
Matlab Homework 9a

In the online book:

• Do the “Challenge Activities” of: 11.1-3; 12.1,3,4,

• Do the “Participation Activities” of: 9.1,2, 12.6

Matlab Homework 9b

The same general requirements as for homework 4b apply. And you must study the posted lesson(s)
and have done the online book part above before you can ask a TA or the instructor for help.

1. In an earlier homework, (homework 3?), you printed out the roots ω1, ω2, ω3, and ω4, of the
following equation:

J0(ω) − kωJ1(ω) = 0

where J0 and J1 were Bessel functions of the first kind and the given constant k was a
nondimensionalized flexibility of the membrane attachment.

Repeat this, but now no longer use separate code for each frequency that you print out.
Instead use a for loop over counter n, going from 1 to value nmax = 9 (instead of 4), to find
and print the first 9 roots. (So you must use one piece of code, not 9, for the 9 frequencies.)
Take k = 2 again.

The correct old solution is already in the q1.m file. Just modify it as requested.

Octave users: The Octave fzero does not always find the closest root for some reason. Just
live with it. The interval method, which is safe, will work the same as in Matlab.

2. In an earlier homework, (homework 8?), you created the matrix

A =



−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2


by typing in all those numbers. This is typo-prone and you have to do it all again with a
vengeance when you want to try much more points.

While in a later question in that homework, you created the matrix using the Matlab diag

and ones functions, the possibility of of doing that is very limited. And it is very difficult to
understand for someone reading your code.

So, in this question create a script vibMatrix that, given a value for variable n, creates an
n× n matrix of the above type by initializing it to zero and then using a for loop to put the
various nonzero elements in it. Run the script for n equal to 4, 5, and 6, and check that in
each case, you get the right matrix. (Do not use any if statements; since the first and last
rows are not like the rest, do them separately outside the for loop.)



3. Some mathematician claims that the sum

imax∑
i=1

1

i

in other words
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ . . .+

1

imax

becomes infinite when imax becomes infinite. Let’s check that out.

In a script sum1.m, create Matlab code that performs the sum up to a given imax. Check the
script by first taking imax to be 10; you should get about 2.929.

Next put that summation script inside an “outer” for loop on imax where you take imax to be
the successive values [10, 100, 1000, 10000, 100000]. This loop should be in your q3.m script
itself.

After studying the values you get for the sum using these five imax values, use disp to comment
on whether it looks like the sum converges to a definite value when imax becomes bigger and
bigger, or whether it looks like the value seems to keep getting bigger and bigger.

Warning: Summing 100,000 terms may be a bit slow on some computers. You may want to
wait with that one until everything works OK. Initially just do [10, 100, 1000, 10000].

4. The following function, the “sine integral”,

Si(x) =

∫ x

0

sin ξ

ξ
dξ

cannot be expressed in terms of simpler functions. You cannot find the needed antiderivative
in terms of normal functions, even though the integrand seems so simple.

However, the Taylor series of the Si function is easy to find. (Just write the Taylor series for
sin ξ, divide by ξ, and integrate.) The result is

Si(x) =
x

1!1
− x3

3!3
+
x5

5!5
− x7

7!7
+ . . .

which can be written as

Si(x) =
imax∑
i=1
i odd

(−1)(i−1)/2 x
i

i!i

Write a script si.m (lowercase) that, given x and imax, sums this sum. Note: You can skip the
even values of i in the for loop using a START:STEP:END construct in the for command
for a suitable value of STEP. (STEP is the difference between successive i-values.)

For reasons to be explained later, initialize the sum to the term i = 1, (i.e. total=x), then
start the for loop at i = 3 to add the other terms.

Use the script to compute Si(5π). The correct value is about 1.6339648 according to my table
book. Experiment with the minimum value of imax you need to get the value correct to the
given number of digits. Print out as

Value: 1.12345678

Table: 1.6339648

I needed to sum * terms to get this.



Use fprintf commands to do so, without data numbers in the FORMATSTRING.

Note: Si is actually a quite important function, and Matlab provides this function as “sinint”.
(It is apparently within the symbolic logic package; at least in Octave it is.) I would not be
surprised if they used some adulterated Taylor series to evaluate the function for relatively
small values of x.


