
Matlab Homework 10a

In the online book:

• Do the “Challenge Activities” of: 9.1,2, 12.6

• Do the “Participation Activities” of: 16.1-6,9

Matlab Homework 10b

The same general requirements as for homework 4b apply. And you must study the posted lesson(s)
and have done the online book part above before you can ask a TA or the instructor for help.

1. In the previous homework, you printed out the roots ω1 through ω9 of the equation:

J0(ω) − kωJ1(ω) = 0

using two for loops over the root counter n, going from 1 to a value nmax. Repeat this, but
now make Matlab stop printing out roots when it sees that the error in the guessed value has
become less than 0.03. Take k = 2 again. Make sure the output is lined up in columns and
neat; this time output the frequencies with 2 digits behind the decimal point.

The correct old solution is already in the q1.m file. Just modify it as requested.

2. In the previous homework, you created matrices like

A =



−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2


by initializing a zero matrix, putting in the nonzero elements in rows 2 to n−1, (with n the
size of the matrix) in a for loop, and manually adding the nonzero elements in rows 1 and n.

This time do the same, but put in all nonzero elements in a for loop over all n rows. Use
if statements to ensure that you do not write nonzero values outside the boundaries of the
matrix in rows 1 and n, as you would normally do. Check it for n = 4, 5, and 6.

The correct old solution is already in the q2.m file and vibMatrix. Just modify them as
requested.

3. Some mathematician claims that the sum

∞∑
i=1

1

i



or in other words
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ . . .

is infinite. Let’s check that out.

Create a script sum1Tol.m that sums the above sum until Matlab finds that the estimated
error has become less than 0.01, or up to say 100,000 terms, as many terms as Matlab will
sum in a reasonable time. Take the estimated error to be the one appropriate for a non-
alternating series (see the posted lesson). If the estimated error does become less than 0.01,
print a message

The mathematician seems to be wrong. The sum

seems to be *.12 to about *.12.

If not, print a message

The mathematician seems to be right.

The error remains *.12 with * terms.

In both cases, print the final line with fprintf without data numbers in FORMATSTRING.

Warning: Students who end up with frozen homework programs, or messages that Java
and/or Adobe are misbehaving, have incorrectly implemented the break command, or even
omitted it completely. Trying to publish 100,000 message lines is a sure recipe for crashing
something. Please check operation your break command before seeing TA or instructor.

4. The same mathematician claims that the sum

∞∑
i=1

(−1)i−1
1

i

or in other words
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− . . .

is finite, and in fact equal to ln(2). To check this, copy script sum1Tol.m over into sum1AltTol.m.
Then in sum1AltTol.m make the following changes: (a) Change the estimated error into the
one appropriate for an alternating series like this. (b) Before the for loop initialize a variable
sgn=-1;. Then inside the loop, use a statement sgn=-sgn; and multiply your current term
by sgn. Since sgn will alternatingly be +1 and −1, this produces the (−1)i−1 in the terms in
an efficient way. At the end, print a message

The mathematician seems to be right. The sum

seems to be *.12 to about *.12

after summing * terms.

The deviation from ln(2) is *.1E12.

The mathematician is not wrong, as you should have learned in calculus, so do not worry
about that possibility.



5. Some mathematician claims that the sum
∞∑
i=1
i odd

1

i2

or in other words
1

12
+

1

32
+

1

52
+

1

72
+ . . .

equals π2/8

Create a script sum2OddTol.m that sums the above sum until Matlab finds that the estimated
error has become less than 0.00001, or up to say 100,000 terms, as many terms as Matlab will
sum in a reasonable time. Take the estimated error to be the one appropriate for a series like
the one above. Print the results out as

The mathematician seems to be right:

Found: *.12345

Exact: *.12345

Estimated error: *.1E12

Actual error: *.1E12

6. In the previous homework you summed the Taylor series of the sine integral,

Si(x) =
x

1!1
− x3

3!3
+
x5

5!5
− x7

7!7
+ . . .

at x = 5π to get the correct value 1.6339648 to that many digits.

Repeat this in a script siTol.m, but this time let Matlab itself decide when to finish summing
based on an allowed tolerance of 0.0000001 that you provide.

Warning: this is an alternating series; use the appropriate error estimate for that.

Also evaluate the terms in a more efficient way this time, by using

ti = −ti−2
x2

(i− 1)i

i− 2

i

which allows you to compute the current term ti from the previous one.

In this case, print out how many terms Matlab ended up doing, and the approximate and
exact values for Si(5π) to 7 decimals. Check that they agree to about 0.0000001. Also print
out the number of terms Matlab needed to sum. And also print out the actual error using
the exact value 1.633964846102835 (as obtained from sinint).

The correct old solution is already in the q6.m file and si.m. Just modify it as requested.
(The first i = 0 in si.m should have been i = 1, but it does not make a difference.)

7. Next copy siTol.m into siBest.m and in si_best.m make Matlab keep summing until the
accuracy no longer improves. Show exact and approximate values, both up to 16 decimals
now, number of terms summed, and the error.

Since the Taylor series result is not as accurate as you would expect, comment on what you
think is the reason. Remember that normal Matlab numbers have a relative error of about
10−16. In other words, there are about 16 good digits starting from the first nonzero digit.
Also take into account that, since 5π is about 16, the largest term in the series is (5π)15/15!15
or about 45,000.


