at i equal
to 307. The summing would crash. That is why above we took the maximum
value of i equal to 100 instead of, say, 1000.
Look once more at that Taylor series:

ex = 1 + x

1 + x2

1 2 + x3

1 2 3 + . . .

Note that in every case term i equals the previous term times x/i. Evaluating
term i that way requires just one multiplication and one division. That is a lot

7

better than 2 times i-1 multiplications and a division. And it will no longer
produce infinite values. To do the sum this way does require that we store the
successive terms in a variable, which we will call term.

% the x va lue at which we want the Taylor s e r i e s
x=1
% i n i t i a l i z e term 0
term=1;
% i n i t i a l i z e the t o t a l o f the terms so f a r to term 0
t o t a l=term ;
% the number o f terms we can do can now be much b i g g e r
imax=10000;
% in a f o r loop from 1 to imax , add imax more terms
for i =1: imax

% compute the new term to add from the prev ious one
term=term∗x/ i ;
% add i t to the t o t a l
t o t a l=t o t a l+term ;

end
% p r i n t out the ob ta ined va lue
expValue=t o t a l
% see how b i g the error r e a l l y i s
expError=exp(x)−t o t a l

x = 1
expValue = 2.7183
expError = −4.4409e−16

IF CONSTRUCTS
An if construct is useful if you only want to do some things under specific
conditions.

A couple of very simple examples

disp (’ Let ’ ’ s t ry i t ! ’)
i f 1 > 2

disp (’Hey , one i s g r e a t e r than two ! ’)
end
i f 2 > 1

disp (’Hey , two i s g r e a t e r than one ! ’)
end
disp (’Done . ’)

8

Let ’ s t ry i t !
Hey , two i s g r e a t e r than one !
Done .

A more sophisticated example
You can do the above much nicer with an

i f CONDITION1
DOSOMETHING1

e l s e i f CONDITION2
DOSOMETHING2

else
DOSOMETHING3

end

Note: You can have more than one elseif in a row, or none at all. But you
cannot have a space between else and if.

% tr y i t
disp (’ Let ’ ’ s t ry i t ! ’)
i f 1 > 2

disp (’Hey , one i s g r e a t e r than two ! ’)
e l s e i f 2 > 1

disp (’Hey , two i s g r e a t e r than one ! ’)
else

disp (’Hey , one and two are equal ! ’)
end
disp (’Done . ’)

Let ’ s t ry i t !
Hey , two i s g r e a t e r than one !
Done .

Relational operators
The standard "relational operators" are

Symbol Meaning
−−−−−−−−−−−−−−−−−−−−−−−−−−−

> grea t e r
< l e s s
>= gr ea t e r or equal
<= l e s s or equal
== equal
~= not equal

9

% Let ’ s t r y i t
disp (’ Let ’ ’ s t ry i t ! ’)
% l e t ’ s compute two numbers t h a t are rough ly the same
h a l f p i=pi /2 ;
r t2=sqrt (2) ;
i f h a l f p i > rt2

disp (’Hey , p i /2 i s g r e a t e r than sq r t (2) ! ’)
e l s e i f h a l f p i < rt2

disp (’Hey , p i /2 i s l e s s than sq r t (2) ! ’)
e l s e i f h a l f p i==rt2

disp (’Hey , p i /2 i s equal to sq r t (2) ! ’)
else

disp (’Matlab has gone crazy ! ’)
end
disp (’Done . ’)

Let ’ s t ry i t !
Hey , p i /2 i s g r e a t e r than sq r t (2) !
Done .

Logical operators
The standard "logical operators" are:

Symbol Meaning
−−−−−−−−−−−−−−−−−−−−−−−−−−−

~ l o g i c a l NOT
& l o g i c a l AND
| l o g i c a l OR

There is also XOR, but you rarely need it if you do normal engineering things.
The above operators are in order of precedence. Use parentheses as needed to
be safe and for readability.

% l e t ’ s t r y i t
disp (’ Let ’ ’ s t ry i t ! ’)
% we ∗need∗ the paren these s be low ???
i f ha l f p i >1 & ha l f p i <2 & ~ (h a l f p i ==1.5)

disp (’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’)
end
% the next might be more readab l e ?
i f (ha l f p i >1) & (ha l f p i <2) & ~ (h a l f p i ==1.5)

disp (’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’)
end
% d e f i n i t e l y the be low i s more readab l e
i f (ha l f p i >1) & (ha l f p i <2) & (h a l f p i ~=1.5)

10

disp (’ p i /2 i s between 1 and 2 and not 1 . 5 ! ’)
end

Let ’ s t ry i t !
p i /2 i s between 1 and 2 and not 1 . 5 !
p i /2 i s between 1 and 2 and not 1 . 5 !
p i /2 i s between 1 and 2 and not 1 . 5 !

This is great!
Remember how we had to check the solution of the linear system of equations
in lesson5? Now we can do this in a much clearer and better way. In particular,
we can avoid wasting time and paper computing a useless solution.

% r e c r e a t e the system
disp (’ Let ’ ’ s redo the s o l u t i o n o f the l i n e a r equat ions : ’)
A = [1 2 3 ;

0 5 6 ;
7 8 9] ;

b = [3 ;
2 ;
9] ;

condA=cond(A) ;
re lErrorMat lab=condA∗eps (1)
i f re lErrorMat lab >= 0.1

disp (’ There i s no rea sonab l e s o l u t i o n to t h i s system !
’)

else
x = A \ b
i f re lErrorMat lab > 0.001

disp (’Warning : the above s o l u t i o n may have
s i g n i f i c a n t e r r o r ! ’)

end
end
disp (’ Let ’ ’ s redo the s i n gu l a r equat ions too : ’)
A(2 , 1) =4;
condA=cond(A) ;
re lErrorMat lab=condA∗eps (1)
i f re lErrorMat lab >= 0.1

disp (’ There i s no rea sonab l e s o l u t i o n to t h i s system !
’)

else
x = A \ b ;
x ’
i f re lErrorMat lab > 0.001

11

disp (’Warning : the above s o l u t i o n may have
s i g n i f i c a n t e r r o r ! ’)

end
end

Let ’ s redo the s o l u t i o n o f the l i n e a r equat ions :
re lErrorMat lab = 8.4241 e−15
x =

1
−2
2

Let ’ s redo the s i n gu l a r equat ions too :
re lErrorMat lab = 13.381
There i s no rea sonab l e s o l u t i o n to t h i s system !

Use it also in summing
Earlier in this lesson, we did the sum

1
12 + 1

22 + 1
32 + . . .

to one thousand terms. This time, however, we would like to check that if
we sum infinitely many terms, we really get π2/6. But of course, that is not
possible. It would take infinitely much time for Matlab to sum infinitely many
terms. And then there is round-off errors.
Realistically, the best that we can do is check that if we sum enough terms we
can get π2/6 to a "tolerated" error of say 0.0001 maximum. We can do that
if we put an if statement in the for loop that terminates the loop when the
estimated error in doing so is smaller than the tolerance 0.0001. To terminate
a loop, use the break command.
For now, let’s assume that we can stop when the next term to add is less than
the tolerance. In other words, let us estimate the error in terminating the sum
as being the first neglected term.

% the a l l owed t o l e r a n c e in va lue
t o l =0.0001
% i n i t i a l i z e the t o t a l o f the terms summed so f a r to zero
t o t a l =0;
% the maximum number o f terms we would ever want to do
imax=100000;
% in a f o r loop from 1 to imax , add each term in turn
for i =1: imax

% compute the new term
term=1/ i ^2 ;
% stop the f o r loop i f i t seems sma l l enough
i f term < t o l

12

fpr intf (’ Stopped summing a f t e r %i terms . \ n ’ , i −1)
break

end
% otherw i s e add i t to the t o t a l and keep going
t o t a l=t o t a l+1/ i ^2 ;

end
% p r i n t out the sum
sum=to t a l
% p r i n t out the a c t u a l e r ror
ac tua lEr ro r=pi^2/6−sum
% check t h a t we are about as c l o s e as expec ted
i f abs (ac tua lEr ro r) > 5∗ t o l

disp (’Oops ! Nowhere c l o s e ! ’)
end

t o l = 1.0000 e−04
Stopped summing a f t e r 100 terms .
sum = 1.6350
ac tua lEr ro r = 0.0099502
Oops ! Nowhere c l o s e !

Oops!
Estimating the actual error as the first neglected term was a not a good approx-
imation. The reason is that we did not just ignore 1/101ˆ2, but also 1/102ˆ2,
1/103ˆ2, ... The combined sum is much bigger than just 1/101ˆ2.
Note that if this was an "alternating" series, whose terms are alternately positive
and negative, we would not have this problem, and what we did would have
worked fine.
But in this case, the terms are all positive. We can make a crude correction for
the accumulation of terms if we estimate the error not just as the first neglected
term, but as the term number i times the first neglected term. Let’s try that:

% the a l l owed t o l e r a n c e in va lue
t o l =0.0001
% i n i t i a l i z e the t o t a l o f the terms summed so f a r to zero
t o t a l =0;
% the maximum number o f terms we would ever want to do
imax=100000;
% in a f o r loop from 1 to imax , add each term in turn
for i =1: imax

% compute the new term
term=1/ i ^2 ;
% stop the f o r loop i f i t r e a l l y seems sma l l enough
i f term∗ i < t o l

fpr intf (’ Stopped summing a f t e r %i terms . \ n ’ , i −1)

13

break
end
% otherw i s e add i t to the t o t a l and keep going
t o t a l=t o t a l+1/ i ^2 ;

end
% p r i n t out the sum
sum=to t a l
% p r i n t out the a c t u a l e r ror
ac tua lEr ro r=pi^2/6−sum
% check t h a t we are about as c l o s e as expec ted
i f abs (ac tua lEr ro r) > 5∗ t o l

disp (’Oops ! Nowhere c l o s e ! ’)
end

t o l = 1.0000 e−04
Stopped summing a f t e r 10000 terms .
sum = 1.6448
ac tua lEr ro r = 9.9995 e−05

Taylor series done more efficiently
If we want to sum a Taylor series, we probably want the most accurate answer
we can possibly get. To do so notice that in a convergent Taylor series, the
terms become smaller and smaller. Eventually they "underflow" and become
zero. After that point, it is obviously useless to keep summing. However many
times you add zero, it is not going to change the value.
But even when the terms are not yet underflowing, they may be too small to
further change the value of the sum. That is because numbers on a computer
have round-off errors. As soon as the individual terms in the sum become smaller
than the round off error in the accumulated sum, they are already unable to
change the sum.
So the smart way to do Taylor series is to keep summing until the sum no longer
changes. Let’s try it:

% the x va lue at which we want the Taylor s e r i e s
x=1
% i n i t i a l i z e term 0
term=1;
% i n i t i a l i z e the t o t a l o f the terms so f a r to term 0
t o t a l=term ;
% the maximum number o f terms we would ever want to do
imax=100000;
% in a f o r loop from 1 to imax , add up to imax more terms
for i =1: imax

% compute the new term to add from the prev ious one
term=term∗x/ i ;

14

% add i t to the t o t a l
o l d t o t a l=t o t a l ;
t o t a l=t o t a l+term ;
% stop i f t h e r e i s no l onger a change
i f t o t a l == o l d t o t a l

fpr intf (’Done summing at term %i . \ n ’ , i)
break

end
end
% p r i n t out the ob ta ined va lue
expValue=t o t a l
% see how b i g the error r e a l l y i s
expError=exp(x)−t o t a l

x = 1
Done summing at term 18 .
expValue = 2.7183
expError = −4.4409e−16

WHILE LOOPS
The while command is similar to the for command in that it loops, but it stays
looping as long as some condition remains true. It can be appropriate in cases
where you have no clue when looping will stop.

A simple example
Let’s keep looping until the user admits that Matlab is great.

% ge t the user ’ s name
name=input (’ P lease ente r your name : ’ , ’ s ’) ;

% d e f i n e a menu header
header=[name ’ admits that : ’] ;

% loop u n t i l we ge t the r i g h t answer
cho i c e =0;
while cho i c e~=4

cho i c e=menu(header , . . .
’Matlab i s h o r r i b l e . ’ , . . .
’Matlab i s too much work . ’ , . . .
’Matlab i s OK. ’ , . . .
’Matlab i s g r ea t ! ’)

header=’Wrong answer . Try again : ’ ;
end

15

% run le s son6a .m
%les son6a

Doing the sum with a while loop
You can do with while loops whatever you can do with for loops. For example,
we can evaluate the Taylor series for exp(1) using a while loop as shown below.
It works just like the for loops.

% the x va lue at which we want the Taylor s e r i e s
x=1
% i n i t i a l i z e term 0
term=1;
% i n i t i a l i z e the t o t a l o f the terms so f a r to term 0
t o t a l=term ;
% the maximum number o f terms we would ever want to do
imax=100000;
% i n i t i a l i z e a counter o f how many terms we have added
i =0;
% in a wh i l e loop , add up to imax more terms
while t o t a l ~= o l d t o t a l

% each time through , inc rea se the i va lue by one
i=i +1;
% compute the new term to add from the prev ious one
term=term∗x/ i ;
% add i t to the t o t a l
o l d t o t a l=t o t a l ;
t o t a l=t o t a l+term ;
% stop i f i t t a k e s too many terms
i f i >= imax

fpr intf (’Must stop summing a f t e r %i terms . \ n ’ , i)
break

end
end
% p r i n t out the ob ta ined va lue
expValue=t o t a l
% see how b i g the error r e a l l y i s
expError=exp(x)−t o t a l

x = 1
expValue = 2.7183
expError = −4.4409e−16

16

End lesson 6

17

	Initialization
	FOR LOOPS
	A very simple loop
	A slightly more elaborate version
	This is great!
	Forming matrices
	Note
	Try a bigger matrix like that
	Doing sums
	Summing a Taylor series
	A better way to do the Taylor series
	IF CONSTRUCTS
	A couple of very simple examples
	A more sophisticated example
	Relational operators
	Logical operators
	This is great!
	Use it also in summing
	Oops!
	Taylor series done more efficiently
	WHILE LOOPS
	A simple example
	Doing the sum with a while loop
	End lesson 6

