
1 INTRODUCTION
Contents

LESSON SUMMARY 1

Key areas of the online book 2

BASIC CONCEPTS 2

Basic computations 3

Comments 3

Exponential notation 4

Basic functions 5

Variables 5

Computing with variables 6

Suppressing printed results 8

CREATING YOUR OWN FUNCTIONS 8

Example function: sqr 8

An improved function: Square 9

HOW TO DO HOMEWORKS 11

MORE ON BASIC CONCEPTS 12

Bad numbers 13

Overflow and underflow 13

Some examples of inaccuracy 13

Precedence 17

Manipulating variables 18

Should we simplify pi? 19

MORE ON FUNCTIONS 20

1

ARRAYS 21

Some examples 21

A trick: using the colon operator 22

Elementwise basic operators 23

Fixing our sqr function 24

% make sure the workspace i s c l e a r
i f ~exist (’___code___ ’ , ’ var ’) ; clear ; end
% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s (pausing and b u f f e r i n g)
more o f f
% s t a r t a d iary (in the a c t ua l l e c t u r e)
%diary l e c t u r e 1 . t x t

LESSON SUMMARY
• This lesson explains basic use of Matlab. It explains how to do basic
computations, and how to document your code using comments starting
with a percent. It also explains how to separate your final results into
parts using doubled-percent comment lines.

• Variables are named storage locations. A numeric variable contains a
number. An assignment statement puts a value into a variable. Such a
statement looks like an equality, but it is not.

• You can prevent a command from printing out the result by appending a
semicolon.

• Standard numerical functions like sin, cos, log (for ln), exp, sqrt, ...
are available. However, in Matlab you can also write your own func-
tions, and often need to. Normally a function takes in one or more values
("input arguments"), to produce ("return") one or more results ("output
arguments"). For example, sqrt takes in a nonnegative number as in-
put argument and returns the square root of that number as its output
argument.

• Matlab stores numbers to only about 16 decimal digits accurate, starting
from the first nonzero digit. As a result, storing a number in Matlab

2

introduces a relative error of up to about 10−16. To get the absolute
error, multiply the relative error by the magnitude of the number. Besides
inaccuracy, there are also limits on the magnitude of numbers.

• The order in which computations are done is given by "precedence". Mat-
lab does exponentiation first, followed by multiplication and division in
any order, followed by addition and subtraction in any order. Use paren-
theses to ensure that Matlab does things in the order you want, and for
more readable code.

• In Matlab, you cannot just use single numbers, but also lists of numbers
called "arrays". To create an array, you can put the numbers between
square brackets. To create a long list of equally spaced numbers easily,
use START:STEP:END notation. If you apply various basic operations on
entire arrays, you typically need to prefix the operator ∗, /, or ^ by a point
(.∗, ./, or .^).

Key areas of the online book
NOTE: PA=Participation Activity and CA=Challenge Activity

WARNING: When you complete any PA or CA in the online book, you should
see a colored banner. If you do not see one for a CA, be sure to press "refresh"
on your browser (Firefox?). Or you will not get credit.

Before the first lecture, in the online book do:

• 1.3 Matlab and the interpreter: all.

• 2.1 Variables and assignments: all.

• 2.2 Identifiers: all.

• 2.5 Numeric expressions: skip the stuff beyond CA 2.5.2.

• 3.1 Scripts: all except PA 3.1.4.

Before the second lecture, in the online book do:

• 2.4 Mathematical constants: all.

• 3.2 Comments and clear code: all except the ugly CA.

• 3.4 Internal mathematical functions: skip the CAs.

• 4.1 Introduction to arrays: skip the CA.

3

BASIC CONCEPTS
Basic computations
The basic numerical operators are +, -, ∗, /, and ^, for plus, minus, times,
divide, and power respectively.

2+3

ans = 5

2−3

ans = −1

2∗3

ans = 6

2/3

ans = 0.66667

2^3

ans = 8

1 . 5 / . 5

ans = 3

Comments
NOTE: In the lecture, this section will be covered while doing the example home-
work.

Comments are required in the homeworks to make things simpler on the grader.
They should also be used in your own saved code for the benefit of whoever uses
it, including you, later.

1. Lines in your script that start with a percent are ignored by Matlab. These
"comment" lines do not really "do" anything. But they do allow you to
explain your code to whoever reads it.

4

2. In addition, a line starting with a double percent followed by a title start
new section in the resulting pdf file. For example, a "%% Comments" line
was used in my script to start this section.

3. If there is only the double percent, without a title, then no new section is
started. But in the pdf file, your code is executed at that point and the
results shown. Use this to force showing results at suitable locations.

4. Single-percent comment lines that immediately follow a double-percent
line, (with no blank lines or code in between), allow you to use "mark-up".
Mark-up allows you to insert such things in the resulting pdf as italics
(enclose the italic text between underscores), bold text (between stars),
typewriter font (between bars), and math like 23 (between dollar signs).
You can also insert other files, using "include tags" (see the homework
solution files for examples). And you can enumerate items, like the ones
in this section, using #, or itemize them using ∗. Note: math looks great
in Octave but pretty horrible in Matlab.

% l e t ’ s t r y a s imple d i v i s i o n !
1 . 5 / . 5
% and another
2 . 5 / . 5

ans = 3
ans = 5

(A double percent was used here to force the preceding output)

% and a t h i r d
3 . 5 / . 5

ans = 7

Exponential notation

% exponen t i a l no ta t i on f o r Planck ’ s cons tant
1 .0546 e−34

ans = 1.0546 e−34

% or not
0.00000000000000000000000000000000010546

ans = 1.0546 e−34

5

% the Rydberg cons tant conta ins Planck ’ s cons tant cubed
ans^3

ans = 1.1729 e−102

Basic functions

% ge t t i n g the square roo t o f a number
sqrt (9)

ans = 3

% matlab (and a l l s c i ence) uses rad ians by d e f a u l t
sin (30)

ans = −0.98803

% t h i s i s one way to ge t the s ine o f 30 degrees
sin (30/180∗pi)

ans = 0.50000

% t h i s i s a s imp ler way
s ind (30)

ans = 0.50000

Variables
Variables are named storage locations. To put a number VALUE into a storage
location named VARIABLENAME, use

VARIABLENAME = VALUE

On that "assignment statement", Matlab will see what number VALUE is, and
then put that number into the storage location called VARIABLENAME. If no such
storage location exists as yet, it is created.

% there i s no v a r i a b l e named x ye t (no response)
who x

6

Check also the workspace window for x.

The statement (or command) "x=3" is an example assignment statement. It
tells Matlab to create a variable named x, if it does not yet exist, (like now),
and then put the value 3 in that storage location:

% crea t e x and s t o r e 3 in i t
x=3

x = 3

Now we have a variable named x. Check the workspace window or use the who
command:

% look f o r x
who x

Var iab l e s in the cur rent scope :
x

Use whos to show more info on x.

% ge t more in f o on x
whos x

Var iab l e s in the cur rent scope :
Attr Name S i z e Bytes Class
==== ==== ==== ===== =====

x 1x1 8 double
Total i s 1 element us ing 8 bytes

(You might wonder where the name double comes from. Well, long before
Matlab was created, normal numbers on a computer had 7 significant digits.
Numbers with 16 significant digits were called "double precision". Computer
scientists were not yet aware that 2 times 7 is 14, not 16. Matlab choose numbers
with 16 significant digits to be the normal ones. But they kept the name "double"
to confuse you. It means a normal Matlab floating point number.)

Computing with variables

% pr in t out the curren t va lue o f x
x

x = 3

7

% we can p r i n t out tw ice the va lue o f x
2∗x

ans = 6

% we can p r i n t out the va lue o f x p l u s 7
x+7

ans = 10

% x i s s t i l l t he same
x

x = 3
Please note that the notation VARIABLENAME=VALUE is confusing.

REMEMBER: The command VARIABLENAME = VALUE is NOT an equality. It is
an assignment statement. Think of the equals sign as really being a left pointing
arrow, like in VARIABLENAME ⇐ VALUE. VALUE is pushed into VARIABLENAME.

(I seem to recall that one of my first, very primitive, personal computers actually
had a left arrow on the keyboard for assignment statements. And a now largely
forgotten programming language, "Algol", used := as an approximation of a left
arrow.)

(To instead tell Matlab that VARIABLENAME above is the same as VALUE, or to
test for that, use VARIABLENAME==VALUE. Note the doubled equal signs.)

As an example of an assignment statement, consider:

% add 7 to the curren t va lue o f x
x=x+7

x = 10
If you think of the above command as an equality, it is complete nonsense: x
cannot be equal to x+7! But if you think of it as an assignment statement, it
is perfectly OK:

In the above command, x was initially 3. Then first the right-hand side x + 7
was evaluated. Then the result, 10, was put in the storage location named x.
The old value 3 that was in x is now lost.

% we can doub le x
x=x+x

8

x = 20

Just for fun, try using the Up-Arrow key a few times now!

Suppressing printed results
Normally, a Matlab command prints out the result of that command. You can
suppress that by appending a semicolon to the command.

% no f i n a l semicolon so the r e s u l t i s p r in t ed
1 . 5 /0 . 5

ans = 3

% with a f i n a l semicolon noth ing i s p r in t ed
2 . 5 / 0 . 5 ;

% the same fo r v a r i a b l e s or o ther e xp r e s s i on s
x ;

% The same fo r an assignment s ta tement ; w i thou t semicolon
x=3

x = 3

% with semicolon
x=4;

% even i f not pr in ted , x has s t i l l been s e t to 4 :
x

x = 4

CREATING YOUR OWN FUNCTIONS
Often you need to create your own functions in Matlab. This section explains
how to do that.

9

Example function: sqr
Matlab provides a function sqrt(x) that produces ("returns" or "outputs") the
square root of any x. But suppose you would like a function sqr(x) that returns
the square instead of square root of x.

The general way to do it is to write a function file. For our sqr function, the
function file must be called sqr.m. A minimal example of the contents of that
file is shown below. In the code, x is used as symbol for the "input argument",
and x2 for the "output argument", the square of x:

Contents of sqr.m:

function x2 = sqr (x)

x2 = x∗x ;

end

Let’s try out our new function!

% try f i n d i n g the square o f 2
sqr (2)

ans = 4

% try the square o f 3 too
sqr (3)

ans = 9

% or the square o f a v a r i a b l e
x=4
sqr (x)

x = 4
ans = 16

% you can use i t in assignment s ta tements
x=5
y=sqr (x)

x = 5
y = 25

10

An improved function: Square
(Note: depending on the time left, cover doing the homeworks first.)

There are several improvements you should always make when creating your
own functions:

• The online book recommends that the names of functions that you write
start with a capital. This avoids potential confusion with a Matlab func-
tion of the same name. What if there already was a function sqr in Mat-
lab? Calling you function Square avoids that danger; all normal Matlab
functions are lowercase.

• You must use well-chosen variable names. For example, the output ar-
gument name x2 can be improved. People might think that x2 means x
times 2, rather than x to the power 2. Or they might think that it simply
means a second x value. If you call the output argument xSqr instead of
x2, you avoid such potential confusion.

• You must properly comment your function. For one, the Matlab command
help Square must show what your function does, and how to use it.

Below is an example of how a well-written function Square would look:

Contents of Square.m:

function xSqr = Square (x)

%
% Function t ha t r e turns the square o f i t s input argument .
%
% xSqr = Square (x)
%
% Input :
% x : must be a r e a l number or v a r i a b l e
%
% Output :
% xSqr : square o f x
%

% se t xSqr equa l to the square o f x
xSqr=x∗x ;

end

% t e s t the func t i on
Square (3)

11

ans = 9

% t e s t the " he l p Square " command
help Square

’ Square ’ i s a func t i on from the f i l e /home/dommelen/
s t o r e / cour s e s / t l l /matlab/ l e s s o n s /Square .m

Function that r e tu rn s the square o f i t s input argument .

xSqr = Square (x)

Input :
x : must be a r e a l number or v a r i ab l e

Output :
xSqr : square o f x

HOW TO DO HOMEWORKS
First consider the METLab Matlab web page. To find it:

• Open https://www.eng.famu.fsu.edu/%7Edommelen/

• Click on Courses, METLab Matlab.

• Bookmark this page! You can find transcripts of the eight lessons here.
You can also find descriptions of the exercises for these lessons here. And
you can find example old exams here. Finally there is a semester specific
folder where you can find the homeworks.

In principle, you can find the homeworks to do in the semester-specific folder,
and the description of the assigned lesson exercises, and templates for them in
the top Matlab folder. However, the recommended procedure is to use Secure
Shell Client. This will download the templates automatically in a folder MET-
LAB inside MATLAB, put your name and due date in them so that you do not
forget or mess it up, and get whatever additional info might be useful for the
homework. And you will have to learn how to use Secure Shell Client anyway,
for the exams. The procedure is:

• Open Secure Shell Client from "All Programs" in the Windows Start Menu.
Click on "Quick Connect", enter wolf for the host and your college of en-
gineering (not university) username. Hit Enter, click "Yes" or "OK", and
enter your college of engineering password. Then in the created terminal
enter the command

~dommelen/metlab/gethw0

12

https://www.eng.famu.fsu.edu/%7Edommelen/

to get homework 0. (Or ~dommelen/metlab/gethw1 for homework 1,
etcetera; later homeworks go similar to the example homework 0. To
always get the latest available one, leave out the number.). If all is well,
use an exit command to close the window and then terminate Secure
Shell Client.

• Enter Matlab and if you are not yet in the METLAB folder, double-click
it. The homework 0 assignment should now be in file hw0_LOCAL.pdf
in your workspace. A homework will normally involve (a) online book
sections, and (b) lesson exercises. The descriptions of the lesson exercises
can be found in file lesson_exercises_LOCAL.pdf.

• In Matlab, now double-click l0_Test_x1.m so that Matlab opens it in
its editor. Put your solution to the exercise at the end of the file. Add
comments as appropriate as described earlier.

• Ready for testing? Select "Save" from the file menu, or more quickly use
Ctrl+s from the keyboard. Then inside the command window, type

l0_Test_x1
(no .m) to run the script and check that all is well. (The Matlab editor
has a "Run" button to simplify this process.) Check for problems. Fix
them and try again.

• When all is well, in the command window type
publish l0_Test_x1.m pdf

(with .m). This should create a pdf file in the html subfolder called
l0_Test_x1.pdf. Check out this file, fix any problems.

• Warning: Immediately exit the pdf reader after viewing l0_Test_x1.pdf.
Otherwise Matlab will refuse subsequent publish commands!

• Warning: If you use the "Publish" button, make sure you are publishing
to pdf. The default is html. Html is not acceptable.

• The same for the remaining exercises. For homeworks beyond homework
0, print out the created exercise pdf files, staple them together in proper
order and hand that in at the start of the class at which it is due. The
TAs will not be able to pick up homeworks handed in after class starts.

• Warning: If the TAs note that they spend noticeably more time on grad-
ing a certain student than they are comfortable with, the first time they
will offer a warning to that student with suggestions for improvement.
The second time, the messy answers will no longer be graded and a zero
assigned.

Note: The exam questions will be based on (be loose variations of) the lesson
exercises. But you will also be expected to have picked up the basic Matlab
skills in the covered sections of the online book too.

13

MORE ON BASIC CONCEPTS
Here are some additional points about simple computations.

Bad numbers

% In f (i n i t y)
1/0

warning : d i v i s i o n by zero
ans = In f

% N(ot)aN(umber)
0/0

warning : d i v i s i o n by zero
ans = NaN

Overflow and underflow
Numbers that are too big to store are set to infinity. This is called "overflow".
In Matlab it happens for numbers bigger in magnitude than roughly 10308. (See
realmax for the precise value.)

% 1/hbar to the power 10 i s t r o u b l e
(1/1 .0546 e−34)^10

ans = In f

Numbers that are too small to store are set to zero. This is called "underflow".
In Matlab it happens for numbers smaller in magnitude than roughly 10−308.
(See realmin for the precise value.) It may be just as bad as overflow.

% under f low l o s e s a l l quantum mechanics here
1 .0546 e−34^10

ans = 0

Some examples of inaccuracy
Matlab does not store infinitely many digits of an arbitrary floating point num-
ber. In normal use it stores only about 16 "significant digits". In other words,
only about 16 digits are stored correctly, counting from the first nonzero one.

14

In still other words, the way Matlab stores floating point numbers produces a
"relative error" of about 10−16.

The below is an expanded discussion of the examples shown in the lecture.

% i s 4/3 r e a l l y 4/3???
4/3
% t e l l Matlab to show a l l r ea sonab l e d i g i t s
format long
% try again
4/3

ans = 1.3333
ans = 1.33333333333333

Note that only 15 digits are shown. Is the rest also equal to 3??? No! The 16th
digit might still be, but the rest will not.

% the next shou ld produce 1/3
(4/3)−1
% so the next shou ld produce zero , but i t does not
ans∗3−1

ans = 0.333333333333333
ans = −2.22044604925031e−16

The result is not zero due to the fact that 4/3 had about a 10−16 error. The
operations we did left only the error. While the final ans is clearly very small,
it is not zero. Whether this error is acceptable depends on your application.
Note that the relative error in ans (compared to zero) is infinite.

In general, the relative error in a number due merely to storing it is about 10−16

in Matlab. To find the actual, or "absolute" error, multiply the relative error by
the magnitude of the number.

So bigger numbers have about the same 10−16 relative error as smaller numbers,
but a bigger absolute error.

Watch what happens if we make the numbers in the above computation about
1,000 times as big:

% the next shou ld produce 1000/3
(4000/3)−1000

ans = 333.333333333333
We still have about 16 correct digits, counting from the first nonzero one. So
the relative error is still about 10−16. But the absolute error is now about 1,000
times as large since the number is 1,000 times as large!

15

% the next shou ld produce zero , but i t does not
ans∗3−1000

ans = −2.27373675443232e−13

Note that this produced about 10−13 rather than about 10−16; about 1000 times
the earlier error.

% show j u s t a few d i g i t s again
format shor t
format compact % for at l e a s t Octave

Note that the relative error is not exactly constant, it can vary a bit. To get
the maximum relative error due to storing a number in Matlab, use the bare
Matlab eps function:

% the maximum r e l a t i v e error f o r s t o r i n g normal numbers
eps

ans = 2.2204 e−16

(Actually, the above assumes that the final digits are simply ignored. If the
number is properly rounded before storing, the maximum relative error will be
twice as small.)

To get the maximum absolute error due to storing a number NUMBER in Matlab,
(or twice that if rounded), use eps(NUMBER):

% the maximum ab so l u t e error in a number s t o r ed as 1
eps (1)
% the corresponding r e l a t i v e error i s the same
eps (1) /1

ans = 2.2204 e−16
ans = 2.2204 e−16

% the maximum ab so l u t e error in a number s t o r ed as 1000
eps (1000)
% the corresponding r e l a t i v e error
eps (1000) /1000

ans = 1.1369 e−13
ans = 1.1369 e−16

16

% the maximum ab so l u t e error in a number s t o r ed as 1024
eps (1024)
% the corresponding r e l a t i v e error
eps (1024) /1024

ans = 2.2737 e−13
ans = 2.2204 e−16

% the maximum ab so l u t e error in a number s t o r ed as 1023
eps (1023)
% the corresponding r e l a t i v e error
eps (1023) /1023

ans = 1.1369 e−13
ans = 1.1113 e−16

Since Matlab does not store numbers by their normal ("decimal") digits, even
a simple decimal number like 11/10 = 1.1 still has a 10−16 relative error after
Matlab has stored it.

% the next shou ld produce 1/10
1.1−1
% so the next shou ld produce zero , but i t does not
ans∗10−1

ans = 0.10000
ans = 8.8818 e−16

However, integers can be stored exactly. (At least they can if not extremely
big, see flintmax.) And fractions like 0.5, 0.25, 0.75, 0.125, ... can be stored
exactly too.

% the next shou ld produce 1/8 , and does
(9/8)−1
% so the next shou ld produce zero , and does
ans∗8−1

ans = 0.12500
ans = 0

Note that while integers can be stored exactly, that does not mean that if a
stored number is an integer, it is exact. It may simply be a non-integer that
happened to round to an integer.

Another inaccuracy to watch for: very big values for the argument of trig func-
tions

17

% shou ld be zero :
s i n1=sin (10∗pi)
% t h i s too (16 ze ros) :
s i n2=sin (10000000000000000∗pi)

s i n1 = −1.2246e−15
s in2 = −0.37521

% shou ld be 1 :
cos1=cos (10∗pi)
% so shou ld be zero :
e r r o r 1=cos1−1
% shou ld be 1 (17 zeros) :
cos2=cos (100000000000000000∗pi)
% so shou ld be zero :
e r r o r 2=cos2−1

cos1 = 1
e r r o r 1 = 0
cos2 = −0.53004
e r r o r 2 = −1.5300

Precedence
If no parentheses are used, the following order of precedence applies to basic
computations:

PRECEDENCE:
h i ghe s t : ^
lower : ∗ /
lowest : + −

% without paren these s
2+3∗4
% since ∗ t a k e s precedence over +, t h i s i s the same as
va l1=2+(3∗4)
% and not the same as
va l2=(2+3)∗4

ans = 14
va l1 = 14
va l2 = 20

18

% without paren these s
12/2∗3
% since / and ∗ have equa l precedence , t h i s i s
va l1 =(12/2)∗3
% and not
va l2 =12/(2∗3)

ans = 18
va l1 = 18
va l2 = 2

Manipulating variables
Always keep track of what is stored in a variable. Consider the following simple
example of what can go wrong.

% s to r e 1 in x and 2 in y
x=1
y=2

x = 1
y = 2

Let’s try to swap these two values naively.

y=x ;
x=y ;

Note in the above that the trailing semi-colons prevent the new values of x and
y to be printed. We were keeping them secret. But now look at the results:

x
y

x = 1
y = 1

We did not correctly swap the values; the 2 got lost.

Let’s try again, this time without semicolons

% s to r e 1 in x and 2 in y
x=1
y=2
% swap na i v e l y

19

y=x
x=y

x = 1
y = 2
y = 1
x = 1

When x was set to y in the final command, the original value of y had already
been lost. To fix this, we must prevent the original value of y from becoming
lost by storing it in some temporary variable:

% s to r e 1 in x and 2 in y
x=1
y=2
% save the o r i g i n a l va lue o f y
ySaved=y
% now g i v e y the va lue o f x
y=x
% and g i v e x the ∗ saved ∗ va lue o f y
x=ySaved

x = 1
y = 2
ySaved = 2
y = 1
x = 2

Should we simplify pi?
Note that there is no variable pi in the workspace.

% show pi
pi
% show more d i g i t s
format long
pi
% re s e t the number o f p r in t ed d i g i t s
format shor t

ans = 3.1416
ans = 3.14159265358979

The decimals of pi are much too complicated! So the Indiana "pi bill" was
introduced to redefine pi as 3.2.

20

% s imp l i f y p i
pi=3.2

p i = 3.2000

Note that there is now a pi in the workspace.

Unfortunately, the legislature changed it mind after loud protests from mathe-
maticians. So we should undo this.

% ge t r i d o f v a r i a b l e p i
clear pi

% we have the o ld va lue back
pi

ans = 3.1416

MORE ON FUNCTIONS
Many students are confused by functions. Let’s see whether we can figure out
exactly what Matlab does when a simple function like sqr is used.

Contents of sqr.m:

function x2 = sqr (x)

x2 = x∗x ;

end

Contents of trysqr.m:

disp (’ S ta r t o f t r y sq r .m’)

sqr (3)

y=4

sqr (y)

To run:

• Observe the workspace with the saved trysqr.m open in the editor.

• Using the "Breakpoint" edit toolbar button, set a break point in trysqr.m
just before the first use of sqr.

21

• Press the "Run" button.

• Observe the workspace.

• Use "Step-into".

• Observe the workspace. (Matlab uses "Pass-by-Value")

• Use "Step"

• Observe the workspace.

• Etcetera.

ARRAYS
Arrays are tables of numbers. They are usually created using square brackets.

Some examples

% crea t e a row o f numbers
l i s t =[1 2 4 9 16]

l i s t =
1 2 4 9 16

Matlab functions can handle entire lists!

% take the square roo t o f each element in the l i s t
sqrt (l i s t)

ans =
1.0000 1 .4142 2 .0000 3 .0000 4 .0000

Another example:

% a l i s t o f s p e c i a l ang l e s in degrees
l i s t =[0 30 45 60 90]
% take the sine , cos ine , and tangent
s i n l i s t=s ind (l i s t)
c o s l i s t=cosd (l i s t)
t a n l i s t=tand (l i s t)

22

l i s t =
0 30 45 60 90

s i n l i s t =
0.00000 0.50000 0.70711 0.86603 1.00000

c o s l i s t =
1.00000 0.86603 0.70711 0.50000 0.00000

t a n l i s t =
0.00000 0.57735 1.00000 1.73205 In f

A trick: using the colon operator
You can create some simple types of arrays more easily using START:END
notation.

% the s t r a i g h t f o rwa r d way
l i s t =[1 2 3 4 5 6 7 8 9 10]

% the q u i c k e s t way to do t h i s : START:END
l i s t =1:10

l i s t =
1 2 3 4 5 6 7 8 9 10

l i s t =
1 2 3 4 5 6 7 8 9 10

More generally, you can use START:STEP:END notation.

% the s t r a i g h t f o rwa r d way
l i s t =[1 3 5 7 9]

% crea t e a l i s t wi th a s t ep (increment) o f 2
l i s t =1:2:9
l i s t =1:2:10

l i s t =
1 3 5 7 9

l i s t =
1 3 5 7 9

l i s t =
1 3 5 7 9

Negative values of STEP create decreasing lists

% a decreas ing l i s t
l i s t =10:−1:1

23

l i s t =
10 9 8 7 6 5 4 3 2 1

Let’s have an example for a different range of numbers.

% even numbers from −4 to 12
l i s t =−4:2:12

l i s t =
−4 −2 0 2 4 6 8 10 12

Elementwise basic operators
When operating on entire lists with ^, ∗, or /, you may need to precede these
operators with a point. That tells Matlab to do the operation on each list
element (for .^), or pair of list elements (for .∗ and ./), separately.

% a simple l i s t
l i s t 1 =[1 2 3]
% square the l i s t
l i s t 1 S q r=l i s t 1 .^2
% without the po in t you ge t an error
%l i s t 1 ^2 % don ’ t , produces an error

l i s t 1 =
1 2 3

l i s t 1 S q r =
1 4 9

Let’s also try multiplying and dividing lists

% the f i r s t l i s t
l i s t 1 =[1 2 3]
% the second l i s t ∗ o f the same s i z e ∗ (3 e lements)
l i s t 2 =[2 4 6]
% mu l t i p l y the l i s t s
product=l i s t 1 .∗ l i s t 2
% d i v i d e the l i s t s
r a t i o=l i s t 1 . / l i s t 2

l i s t 1 =
1 2 3

l i s t 2 =
2 4 6

product =
2 8 18

24

r a t i o =
0.50000 0.50000 0.50000

Fixing our sqr function
Our earlier function sqr does not work on lists since the . is missing before the
∗:

Contents of sqr.m:

function x2 = sqr (x)

x2 = x∗x ;

end

This is fixed in function sqrFixed:

Contents of sqrFixed.m:

function x2 = sqrFixed (x)

x2 = x .∗ x ;

end

% try a s imple l i s t
l i s t =[1 2 4 9 16]

% the Matlab s q r t f unc t i on works f i n e
goodSqrt=sqrt (l i s t)

% our func t i on sqr c r ea t e s an error
%badSqr=sqr (l i s t) % don ’ t , produces an error

% our f i x e d func t i on sqr works OK
goodSqr=sqrFixed (l i s t)

l i s t =
1 2 4 9 16

goodSqrt =
1.0000 1 .4142 2 .0000 3 .0000 4 .0000

goodSqr =
1 4 16 81 256

25

	LESSON SUMMARY
	Key areas of the online book
	BASIC CONCEPTS
	Basic computations
	Comments
	Exponential notation
	Basic functions
	Variables
	Computing with variables
	Suppressing printed results
	CREATING YOUR OWN FUNCTIONS
	Example function: sqr
	An improved function: Square
	HOW TO DO HOMEWORKS
	MORE ON BASIC CONCEPTS
	Bad numbers
	Overflow and underflow
	Some examples of inaccuracy
	Precedence
	Manipulating variables
	Should we simplify pi?
	MORE ON FUNCTIONS
	ARRAYS
	Some examples
	A trick: using the colon operator
	Elementwise basic operators
	Fixing our sqr function

