
3 INTERPOLATION
Contents

LESSON SUMMARY 1

Key areas of the online book 2

INTERPOLATION. 3

The example problem 3

What we do not know (or pretend to) 3

Plot to understand the problem better 4

Doing the interpolation 4

Plot the interpolated values for all times 6

Extrapolation 6

End conditions for spline interpolation 7

NOISY DATA 8

SAVING AND RELOADING 11

CURVE FITTING 11

Finding the constants: "least squares" 12

Fitting a line 13

Fitting a parabola 14

Fitting a quartic 17

Skip: Fitting an exponential 18

INTEGRALS 22

The exact integral using calculus 22

Approximate integration of the exact temperature 22

Approximate integrals using interpolation or fitting 23

1



DERIVATIVES 24

The exact derivative using calculus 25

Differentiation of the fitted polynomials 25

Skip: Other ways to do differentiation 26

% make sure the workspace i s c l e a r
i f ~exist ( ’___code___ ’ , ’ var ’ ) ; clear ; end
% reduce need l e s s wh i te space
format compact
% reduce i r r i t a t i o n s ( pausing and b u f f e r i n g )
more o f f
% s t a r t a d iary ( in the a c t ua l l e c t u r e )
%diary l ec tureN . t x t

% Te l l the s t uden t s to save t h e i r work space b e f o r e
% l e a v i n g : save l ec tureN

LESSON SUMMARY
• The big question in this lesson is the following: Given a set of measured
values (the data) how do you find the values of an unknown you want at
conditions that are not quite the same as any that were measured? Or
equivalently, given a table of values (the data), how do you find a value
you want at conditions that are not quite the same as the ones given in
the table?

• The most straightforward answer is "interpolation". You probably already
know how to do "linear interpolation" with a calculator yourself. Mat-
lab can do the same thing for you using the interp1 function. Linear
interpolation requires at least two data points around the desired value.

• Matlab can also do "spline interpolation" using the spline function. As-
suming the data points are accurate, reasonably closely spaced, and there
are enough of them, spline interpolation can be much more accurate than
linear interpolation.

• If the available data do have significant errors (as often happens for ex-
perimental data), linear and spline interpolation may not work so well.
In that case it may be a better idea to approximate ("fit") the data by a

2



curve of a given shape, say a straight line, or a quadratic, or whatever.
Normally, the selected curve does not pass exactly through all the data
points. But that is OK, as these data points have errors. If there are
enough data points, and the errors in them are random, the fitted curve
may be a lot more accurate than linear or spline interpolation.

• The simplest is to fit a polynomial (a straight line, or a quadratic, or a
cubic, or a quartic, or a quintic, etcetera) to the data. Matlab function
polyfit can do that for you. You simply give polyfit the data points
and the degree of the desired polynomial.

• Function polyfit gives you the coefficients of the fitted polynomial. To
evaluate the polynomial at the desired position(s), you must use a sec-
ond function, polyval. You simply give polyval the coefficients of the
polynomial and the desired position(s).

• Often, it may be a better idea to fit a curve different from a polynomial
to the data. In the example used in this lesson, fitting an exponential
would be a better choice. However, we will skip the parts on how to fit
an exponential. If you need it in future, you will have to read that section
of this lesson on your own. Later lesson 8 will cover how to fit a power
relationship to data.

• Sometimes you may need to integrate or differentiate the measured or
tabulated quantity. To integrate numerically, use the quad function. Or
in recent versions of Matlab (but not Octave) you can use the integral
function. Both quad and integral need a function to integrate, not mea-
sured or tabulated data. You can create the needed function by pushing
spline or polyval into a suitable anonymous function.

• While integration is usually not a big deal, differentiation is a very different
story. It is typically hard to do it well. If you use a polynomial fit, polyder
will give you the coefficients of the derivative polynomial. You can then
evaluate that using polyval.

• In principle, you can also differentiate the interpolated spline. However,
we will skip that. If you need it in future, you will have to read that
section of this lesson on your own.

Key areas of the online book
Before the first lecture, in the online book do:

• 4.2 Row arrays: complete the section.

• 4.3 Constructing row arrays: complete the section.

• 18.1 Interpolation: skip the stuff beyond CA 18.1.1.

3



Also make sure you have read the "Read: ..." section on function handles of
lesson 2.

Before the second lecture, in the online book do:

• 4.4 Multi-element row array indexing ...: the PAs.

• 18.2 Curve fitting - Least squares regression: skip the stuff beyond CA
18.2.1. In CA 18.2.1, note that only data points for speeds between 6 and
12 should be used, so you need a subset of the available data points. See
section 4.4. If the math of this poorly written section leaves you clueless,
see whether a peek at the lesson below helps.

While the online book has very mathematical sections 18.3 on integration and
18.4 on differentiation, I doubt they will be helpful to you. Too much math that
is not useful for real-life applications.

INTERPOLATION.
Probably, you have already done interpolation before in other courses. The next
few sections will explain how you can do it much easier and better with Matlab.

The example problem
As an example, initially we will use the following table of "measured" data to
interpolate:

time : 0 0 .5 1 1 .5 2 minutes
Temperature : 14 .60 8 .42 4 .86 2 .80 1 .62 Centigrade

We will define Matlab arrays timeMeasured and TempMeasured as the above
five measured times and temperatures respectively.

OK, these data are not really measured; I made them up. But they are like data
you might actually encounter in engineering problems. For example, if you have
a hot solid, like a hot metal bar, and you let it cool back down to the ambient
temperature, then in the later stages of the cool down process, the temperature
in the middle of the bar, relative to ambient, may be given by a relation like the
one above. In any case, all you need to know to do interpolation is the numbers
to interpolate. Whatever these numbers mean physically is irrelevant.
% de f i n e timeMeasured and TempMeasured as g iven
timeMeasured=[ 0 0 .5 1 1 .5 2 ]
TempMeasured=[14.60 8 .42 4 .86 2 .80 1 . 6 2 ]

timeMeasured =
0.00000 0.50000 1.00000 1.50000 2.00000

TempMeasured =
14.6000 8 .4200 4 .8600 2 .8000 1 .6200

4



What we do not know (or pretend to)
Supposedly unknown to us, the exact temperature is given by

Texact = 14.6 exp(−1.1t)

We will pretend that we only know the measured temperatures. So we have to
interpolate using only those measured data. But afterwards we will cheat and
evaluate the errors using the exact function above. Just to see how well we are
really doing interpolating.

To make that easier, we can create a function TempExactFun to evaluate the
exact temperature that we pretend not to know. But since the function is very
simple and not intended for more general use, it is not worth it to create a
function file for it. Instead we can define TempExactFun as a "handle" to an
anonymous function. See lesson 2 for more.

% make TempExactFun a handle to an anonymous func t i on
TempExactFun = @( t ) 14 .6∗exp(−1.1∗ t )

TempExactFun =
@( t ) 14 .6 ∗ exp (−1.1 ∗ t )

Plot to understand the problem better
Let’s plot the measured five values as data points in a graph. In the same
graph, let’s also plot the exact solution that we pretend not to know, as a curve.
Remember from lesson 2 that to plot a curve, you need to create a set of plot
points. These are different from the measured points and they are only used for
plotting.

% genera te 301 p l o t time va l u e s between 0 and 2
t imePlot=linspace (0 , 2 , 301 ) ;
% genera te corresponding exac t temperatures
TempExactPlot=TempExactFun( t imePlot ) ;

% crea t e the p lo t , us ing b l a c k c i r c l e s f o r the measured
% po in t s and a b l a c k broken l i n e f o r the exac t s o l u t i o n
% tha t supposed ly we do not know
plot ( timeMeasured , TempMeasured , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ )
legend ( ’Measured ’ , ’ Exact ’ )
t i t l e ( ’Measured and Exact Temperatures ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

5



Doing the interpolation
We would now like to be able to evaluate the temperature at times in between
the measured five times. This is called "interpolation".

For example, let’s assume that we want to know the temperature at time 0.7,
which is in between measured times 0.5 and 1. Using interpolation can give us
a value for the temperature at time 0.7. Ideally speaking, this value would be
the same as the exact temperature that we pretend we do not know.

Matlab provides interp1 or spline to interpolate.

% l e t ’ s e va l ua t e T at t = 0.7 us ing the two methods
t imeDes i red=0.7
TempLinear=interp1 ( timeMeasured , TempMeasured , t imeDes i red )
TempSpline=spline ( timeMeasured , TempMeasured , t imeDes i red )

t imeDes i red = 0.70000
TempLinear = 6.9960
TempSpline = 6.7513

% two reasonab l e va lues , but which one i s b e s t ???
TempExact=TempExactFun( t imeDes i red )

6



e r rL inea r=abs (TempLinear−TempExact )
e r r Sp l i n e=abs ( TempSpline−TempExact )

TempExact = 6.7600
e r rL inea r = 0.23601
e r r Sp l i n e = 0.0086708

For a nice smooth curve, spline interpolation is much more accurate than linear
interpolation!

Plot the interpolated values for all times

% f ind the i n t e r p o l a t e d va l u e s at the p l o t t imes
TempLinearPlot = . . .

interp1 ( timeMeasured , TempMeasured , t imePlot ) ;
TempSplinePlot = . . .

spline ( timeMeasured , TempMeasured , t imePlot ) ;

% compare the i n t e r p o l a t i o n s in a p l o t
plot ( timeMeasured , TempMeasured , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ , . . .
t imePlot , TempLinearPlot , ’b ’ , . . .
t imePlot , TempSplinePlot , ’ r ’ )

legend ( ’Measured ’ , ’ Exact ’ , ’ L inear ’ , ’ Sp l ine ’ )
t i t l e ( ’ L inear and Sp l ine I n t e r p o l a t i o n ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

The spline is right on top of the exact curve in the plot.

% compare the maximum erro r s
errLinearMax=max(abs ( TempLinearPlot−TempExactPlot ) )
errSpl ineMax=max(abs ( TempSplinePlot−TempExactPlot ) )

errLinearMax = 0.42119
errSpl ineMax = 0.017674

The spline is much more accurate.

Extrapolation
Suppose that the time at which we want to know the temperature is t = 3. This
time is not inside the measured range from 0 to 2. If that happens, we talk
about extrapolation instead of interpolation.

7



WARNING: extrapolation is much trickier than interpolation.

For that reason, interp1 refuses to do it unless you specify an additional "ex-
trap" parameter. Function spline will do it as is.

% eva l ua t e the va l u e s at t = 3
t imeDes i red=3
TempLinear=interp1 ( timeMeasured , TempMeasured , . . .

t imeDesired , ’ l i n e a r ’ , ’ extrap ’ )
TempSpline=spline ( timeMeasured , TempMeasured , t imeDes i red )
% compare wi th exac t
TempExact=TempExactFun( t imeDes i red )

t imeDes i red = 3
TempLinear = −0.74000
TempSpline = −0.080000
TempExact = 0.53849

Extrapolation is usually bad news!

Both the linear and spline extrapolated values are useless.

8



End conditions for spline interpolation
Often you would want your spline to satisfy end conditions. For example, you
might want it to have given derivatives at the ends. Or to be periodic. Given
derivatives at the ends can be achieved using spline if you add the desired two
values to the function values list. For more complicated cases, consider function
csape (see also the final section on spline differentiation).

NOISY DATA
What if the measured data have errors? Measurements are not exact, especially
temperature ones. After correcting for systematic effects, you are likely to have
random errors, "noise", of either sign left. To get an idea how big these errors
are, you typically do more measurements. The true values are then probably
somewhere in the middle of the measured values.

To study dealing with noisy data, we will now assume that there are 40, rather
than 5 measurements available. However, we will also assume that these data
have random errors of a typical magnitude of 0.5 degrees Centigrade.

More precisely, we will assume that the "root mean square" (RMS) error is 0.5
degrees. The RMS error is what you get if you first compute the average square
error and then take the square root of that.

To avoid actually having to do 40 temperature measurements, we will cheat
and just take the 40 temperatures from the exact solution we are not supposed
to know. Then we add to that "random" errors produced with help from the
Matlab function randn.

% average ( " Root Mean Square " ) random error
errMeasuredRMS=0.5

% crea t e the 40 "measured " t imes ; N s tands f o r " noisy "
timeMeasuredN=linspace (0 , 2 , 40 ) ;

% i n i t i a l i z e the random number genera tor s
%rng ( ’ d e f au l t ’ ) % fo r Matlab
randn( ’ seed ’ , 4 ) ; % for Octave ; use 4 or 9 , avoid 0 , 2 , 6

% crea t e the "measured " data wi th random erro r s
TempMeasuredN=TempExactFun( timeMeasuredN ) . . .

+errMeasuredRMS∗randn( s ize ( timeMeasuredN ) )

errMeasuredRMS = 0.50000
TempMeasuredN =
Columns 1 through 5 :

14 .7433 13.7125 13.3868 12.5351 11.9426

9



Columns 6 through 10 :
10 .6263 9 .9010 9 .7527 8 .7326 9 .5423

Columns 11 through 15 :
8 .6245 7 .7905 8 .2066 7 .0018 6 .0363

Columns 16 through 20 :
4 .8542 6 .3331 5 .4712 6 .0007 4 .6928

Columns 21 through 25 :
4 .4802 4 .5192 4 .5513 3 .7844 3 .2279

Columns 26 through 30 :
3 .1180 3 .5670 4 .6049 2 .6473 4 .3204

Columns 31 through 35 :
1 .7274 1 .8586 2 .6555 2 .1452 1 .9262

Columns 36 through 40 :
1 .4569 2 .3194 1 .4742 1 .0307 2 .2034

% in t e r p o l a t e again at t = 0.7
t imeDes i red=0.7
TempLinearN= . . .

interp1 ( timeMeasuredN , TempMeasuredN , t imeDes i red )
TempSplineN = . . .

spline ( timeMeasuredN , TempMeasuredN , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )
errLinearN=abs (TempLinearN−TempExact )
er rSp l ineN=abs (TempSplineN−TempExact )

t imeDes i red = 0.70000
TempLinearN = 6.3742
TempSplineN = 6.4255
TempExact = 6.7600
errLinearN = 0.38581
errSp l ineN = 0.33448

There is no longer a real difference in error.

% compare the i n t e r p o l a t i o n s again in a p l o t
TempLinearNPlot = . . .

interp1 ( timeMeasuredN , TempMeasuredN , t imePlot ) ;
TempSplineNPlot = . . .

spline ( timeMeasuredN , TempMeasuredN , t imePlot ) ;
plot ( timeMeasuredN , TempMeasuredN , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ , . . .
t imePlot , TempLinearNPlot , ’b ’ , . . .
t imePlot , TempSplineNPlot , ’ r ’ )

legend ( ’Measured ’ , ’ Exact ’ , ’ L inear ’ , ’ Sp l ine ’ )
t i t l e ( ’ L inear and Sp l ine In t e rpo l a t i on , Noisy Data ’ )
xlabel ( ’ t ( minutes ) ’ )

10



ylabel ( ’T ( Centigrade ) ’ )

The spline looks crazier in the plot than linear interpolation.

% compare the maximum erro r s
errLinearNMax=max(abs ( TempLinearNPlot−TempExactPlot ) )
errSplineNMax=max(abs ( TempSplineNPlot−TempExactPlot ) )

errLinearNMax = 1.4583
errSplineNMax = 1.4764

The spline is now worse than linear.

% try e x t r a p o l a t i o n again
t imeDes i red=3
TempLinearN=interp1 ( timeMeasuredN , TempMeasuredN , . . .

t imeDesired , ’ l i n e a r ’ , ’ extrap ’ )
TempSplineN = . . .

spline ( timeMeasuredN , TempMeasuredN , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )

11



t imeDes i red = 3
TempLinearN = 25.072
TempSplineN = 1066.2
TempExact = 0.53849

That is horrible!! Especially the spline!

SAVING AND RELOADING
(Note: all commands in this section have been disabled as they would interfere
with publishing this lesson.)
You can save all work space variables in a file lecture4.mat using the

save l e c t u r e 4

command. Then next time, you can resume where you left off using the

load l e c t u r e 4

command.

% see what v a r i a b l e s are de f ined
%who
% save them a l l in f i l e l e c t u r e 4 .mat
%save l e c t u r e 4

% t e s t i f i t worked OK

% k i l l a l l v a r i a b l e s in the work space
%c l e a r
% check t ha t they are gone (no response )
%who
% re load the v a r i a b l e s from f i l e l e c t u r e 4 .mat
%load l e c t u r e 4
% check t ha t they are back .
%who

Some things you may want to remember for future use:

1. To save only a few variables, you could use the save FILENAME VAR1 VAR2
... command.

1. To read in data from an Excel spreadsheet, use the xlsread command.
To write data to an Excel sheet, use writetable or xlswrite. Use "cell
arrays" if not all data is numerical.

12



CURVE FITTING
Functions interp1 and spline reproduce the given measured data exactly. This
was fine when the measured data were exact. However, the noisy measured
data we are looking at now have errors. Functions interp1 and spline will
reproduce these errors exactly too. And that is bad news because of course we
do not want the errors.

If we want something more accurate than interp1 and spline, we must drop
the assumption that our interpolation reproduces all the inaccurate data exactly.
The more accurate interpolation we want should be close to the measured data,
but it should not reproduce all their errors. So it cannot go exactly through
each measured point.

What we do in "curve fitting" is first choose a relatively simple function type
(the curve) to represent the data. For example, for the data we are using in this
lesson, the exact temperature curve is given by:

Texact = 14.6 exp(−1.1t)

To be sure, we are assuming that we do not know that. But without knowing
the exact solution, I would still be able to guess that the desired temperature
is of the form

T = A exp(Bt)

where A and B are unknown constants. And so should you, after you have
finished your Heat Transfer class. For now, you will just have to take it from
me. In any case, you must agree that this curve cannot swing wildly back and
forward from point to point like linear and spline interpolation do.

To be sure, there is no way to guess the values of the constants A and B in the
expression. But we can choose the values of A and B that give the best approx-
imation to the data we do know. In other words, we can "fit" our exponential
curve to the given data by selecting the constants A and B appropriately. This
is sure to produce better results than interp1 and spline.

Finding the constants: "least squares"
Of course, the devil is in the details. In particular, how exactly are you going to
find the constants A and B that make the exponential curve fit the data best?

What does "fit the data best" mean in the first place? Obviously you want the
differences between the fitted curve and the available data to be as small as
possible, in some sense. One possible way to do that is to select the curve for
which the maximum absolute difference among all the measured data is as small
as possible. However, the usual approach is to instead make the average square
difference as small as possible. This is called the "Method of Least Squares".
There are two reasons why this method is popular:

13



1. Theoretically, in simple cases where the errors are truly random with
everywhere the same typical magnitude, it gives the best possible answer.

2. Practically, the mathematics of making the average square difference as
small as possible is a lot simpler than other possibilities like making the
maximum absolute difference as small as possible.

We do not really need to worry about the latter anyway, as Matlab does that
work for us.

But even with Matlab helping us, finding the best constants A and B in the
exponential curve described so far is a bit tricky. So we will try to fit some
simpler curves first.

Fitting a line
To keep things as simple as possible, we will start with fitting the simplest
possible curve, a straight line, to our data. The equation of a straight line is:

T = C1t + C2

where C1 and C2 are constants.

If we settle for that as the interpolating curve, Matlab can find the "best" (in
the least square sense) values for the constants for us. All we need to do is use
a function called polyfit (for "fit a polynomial") on the measured data. (Note
that the straight line relationship above is a polynomial of degree 1, since the
highest power of t is 1.)

And having found the constants C1 and C2 of the polynomial with polyfit, we
can use another Matlab function, polyval (for "find values of a polynomial"),
to evaluate the polynomial at whatever times we want.

Note some more important terminology that you will frequently encounter in
curve fitting. In particular, the expression for T above is linear in the constants
C1 and C2 to find. That is unlike for the exponential fit, where the constant B
was inside an exponential, and that was then multiplied by A to boot. If the
used curve is linear in terms of the unknown constants, like for polynomials,
numerical analysts speak of "linear regression". Like "method of least squares",
"linear regression" is another term you should try to remember.

Anyway, let’s do the line fit:

% degree o f a l i n e
deg=1;
% f ind the cons tan t s C1 and C2 o f the f i t t e d l i n e
CoefLinFit=polyf it ( timeMeasuredN , TempMeasuredN , deg )

14



CoefLinFit =
−6.1106 12.0482

% in t e r p o l a t e again at t = 0.7
t imeDes i red=0.7
TempLinFit=polyval ( CoefLinFit , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )
e r rL inF i t=abs (TempLinFit−TempExact )

t imeDes i red = 0.70000
TempLinFit = 7.7708
TempExact = 6.7600
e r rL inF i t = 1.0108

OOPS! Worse than interpolation!

% l e t ’ s see the l i n e a r f i t in a p l o t
TempLinFitPlot=polyval ( CoefLinFit , t imePlot ) ;
plot ( timeMeasuredN , TempMeasuredN , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ , . . .
t imePlot , TempLinFitPlot , ’ y ’ )

legend ( ’Measured ’ , ’ Exact ’ , ’ L inear f i t ’ )
t i t l e ( ’ Least−Square Approximation by a Line ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

According to the plot, the line does the best it can. Clearly no straight line
could approximate the exact curve in this example well.

% pr in t the maximum error
errLinFitMax=max(abs ( TempLinFitPlot−TempExactPlot ) )

errLinFitMax = 2.5518

Worse than interpolation, but what do you expect?

% try e x t r a p o l a t i o n again
t imeDes i red=3
TempLinFit=polyval ( CoefLinFit , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )

t imeDes i red = 3
TempLinFit = −6.2836
TempExact = 0.53849

At least that is less crazy than interpolation!

15



Fitting a parabola
We can improve things quite a lot by approximating with a quadratic polyno-
mial, i.e. a parabola,

T = C1t2 + C2t + C3

instead of a straight line.

% degree o f a quadra t i c ( parabo la )
deg=2;
% f ind cons tan t s C1 , C2 , and C3
CoefParFit=polyf it ( timeMeasuredN , TempMeasuredN , deg )

CoefParFit =
3.2292 −12.5690 14.1458

% in t e r p o l a t e again at t = 0.7
t imeDes i red=0.7
TempParFit=polyval ( CoefParFit , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )
e r rParF i t=abs (TempParFit−TempExact )

16



t imeDes i red = 0.70000
TempParFit = 6.9298
TempExact = 6.7600
er rParF i t = 0.16984

That is much better than the interpolations and the linear fit.

% l e t ’ s see the quadra t i c f i t in a p l o t
TempParFitPlot=polyval ( CoefParFit , t imePlot ) ;
plot ( timeMeasuredN , TempMeasuredN , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ , . . .
t imePlot , TempParFitPlot , ’ c ’ )

legend ( ’Measured ’ , ’ Exact ’ , ’ Quadratic f i t ’ )
t i t l e ( ’ Least−Square Approximation by a Parabola ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

The plot is a lot better than the previous ones.

% pr in t the maximum error
errParFitMax=max(abs ( TempParFitPlot−TempExactPlot ) )

17



errParFitMax = 0.45415

About 3 times better than interpolation.

% try e x t r a p o l a t i o n again
t imeDes i red=3
TempParFit=polyval ( CoefParFit , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )

t imeDes i red = 3
TempParFit = 5.5016
TempExact = 0.53849

Fitting a quartic
You might think the higher the degree of the polynomial we fit, the better. After
all, the higher the degree the more terms in the Taylor series of the exponential
can be reproduced. But actually, polynomials of too high order do not work.
One big reason is that we are not getting the coefficients of the polynomial
from writing down an analytical expression, but from data that have errors in
them. If the degree of the polynomial becomes too high, it starts flexing to
accommodate the errors.

Think of it. A polynomial of degree 39 has 40 constants. That is enough to
make the polynomial go through all 40 inaccurate data points just like the spline
and linear interpolation. (And actually, this polynomial would be far, far, far
worse than the spline or linear interpolation. Its error would be many orders of
magnitude larger than one. In fact, that would even be true if you had no errors
in the used data at all. High order interpolating polynomials are bad news.)

RULE OF THUMB: Do not fit using more constants than about the square root
of the number of data points. Use even less, if you can get away with it.

Since we have 40 data points and
√

40 is about 6, we should not fit a polynomial
of a degree greater than 5. Actually, since the exact solution is known in this
case, you can test what degree produces the smallest error. It turns out that
degree 4 and 5 have the same maximum error, but degree 4 has a much better
derivative. That illustrates the above point that you want to be as conservative
as possible in the number of constants. (On the other hand, the cubic also has
about the same error, but a poor derivative.)

So let’s fit a polynomial of degree 4, a quartic:

T = C1t4 + C2t3 + C3t2 + C4t + C5

% degree o f a qua r t i c
deg=4;

18



% f ind the 5 cons tan t s
CoefQuartFit=polyf it ( timeMeasuredN , TempMeasuredN , deg )

CoefQuartFit =
0.68287 −4.11584 10.86547 −17.35302 14.79091

% in t e r p o l a t e again at t = 0.7
t imeDes i red=0.7
TempQuartFit=polyval ( CoefQuartFit , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )
errQuartFi t=abs (TempQuartFit−TempExact )

t imeDes i red = 0.70000
TempQuartFit = 6.7201
TempExact = 6.7600
errQuartFi t = 0.039892

That is clearly very good.

% l e t ’ s see the qua r t i c f i t in a p l o t
TempQuartFitPlot=polyval ( CoefQuartFit , t imePlot ) ;
plot ( timeMeasuredN , TempMeasuredN , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ , . . .
t imePlot , TempQuartFitPlot , ’m’ )

legend ( ’Measured ’ , ’ Exact ’ , ’ Quart ic f i t ’ )
t i t l e ( ’ Least−Square Approximation with a Quart ic ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

% pr in t the maximum error
errQuartFitMax=max(abs ( TempQuartFitPlot−TempExactPlot ) )

errQuartFitMax = 0.19091
About 8 times better than interpolation!

% try e x t r a p o l a t i o n again
t imeDes i red=3
TempQuartFit=polyval ( CoefQuartFit , t imeDes i red )
TempExact=TempExactFun( t imeDes i red )

t imeDes i red = 3
TempQuartFit = 4.7057
TempExact = 0.53849

Well, it is a lot less bad than interpolation.

19



Skip: Fitting an exponential
According to the above, fitting a polynomial of at least quadratic degree worked
reasonably well. But as noted earlier, it should be a much better idea to fit an
exponential of the form

T = A exp(Bt)

to our five data points. The reason is that the exact temperature is of the form
above. You only need to get A (14.6) and B (−1.1) right, and you will get the
right temperature, even in extrapolation.

The reason we did so far not try this is because the above expression is not a
polynomial in A and B. Then Matlab’s polyfit function does not work.

However, we can apply a trick. If we take a natural logarithm of the expression
above, we get:

ln(T ) = ln(A) + Bt

Defining new constants as

C1 = B C2 = ln(A)

this takes the form

ln(T ) = C1t + C2

20



That is just fitting a straight line, but for ln(T ) instead of T ! The latter is not
a problem; when we have T , we can find ln(T ) by just taking a logarithm. And
when we have ln(T ), we can find T by just taking an exponential. So we can
easily go back and forward between the two.

Below we try this out. Note that Matlab uses log for ln (and log10 for log).

% crea t e the measured ln (T) va l u e s
lnTempMeasuredN=log (TempMeasuredN) ;

% a l i n e has degree one
deg=1;
% f ind C1 and C2
CoefExpFit=polyf it ( timeMeasuredN , lnTempMeasuredN , deg )
% the va l u e s o f A and B tha t they correspond to
A=exp( CoefExpFit (2 ) )
B=CoefExpFit (1 )

CoefExpFit =
−1.1490 2 .7033

A = 14.929
B = −1.1490

Not exactly the same as A = 14.6 and B = −1.1, but not too bad.

% in t e r p o l a t e again at t = 0.7
t imeDes i red=0.7
% note the exp to conver t ln (T) to T
TempExpFit=exp(polyval ( CoefExpFit , t imeDes i red ) )
TempExact=TempExactFun( t imeDes i red )
errExpFit=abs (TempExpFit−TempExact )

t imeDes i red = 0.70000
TempExpFit = 6.6796
TempExact = 6.7600
errExpFit = 0.080412

That is very good.

% l e t ’ s see the e xponen t i a l f i t in a p l o t
TempExpFitPlot=exp(polyval ( CoefExpFit , t imePlot ) ) ;
plot ( timeMeasuredN , TempMeasuredN , ’ ok ’ , . . .

t imePlot , TempExactPlot , ’−−k ’ , . . .
t imePlot , TempExpFitPlot , ’ g ’ , . . .
t imePlot , TempQuartFitPlot , ’m’ )

legend ( . . .
’Measured ’ , ’ Exact ’ , ’ Exponent ia l f i t ’ , ’ Quart ic f i t ’ )

21



t i t l e ( ’ Exponent ia l l e a s t−square approximation ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’T ( Centigrade ) ’ )

The plot is quite good too. In some ways it is better than the quartic.

% pr in t the maximum error
errExpFitMax=max(abs (TempExpFitPlot−TempExactPlot ) )
% compare wi th the one o f the qua r t i c
errQuartFitMax

errExpFitMax = 0.32932
errQuartFitMax = 0.19091

Good but the quartic had a smaller error.

% try e x t r a p o l a t i o n again
t imeDes i red=3
TempExpFit=exp(polyval ( CoefExpFit , t imeDes i red ) )
TempExact=TempExactFun( t imeDes i red )

22



t imeDes i red = 3
TempExpFit = 0.47542
TempExact = 0.53849

This is much better than anything else.

INTEGRALS
It is easy to do determined integrals, with given limits, using Matlab. Just use
the quad function. (In recent versions of Matlab, from R2012a, you can instead
use the integral function.)

As an example, we will integrate our temperature between times t = 0 and 2,
and call the result q:

q =
∫ 2

t=0
T dt

If you want some physical meaning for this integral, it is an approximate measure
of how much net heat the bar radiates away per unit surface area.

The exact integral using calculus
Finding the exact integral has nothing to do with Matlab. It is pure calculus.
But you are supposed to know calculus, so you should be able to do it. The
exact temperature was

T = 14.6e−1.1t

and the antiderivative of that is just the same thing divided by −1.1. And
calculus says to subtract the antiderivatives at the limits of integration. That
is done below.

% the exac t i n t e g r a l accord ing to c a l c u l u s
qExact=TempExactFun (2) /(−1.1)−TempExactFun (0) /(−1.1)
fpr intf ( ’ Exact i n t e g r a l o f the exact temperature : ’ )
fpr intf ( ’%.3 f \n ’ , qExact )

qExact = 11.802
Exact i n t e g r a l o f the exact temperature : 11 .802

Approximate integration of the exact temperature
If we integrate the exact temperature numerically using quad or integral,
instead of using Calculus, there is going to be some error. Numerical integration
is normally not exact. But it is typically very accurate for smooth functions.

23



Let’s try it out for our example. It is easy to use quad or integral; you just pro-
vide it the function to integrate, TempExactFun, and the limits of integration,
0 and 2.

Note: since TempExactFun is not the name of a function, but a handle to an
anonymous function, we should not put an @ before it. If you do, Matlab will
refuse.

% in t e g r a t e TempExactFun numer ica l l y from 0 to 2
qNumExact=quad(TempExactFun , 0 , 2 ) ;
% pr in t out the answer and the error in percent nea t l y
fpr intf ( ’ Numerical i n t e g r a t i o n : %.3 f Error : %.1E%%\n ’ , . . .

qNumExact , abs (qNumExact−qExact ) /qExact ∗100)

Numerical i n t e g r a t i o n : 11 .802 Error : 0 . 0E+00%

As this shows, numerical integration of a sufficiently smooth function can be
very accurate. The error is smaller than the round-off.

Approximate integrals using interpolation or fitting
Remember that the above results cheat. They use the exact temperature that
we are not supposed to know. We are only supposed to know the data points
and should use those.

Note also that we cannot use the data points directly into quad or integral
because they are just a bunch of numbers, not functions.

However, interp1, spline, and polyval are functions, and we can use those.

Unfortunately, quad and integral, like fzero in lesson 2, can only use a func-
tion of a single input argument. And interp1, spline, and polyval are not
just functions of the "desired" time value, but also of other input arguments (the
data points or the polynomial constants). So, just like for fzero in lesson 2, we
will again need to create anonymous functions with single input arguments to
give to quad or integral.

% try numerical i n t e g r a t i o n o f the l i n e a r i n t e r p o l a t i o n
qNumLinear = . . .

quad(@( t ) interp1 ( timeMeasured , TempMeasured , t ) , 0 , 2 ) ;
% pr in t out the r e s u l t and error
fpr intf ( ’ L inear i n t e r p o l a t i o n : %.3 f Error : %.3 f%%\n ’ , . . .

qNumLinear , abs ( qNumLinear−qExact ) /qExact ∗100)

% try numerical i n t e g r a t i o n o f the s p l i n e i n t e r p o l a t i o n
qNumSpline = . . .

quad(@( t ) spline ( timeMeasured , TempMeasured , t ) , 0 , 2 ) ;

24



% pr in t out the r e s u l t and error
fpr intf ( ’ Sp l in e i n t e r p o l a t i o n : %.3 f Error : %.3 f%%\n ’ , . . .

qNumSpline , abs ( qNumSpline−qExact ) /qExact ∗100)

% try numerical i n t e g r a t i o n o f the l inearN i n t e r p o l a t i o n
qNumLinearN= . . .

quad(@( t ) interp1 ( timeMeasuredN , TempMeasuredN , t ) , 0 , 2 ) ;
% pr in t out the r e s u l t and error
fpr intf ( ’ LinearN i n t e r p o l a t i o n : %.3 f Error : %.3 f%%\n ’ , . . .

qNumLinearN , abs (qNumLinearN−qExact ) /qExact ∗100)

% try numerical i n t e g r a t i o n o f the sp l ineN i n t e r p o l a t i o n
qNumSplineN= . . .

quad(@( t ) spline ( timeMeasuredN , TempMeasuredN , t ) , 0 , 2 ) ;
% pr in t out the r e s u l t and error
fpr intf ( ’ SplineN i n t e r p o l a t i o n : %.3 f Error : %.3 f%%\n ’ , . . .

qNumSplineN , abs ( qNumSplineN−qExact ) /qExact ∗100)

% try numerical i n t e g r a t i o n o f the pa ra bo l i c f i t
qNumParFit=quad(@( t ) polyval ( CoefParFit , t ) , 0 , 2 ) ;
% pr in t out the r e s u l t and error
fpr intf ( ’ Parabo l i c F i t : %.3 f Error : %.3 f%%\n ’ , . . .

qNumParFit , abs ( qNumParFit−qExact ) /qExact ∗100)

% try numerical i n t e g r a t i o n o f the qua r t i c f i t
qNumQuartFit=quad(@( t ) polyval ( CoefQuartFit , t ) , 0 , 2 ) ;
% pr in t out the r e s u l t and error
fpr intf ( ’ Quart ic Fi t : %.3 f Error : %.3 f%%\n ’ , . . .

qNumQuartFit , abs ( qNumQuartFit−qExact ) /qExact ∗100)

Linear i n t e r p o l a t i o n : 12 .095 Error : 2.482%
Sp l ine i n t e r p o l a t i o n : 11 .803 Error : 0.011%
LinearN i n t e r p o l a t i o n : 11 .745 Error : 0.482%
SplineN i n t e r p o l a t i o n : 11 .727 Error : 0.633%
Parabo l i c F i t : 11 .765 Error : 0.315%
Quart ic Fi t : 11 .757 Error : 0.379%

As all these examples demonstrate, numerical integration is usually not much
of a problem.

DERIVATIVES
Sometimes we are interested in the derivative of the quantity in question.

For example, in the present case the derivative is a measure of how much heat
leaks out of the bar per unit volume and time.

25



Unlike integration, finding derivatives numerically is a tricky business.

The exact derivative using calculus
Finding the exact derivative has nothing to do with Matlab. It is pure calculus.
But you are supposed to know calculus, so you should be able to do it. The
exact temperature was

T = 14.6e−1.1t

and the derivative of that is just the same thing multiplied by −1.1.

Since we will want to plot the found derivative against time, we need to evaluate
this exact result at the plot points we use.

% de r i v a t i v e o f TempExact found a n a l y t i c a l l y
derTempExactPlot=−1.1∗TempExactPlot ;

Differentiation of the fitted polynomials
For the linear, quadratic, and quartic fits, we can use the fact that Matlab
function polyder will find the constants of the derivative polynomial for us.
Then we can use our old faithful polyval to evaluate that derivative polynomial.

In this section we will use that method to find the derivative of the temperature
at our plot points, and then plot the results. We will compare the quadratic
and the quartic fits.

Note that the results will be pretty bad:

WARNING: Errors tend to become much worse in derivatives.

(Additional note: there is also a Matlab function polyint that can be used to
integrate the polynomial fits exactly. But that is much more restricted than quad
or integral; you cannot, say, integrate arbitrary functions of the temperature
with polyint.)

% de r i v a t i v e o f the pa ra bo l i c f i t po lynomia l
derCoefParFit=polyder ( CoefParFit ) ;
% use i t to e va l ua t e the d e r i v a t i v e at the p l o t po in t s
derTempParFitPlot=polyval ( derCoefParFit , t imePlot ) ;

% de r i v a t i v e o f the qua r t i c f i t po lynomia l
derCoefQuartFit=polyder ( CoefQuartFit ) ;
% use i t to e va l ua t e the d e r i v a t i v e at the p l o t po in t s
derTempQuartFitPlot = . . .

polyval ( derCoefQuartFit , t imePlot ) ;

26



% p l o t i t
plot ( t imePlot , derTempExactPlot , ’−−k ’ , . . .

t imePlot , derTempParFitPlot , ’ c ’ , . . .
t imePlot , derTempQuartFitPlot , ’m’ )

axis ( [ 0 2 −20 0 ] )
legend ( ’ Exact ’ , . . .

’ Quadratic f i t ’ , . . .
’ Quart ic f i t ’ )

legend ( ’ l o c a t i o n ’ , ’ southeas t ’ )
t i t l e ( ’ Comparison o f Pred ic ted F i r s t De r i va t i v e s ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’dT/dt ( Cent igrade /min ) ’ )

The polynomial-fit derivatives are pretty bad. The quartic fit is better than the
quadratic one, but note the wrong curvature near the end.

Skip: Other ways to do differentiation
One other way to find the derivative of the temperature is to differentiate the
fitted exponential. This differentation is done the same way as for the exact

27



temperature above. As might be expected, it gives a better result than the
fitted polynomials.

Still another way is to differentiate the interpolated spline. The way to find the
derivative of the spline has some rough resemblance to the way we found the
derivatives of the fitted polynomials above. In fact, spline interpolation is done
by "piecewise polynomials" (pp): there is a different polynomial (a cubic) in
each piece between measured points. We can get function spline to give us the
constants of these polynomials by not specifying desired locations to evaluate
the spline. Then, in Octave, we can find the derivative polynomials by using
function ppder (much like polyder for single polynomials above). And then we
can evaluate that using ppval (much like polyval).

This is demonstrated below. The derivative of the spline with 5 exact measure-
ments is really pretty good. However, the derivative of the spline with 40 noisy
measurements is very, very bad indeed.

REMEMBER: Spline differentiation might be good, but noisy data are a big
problem.

If you want to do the below using Matlab instead of Octave, the bad news is that
the idiots at MathWorks never defined a function ppder to find the derivatives
of piecewise polynomials. There are however third-party functions that can do
it for you. One example is ppdiff in Jonas Lundgren’s "SplineFit" package:
Link to Splinefit for ppdiff
A simpler example is Matthew Kelly’s ppDer (note the capital D):
Link to ppDer
I have not tested them. Let me know if you did.

(Note: Octave also has function ppint for exact integration of the spline, and
so has Splinefit above.)

Note added 9/22/2018: Matlab R2018b now seems to have fnder for derivatives
(and fnint for integrals) of piecewise polynomials. Unfortunately, at COE we
are still using Matlab R2017b at the time of writing.

% de r i v a t i v e o f the e xponen t i a l f i t t e d to 40 noisy data
derTempExpFitPlot=CoefExpFit (1 ) ∗TempExpFitPlot ;

% for the s p l i n e through the 5 exac t measurements :

% p i e cew i s e po lynomia l cons tan t s o f the s p l i n e
ppSpl ine=spline ( timeMeasured , TempMeasured ) ;
% piecew i s e po lynomia l cons tan t s o f the d e r i v a t i v e
derppSpl ine=ppder ( ppSpl ine ) ;
% eva l ua t e at the p l o t po in t s
derTempSplinePlot=ppval ( derppSpl ine , t imePlot ) ;

28

https://www.mathworks.com/matlabcentral/fileexchange/13812-splinefit
https://www.mathworks.com/matlabcentral/fileexchange/58298-ppder-pp


% for the s p l i n e through the 40 noisy data po in t s :

% p i e cew i s e po lynomia l cons tan t s o f the s p l i n e
ppSplineN=spline ( timeMeasuredN , TempMeasuredN) ;
% f ind the cons tan t s o f the d e r i v a t i v e s
derppSplineN=ppder ( ppSplineN ) ;
% eva l ua t e at the p l o t po in t s
derTempSplineNPlot=ppval ( derppSplineN , t imePlot ) ;

% p l o t i t
plot ( t imePlot , derTempExactPlot , ’−−k ’ , . . .

t imePlot , derTempExpFitPlot , ’ g ’ , . . .
t imePlot , derTempQuartFitPlot , ’m’ , . . .
t imePlot , derTempSplinePlot , ’b ’ , . . .
t imePlot , derTempSplineNPlot , ’b ’ )

axis ( [ 0 2 −20 0 ] )
legend ( ’ Exact ’ , . . .

’ Exponent ia l f i t , 40 no i sy data po in t s ’ , . . .
’ Quart ic f i t , 40 no i sy data po in t s ’ , . . .
’ Sp l ine , 5 exact data po in t s ’ , . . .
’ Sp l ine , 40 no i sy data po in t s ’ )

legend ( ’ l o c a t i o n ’ , ’ southeas t ’ )
t i t l e ( ’ Comparison o f p r ed i c t ed f i r s t d e r i v a t i v e ’ )
xlabel ( ’ t ( minutes ) ’ )
ylabel ( ’dT/dt ( Cent igrade /min ) ’ )

The exponential fit derivative is quite good, better than the quartic fit. And
the cubic and quintic fits would be a lot worse than the quartic.

The spline is very good for exact data, but noisy data can be a big problem.

29



30


	LESSON SUMMARY
	Key areas of the online book
	INTERPOLATION.
	The example problem
	What we do not know (or pretend to)
	Plot to understand the problem better
	Doing the interpolation
	Plot the interpolated values for all times
	Extrapolation
	End conditions for spline interpolation
	NOISY DATA
	SAVING AND RELOADING
	CURVE FITTING
	Finding the constants: "least squares"
	Fitting a line
	Fitting a parabola
	Fitting a quartic
	Skip: Fitting an exponential
	INTEGRALS
	The exact integral using calculus
	Approximate integration of the exact temperature
	Approximate integrals using interpolation or fitting
	DERIVATIVES
	The exact derivative using calculus
	Differentiation of the fitted polynomials
	Skip: Other ways to do differentiation

