
7 SYMBOLIC MATH
Contents

LESSON SUMMARY 2

Key areas of the online book 3

INTRODUCTION 4

Playing with a quadratic numerically 4

Playing with a quadratic symbolically 5

SIMPLIFYING ANSWERS 9

VERY HIGH ACCURACY 9

SOLVING EQUATIONS 10

Solving quadratic equations 10

Solving other equations 12

PARTIAL FRACTIONS 14

FUNCTION MANIPULATIONS 15

% make sure the workspace i s c l e a r
i f ~exist (’___code___ ’ , ’ var ’) ; clear ; end

% reduce n e e d l e s s wh i te space
format compact
% reduce i r r i t a t i o n s (pausing and b u f f e r i n g)
more o f f
% s t a r t a d iary (in the a c t u a l l e c t u r e)
%diary l ec tureN . t x t

% load the symbo l i c package (NEEDED FOR OCTAVE)
pkg load symbol ic
syms in i tpython
sympref d i sp l ay f l a t

1

LESSON SUMMARY
Normally Matlab deals with numbers, where a variable like x stands at any
given time for one particular stored number. Instead, symbolic mathematics
deals with abstract symbols, in which a symbolic variable like x could be any
number.

To declare variables to be symbolic ones, use

syms VARIABLE VARIABLE . . .

Given a ratio like 1/3 (an integer divided by an integer), normally Matlab would
numerically evaluate it and store it as 0.3333... This is not exact. To make the
expression 1/3 symbolic, use

sym(’ 1/3 ’) .

This prevents it from being approximated. The symbolic math functions can
then, for example, simplify 9*sym(’1/3’) as exactly 3.

Symbolic math functions include:

• diff(SYMFUN,SYMVAR,...), to differentiate a symbolic function with re-
spect to one or more of its symbolic variables.

• int(SYMFUN,SYMVAR,[START END]), to try to integrate a symbolic func-
tion with respect to one of its symbolic variables from a starting value to
an end value.

• int(SYMFUN,SYMVAR), to try to find an antiderivative of a symbolic func-
tion with respect to one of its symbolic variables.

• solve(SYMEQ,SYMVAR), to try to solve a symbolic equation for one of its
symbolic variables. Specify the symbolic equation as LHS == RHS where
LHS and RHS are symbolic expressions; note the doubled equals sign. You
can also specify more than one equation in more than one unknown.

• taylor(SYMFUN,VAR,VAR0,’Order’,DEGREE), to write the Taylor series
of a symbolic function. VAR0 is the base point; if ",VAR0" is left away, the
value of VAR0 is zero (so a McLaurin series). The value of DEGREE is the
degree of the term no longer shown. If ",’Order’,DEGREE" is left away,
the value of DEGREE is 6.

• subs(SYMEXPR,SYMVAR,SYMVAL), to substitute SYMVAL for SYMVAR in sym-
bolic expression SYMEXPR and clean up.

• subs(SYMEXPR,{SYMVAR1 SYMVAR2 ...},{SYMVAL1 SYMVAL2 ...}), to per-
form multiple substitutions all at once.

2

• factor(SYMEXPR), to factor a symbolic expression.

• factor(SYMINT), to factor a symbolic integer into its prime factors.

• partfrac(SYMRAT,SYMVAR), to take apart a symbolic ratio into its partial
fractions with respect to symbolic variable SYMVAR.

• expand(SYMEXPR), to fully write out a symbolic expression.

• prod(SYMEXPRVEC), to multiply out a vector of symbolic expressions. (Note
that prod is not actually a symbolic function, but it can be used on the
vectors of symbolic expressions produced by factor in Matlab.)

• children(SYMEXPRVEC), to take apart a symbolic expression into a vector
of subexpressions. Depending on conditions, the subexpressions can be
left and right hand sides, terms, factors, etcetera. So you may need to
apply children recursively to get the pieces you want.

• simplify(SYMEXPR), to try to simplify a symbolic expression.

• collect(SYMEXPR,SYMVAR), to collect the coefficients of the powers of a
symbolic variable in a symbolic expression.

• pretty(SYMEXPR), to show a symbolic expression in, maybe, a more read-
able form.

• double(SYMVAL), to convert an exact symbolic value into a simple Matlab
number with about 16 significant digits.

• vpa(SYMVAL,DIGITS), to evaluate a symbolic value to at least DIGITS
significant digits. If ",DIGITS" is left away the value of DIGITS is 32.

• HANDLE=matlabFunction(SYMFUN), to convert an exact symbolic function
into a normal Matlab anonymous function (which approximates numbers
to about 16 significant digits). HANDLE is the name for a handle to the
anonymous function. It can be used much like a name for the anonymous
function too.

To get help on a symbolic function FUNCTION, in Matlab you may need to
specify it as

help sym/FUNCTION

to prevent getting help on a non-symbolic function FUNCTION. In Octave,
that is

help @sym/FUNCTION

3

Key areas of the online book
Before the lecture, in the online book do:

• 21.1 Symbolic variables: skip the stuff after PA 21.1.2.

• 21.3 Formula manipulation and simplification: all.

• 21.6 Series: all.

• 21.8 Algebraic equations: all.

• 21.9 Calculus: all.

INTRODUCTION
Normally Matlab generates numbers, not formulae. If you ask Matlab to find a
root where a function is zero, maybe using fzero, it gives you a number. If you
ask Matlab to integrate a function from a lower limit to an upper limit using
integral or quad, it gives you a number. Etcetera.

But sometimes you want a formula instead of a number. For example, you might
want the derivative or antiderivative of a function. Either one is a formula, not
a number. Also, sometimes you want to see an exact number, and almost all
numbers in Matlab have round-off errors.

What you need for such purposes is a symbolic mathematics program. Such a
program is available inside Matlab as the "Symbolic Math Toolbox". Normally
MathWorks charges separately for this package. However, it is included in the
"Student Edition", as well as on the COE computers. Octave uses the separate,
free, "SymPy" package.

In this section we will illustrate how normal Matlab computations and symbolic
ones differ. We will look at a simple example function, a quadratic in fact:

q = − 4x2 + 3x+ 12

Playing with a quadratic numerically
Let’s first review some of the normal stuff we can do with the example quadratic
q. To do so, we will first define the quadratic as a normal numerical function. In
particular, we will define qNum as a handle to an anonymous numerical version
of the quadratic:

% the example quadra t i c as a normal Matlab func t i on
qNum = @(x) −4∗x.^2+3∗x+12

4

qNum =
@(x) −4 ∗ x .^ 2 + 3 ∗ x + 12

We can numerically integrate this function between, say, 0 and 2:

% i n t e g r a t e qNum from 0 to 2 us ing " quad "
qNumInt02=quad(qNum, 0 , 2)

qNumInt02 = 19.333

Note that we got a floating point number for the integral. This number is pretty
accurate, but it is not exact. Sometimes you want the exact value.

Note also that there is no way to directly find the antiderivative of qNum as a
simple cubic.

We can certainly find one of the two roots using fzero, by giving fzero an
appropriate starting value:

% f i n d a roo t near x = 1
qNumRoot=fzero (qNum, 1)

qNumRoot = −1.3972

Again we got an approximate floating point number, rather than an exact an-
swer. And without using our knowledge of quadratics, (or careful plotting), this
does not tell us that there is another root somewhere.

Finally, there is no way to directly find the derivative of qNum as a linear function.
And you may recall from the lesson on interpolation that even finding a bunch
of values of the derivative of a numerically given function can be very tricky.

Playing with a quadratic symbolically
So let’s now do the above things using symbolic variables!

The first thing to remember is: Be sure to inform Matlab with the syms or sym
command when variables and/or numbers are intended to be symbolic. Normal
variables are names of storage locations with a number in it. But a symbolic
variable does not store a number; at all times it can stand for any number. So a
normal variable x is very different from a symbolic variable x, and Matlab must
know which of the two x is.

% t e l l Matlab that , from now on , x i s a symbo l i c v a r i a b l e
syms x

If x is a symbolic variable, then expressions involving x are symbolic too. So
we can define the symbolic quadratic q as follows:

5

% the example quadra t i c as a symbo l i c f unc t i on
qSym=−4∗x^2+3∗x+12

qSym = (sym) −4∗x∗∗2 + 3∗x + 12

We can integrate this function symbolically with respect to x between, say, 0
and 2 using the symbolic int function.

% i n t e g r a t e qSym with r e s p e c t to x from 0 to 2
qSymInt02=in t (qSym , x , [0 2])

qSymInt02 = (sym) 58/3

Note that the value 19.333... that we got earlier using quad on qNum is equal
to 58/3 to about 16 significant digits. But you can easily check using calculus
that the 58/3 value is exact.

Using symbolic math we can also find an antiderivative; just use int but do not
specify any limits of integration now:

% f i n d the s ymbo l i c a l a n t i d e r i v a t i v e
qSymInt=in t (qSym , x)

qSymInt = (sym) −4∗x∗∗3/3 + 3∗x∗∗2/2 + 12∗x

In Matlab you may want to clean up the result using the expand function; in
Octave it is already expanded:

% expand the r e s u l t as needed and de s i r ed
expand (qSymInt)

ans = (sym) −4∗x∗∗3/3 + 3∗x∗∗2/2 + 12∗x

You can readily check by differentiation that the above is the correct antideriva-
tive of −4x2 + 3x+ 12 that is zero when x is zero.

Note that if you leave the x away from int(qSym,x), it will still work, and we
might not even subtract much credit, as there is no other variable that Matlab
can integrate the expression with respect to. If that was ax2 instead of −4x2,
well there goes your credit, as that can be integrated with respect to a instead
of x.

We can find the derivative using the diff function:

% f i n d the s ymbo l i c a l d e r i v a t i v e
qSymDiff=d i f f (qSym , x)

6

qSymDiff = (sym) −8∗x + 3

You can readily check that this is the correct derivative of −4x2 +3x+12. (Yes,
the x must be specified for full credit.)

Both roots of the quadratic can be found exactly using the solve function (note
the doubled equals sign):

% Find the roo t s e x a c t l y
qSymRoots=so l v e (qSym == 0 ,x)

qSymRoots = (sym) Matrix ([[3 / 8 + sq r t (201) /8] , [− s q r t
(201) /8 + 3 / 8]]) (2 x1 matrix)

Note that we got both exact roots as a symbolic vector.

You might try using pretty for getting a formatted look at the roots:

% format the roo t s
pre t ty (qSymRoots)

[_____]
[3 \/ 201]
[− + −−−−−−−]
[8 8]
[]
[_____]
[\/ 201 3]
[− −−−−−−− + −]
[8 8]

How about the root -1.3972 that we got earlier using fzero? Is it one of the
two roots above to 16 digits accuracy, and if so, which one? To answer that, you
can use the double function to simplify the symbolic roots to normal Matlab
numbers with 16 significant digits.

% the roo t found us ing f z e r o on qNum
qNumRoot

% the symbo l i c roo t s conver ted to normal Matlab numbers
qSymRootsNum=double (qSymRoots)

% compare qNumRoot to the second symbo l i c roo t
qNumRootError=qNumRoot−qSymRootsNum(2)

qNumRoot = −1.3972
qSymRootsNum =

7

2 .1472
−1.3972

qNumRootError = 0

Apparently, fzero did find the numerical root very accurately.

Next recall from your math classes that if you know the roots of a quadratic,
you can factor it. In particular, if we call the two roots of q as obtained above
x1 and x2, then q = −4(x− x1)(x− x2).

However, we should also be able to factor the quadratic directly using the factor
function.

% tr y to f a c t o r the quadra t i c
qSymFactors=f a c t o r (qSym)

qSymFactors = (sym) −4∗x∗∗2 + 3∗x + 12

Oops, that did not work! Try looking for help on function factor. Now you
need to be careful: if you just use "help factor", you will get help on the
wrong function factor (one that only factors integers). To get help on the
desired symbolic function factor, you must precede it with "sym/" in Matlab,
or @sym/ in Octave:

% ge t he l p on symbo l i c f unc t i on f a c t o r (d i s a b l e d here)
%he lp sym/ f a c t o r % Matlab ve r s i on
%he lp @sym/ f a c t o r % Octave ve r s i on

Anyway, if you read the help given in Matlab, you will see that the problem
is that the roots of our quadratic are irrational. To get Matlab to factor the
quadratic, you need to add ",’FactorMode’,’full’" to the arguments:

% f a c t o r a quadra t i c wi th i r r a t i o n a l roo t s
qSymFactors=f a c t o r (qSym , ’ FactorMode ’ , ’ f u l l ’)

qSymFactors = (sym) −4∗x∗∗2 + 3∗x + 12

This does not (yet) work in Octave, at least not in my relatively old version of
SymPy.

Matlab gives the factors as a vector. To see the normal factored form use the
prod function.

% in Matlab , form the normal f a c t o r e d form us ing prod
%qSymFactors=prod (qSymFactors)
%p r e t t y (qSymFactors)

8

If the quadratic has rational roots, like

qrat = − 4x2 + 3x+ 27

(note 27 instead of 12), there is no problem:

% a quadra t i c wi th r a t i o n a l roo t s
qRatSym=−4∗x^2+3∗x+27

% f a c t o r i t
qRatSymFactors=f a c t o r (qRatSym)
% in Matlab , form the normal f a c t o r e d form us ing prod
%prod (qRatSymFactors)

qRatSym = (sym) −4∗x∗∗2 + 3∗x + 27
qRatSymFactors = (sym) −(x − 3) ∗(4∗x + 9)

SIMPLIFYING ANSWERS
In classes like Analysis in Mechanical Engineering, you are required to simplify
your answers. Symbolic math to the rescue!

Watch it, however. If you try to simplify, say, a numeric ratio like 629/969 as

s imp l i f y (629/969)

then Matlab sees "629/969", evaluates that as 0.6491... to 16 significant digits
and gives that to the symbolic simplify function. Of course simplify cannot
make any sense out of 0.6491.... In fact, it will refuse to cooperate.

What you need to do is tell Matlab that the entire "629/969" is to be treated as
a symbolic expression, to be given to simplify "as is". You can do that with
the sym function:

% s i m p l i f y 629/969 (d i v i d e s out the common f a c t o r 17)
r a t i o S imp l i f i e d=s imp l i f y (sym(’ 629/969 ’))

r a t i o S imp l i f i e d = (sym) 37/57

VERY HIGH ACCURACY
Function vpa, ("variable precision arithmetic"), will give you numbers to arbi-
trarily high accuracy. As an example, let’s try to get the result π2/6 of the
infinite sum that we talked about in the previous lesson to 50 significant digits.

Watch it again. There is a difference between what Matlab makes of pi^2/6
and sym(’pi’)^2/6:

9

% pi ^2/6
sumNum=pi^2/6

% sym (’ pi ’) ^2/6
sumSym=sym(’ p i ’) ^2/6

sumNum = 1.6449
sumSym = (sym) p i ∗∗2/6

So there is a wrong way and a right way to get the sum to 50 significant digits:

% Matlab g i v e s vpa a number equa l to p i ^2/6 to 16 d i g i t s :
wrongSum=vpa (pi ^2/6 ,50)

% Matlab g i v e s vpa the symbo l ic s t r i n g p i ^2/6:
rightSum=vpa (sym(’ p i ’) ^2/6 ,50)

wrongSum = (sym)
1.6449340668482264060656916626612655818462371826172

rightSum = (sym)
1.6449340668482264364724151666460251892189499012068

In the first case, Matlab evaluated π2/6 in its normal way, losing all significant
digits beyond the 16th, and gave that number to function vpa. Of course there
was no way for vpa to correctly reconstruct the lost 17th to 50th significant
digits. So all shown digits beyond the 16th (or 17th, to be picky) are wrong. (I
assume they are correct for the inaccurate number vpa received from Matlab.)

In the second case, Matlab gave vpa the symbolic string ’pi^2/6’ and vpa had
no problem evaluating that correctly to 50 digits accuracy.

SOLVING EQUATIONS
The Symbolic Toolbox can solve quite a lot of equations exactly.

If it cannot, it will drop back to a numerical solution.

Solving quadratic equations
Suppose you no longer remembered the solution to the quadratic equation

ax2 + bx+ c = 0

The symbolic toolbox can give it to you. First define the quadratic symbolically:

% t e l l Matlab t h a t the v a r i a b l e s are symbo l i c
syms a b c x

10

% d e f i n e the gener i c quadra t i c po lynomia l
qGen=a∗x^2+b∗x+c

qGen = (sym) a∗x∗∗2 + b∗x + c
Next use solve to find the two roots where the quadratic is zero:

% f i n d the symbo l ic s o l u t i o n us ing s o l v e
qGenRoots=so l v e (qGen == 0 ,x)

qGenRoots = (sym) Matrix ([[(−b + sq r t (−4∗a∗c + b∗∗2))
/(2∗ a)] , [−(b + sq r t (−4∗a∗c + b∗∗2)) /(2∗ a)]]) (2 x1
matrix)

If you leave == 0 away in the solve command, it will still work, but your
credit will plunge for writing confusing code. A bare qGen is a function, not an
equation.

For another look at the roots, let’s reformat them using pretty:

% show the roo t s wi th p r e t t y
pre t ty (qGenRoots)

[_____________]
[/ 2]
[−b + \/ −4∗a∗c + b]
[−−−−−−−−−−−−−−−−−−−−−]
[2∗a]
[]
[/ _____________\]
[| / 2 |]
[−\b + \/ −4∗a∗c + b /]
[−−−−−−−−−−−−−−−−−−−−−−−−]
[2∗a]

Now this should agree with the roots we got in the first section for the special
case that a was -4, b was 3, and c was 12. To see whether this is really true, we
can use the subs function to substitute these values for a, b, and c:

% see whether we ge t back our prev ious s o l u t i o n
qSymRootsTest=subs (qGenRoots , { a b c},{−4 3 12})
qSymRoots

qSymRootsTest = (sym) Matrix ([[− s q r t (201) /8 + 3/8] , [3/8
+ sq r t (201) / 8]]) (2 x1 matrix)

qSymRoots = (sym) Matrix ([[3 / 8 + sq r t (201) /8] , [− s q r t
(201) /8 + 3 / 8]]) (2 x1 matrix)

11

You can see they are the same roots, just reordered.

If you want to evaluate roots of a quadratic a lot, using symbolic logic would
be a slow process for Matlab. In that case, you are better off writing a normal
Matlab numerical function for them; one that uses normal numbers with 16
significant digits instead of symbolic logic.

But you do not have to write that function yourself from scratch. Matlab can
convert the symbolic solution to a normal function for you. Just use function
matlabFunction:

% crea t e a normal Matlab func t i on f o r the roo t s
qGenRootsFun=matlabFunction (qGenRoots)

qGenRootsFun =
@(a , b , c) [(−b + sq r t (−4 .∗ a .∗ c + b .^ 2)) . / (2 .∗

a) ; −(b + sq r t (−4 .∗ a .∗ c + b .^ 2)) . / (2 .∗ a)]

Looks OK. We can test it on the values for a, b and c from the first section and
see whether we get the same roots:

% t e s t i t f o r our e a r l i e r example
qGenRootsFunTest=qGenRootsFun (−4 ,3 ,12)

qGenRootsFunTest =
−1.3972
2 .1472

That are indeed the two roots that we got in the first section to about 16
significant digits.

Solving other equations
Let’s look at some other equations that the Symbolic Toolbox manages to solve.

One famous result of complex variable theory is that eiπ equals -1, where i equals√
−1. Let’s see whether the Symbolic Toolbox knows that:

% make sure x i s s t i l l a symbol
syms x

% s o l v e the equat ion e^x = −1 f o r x
s o l v e (exp(x) == −1,x)

ans = (sym) I ∗ pi

12

So the answer is yes. The Toolbox knows it. (However, the correct solution to
the equation above is iπ plus any integer multiple of 2iπ.)

To make things more interesting, let’s have a second variable y in addition to x.

A simple quadratic equation in those two variables is

axy − bx− 1 = 0

where a and b are constants.

% make sure a , b , and y are symbols too
syms a b y

% crea t e the symbo l i c quadra t i c f unc t i on
qxySym=a∗x∗y − b∗x − 1

qxySym = (sym) a∗x∗y − b∗x − 1
If we consider y a given quantity, we can solve the equation for x:

% s o l v e f o r x
xSol=so l v e (a∗x∗y − b∗x − 1 == 0 , x)

xSol = (sym) 1/(a∗y − b)
You can easily check this solution.

If instead we consider x a given quantity, we can solve the equation for y:

% s o l v e f o r y in s t ead
ySol=so l v e (a∗x∗y − b∗x − 1 == 0 , y)

ySol = (sym) (b∗x + 1) /(a∗x)
You can also easily check that solution.

Sometimes rewriting the equation can help you understand it better. For ex-
ample, the collect function can collect the coefficients of the powers of an
unknown. Unfortunately, Octave does not (yet) have this function.

% c o l l e c t the c o e f f i c i e n t s o f powers o f x
%qxySymMod=c o l l e c t (a∗x∗y−b∗x−1,x)

Note that normally a single equation can only be solved for a single unknown.
Our quadratic equation can be solved either for x or for y but not for both. To
solve for two unknowns, you need two equations.

However, solve can solve some systems of equations as well. For example, it
can solve linear systems of equations:

13

% s o l v e two l i n e a r equa t ions in two unknowns
[xSol , ySol] = so l v e (x+y == 7 , x−y == 1 ,x , y)

xSol = (sym) 4
ySol = (sym) 3

You can check this solution by simply plugging it in.

When the equations are nonlinear though (like those involving nonlinear func-
tions), analytical solution tends to get much more difficult.

If solve fails, Matlab will fall back to trying to solve the equations numerically.
Of course, that is a tricky business; you better check the results. Octave simply
produces an error if analytic solution fails.

% tr y to s o l v e two non−l i n e a r equa t ions (f a i l s in Octave)
%[xSol , ySo l] = s o l v e (x^2+cos (y) == 7 , cosh (x)−y == 1 , x , y)

PARTIAL FRACTIONS
In analyzing the dynamics of controlled systems, you often encounter ratios of
big polynomials. Then you want to take these ratios apart in simpler fractions.
The reason is that these simpler fractions tell you many important things. For
example, they tell you whether, if the system is disturbed, it will return to its
normal position, versus, say, crash. And, if it does return to its normal position,
they will also tell you how fast the system will return to normal.

In Calculus, partial fractions are also used to integrate ratios of big polynomials.

Symbolic function partfrac can give you the partial fractions of a ratio of
polynomials. First, let’s create an example ratio:

% make sure x i s s t i l l symbo l i c
syms x

% the example symbo l ic r a t i o
ratSym=(2∗x^2−3∗x+1)/(x^3+2∗x^2−9∗x−18)

ratSym = (sym) (2∗x∗∗2 − 3∗x + 1) /(x∗∗3 + 2∗x∗∗2 − 9∗x −
18)

% show i t wi th p r e t t y
pre t ty (ratSym)

14

2
2∗x − 3∗x + 1

−−−−−−−−−−−−−−−−−−−−
3 2

x + 2∗x − 9∗x − 18

Now take this apart into partial fractions using partfrac:

% f i n d the p a r t i a l f r a c t i o n s
ratPartFrac=pa r t f r a c (ratSym , x)

ratPartFrac = (sym) 14/(3∗(x + 3)) − 3/(x + 2) + 1/(3∗ (x
− 3))

% show i t wi th p r e t t y
pre t ty (ratPartFrac)

14 3 1
−−−−−−−−− − −−−−− + −−−−−−−−−
3∗(x + 3) x + 2 3∗(x − 3)

Each of the three fractions above is a partial fraction.

(Yes, the x in the partfrac command must be specified.)

If you want to have some clue where the partial fractions come from, look
at the factorization of the original ratio, and especially at the factors of the
denominator:

% f i n d the f a c t o r i z a t i o n
ratSymFactors=f a c t o r (ratSym)
% in Matlab , form the normal f a c t o r e d form us ing prod
%ratSymFactors=prod (ratSymFactors)

ratSymFactors = (sym) (x − 1) ∗(2∗x − 1) / ((x − 3) ∗(x + 2)
∗(x + 3))

% show i t wi th p r e t t y
pre t ty (ratSymFactors)

(x − 1) ∗(2∗x − 1)
−−−−−−−−−−−−−−−−−−−−−−−
(x − 3) ∗(x + 2) ∗(x + 3)

Now you can see that the partial fractions have factors of the denominator in
their denominators.

15

FUNCTION MANIPULATIONS
Below are some more example manipulations involving functions.

For example, let’s try to find the antiderivative of
1

x
√
ax2 + bx+ c

I know the antiderivative can be found, for one because it is in my table book
(Schaum’s). Let’s see how well Octave fares.

% make sure x , etc , are s t i l l symbo l i c
syms x a b c

% tr y i n t e g r a t i n g the example func t i on
intHard1=in t (1/(x∗sqrt (a∗x^2+b∗x+c)) , x)

% tr y again
intHard1=in t (sym(’ 1/(x∗ s q r t (a∗x^2+b∗x+c)) ’) , x)

intHard1 = (sym) I n t e g r a l (1/(x∗ s q r t (a∗x∗∗2 + b∗x + c)) ,
x)

intHard1 = (sym) I n t e g r a l (1/(x∗ s q r t (a∗x∗∗2 + b∗x + c)) ,
x)

Useless. But the solution is in a basic table book! Well, Octave is free (and so
is Sympy).

As another attempt, let’s try to find the antiderivative of
1

x(ax2 + bx+ c)3/2

The integral is again in my table book.

% tr y i n t e g r a t i n g the second example func t i on
intHard2=in t (1/(x∗(a∗x^2+b∗x+c) ^(3/2)) , x)

% tr y again
intHard2=in t (sym(’ 1/(x∗(a∗x^2+b∗x+c) ^(3/2)) ’) , x)

warning : Using ra t () h e u r i s t i c s f o r double−p r e c i s i o n
input (i s t h i s what you wanted ?)

intHard2 = (sym) I n t e g r a l (1/(x∗(a∗x∗∗2 + b∗x + c) ∗∗(3/2)
) , x)

intHard2 = (sym) I n t e g r a l (1/(x∗(a∗x∗∗2 + b∗x + c) ∗∗(3/2)
) , x)

Oh, well.

16

Sometimes function int is useful to figure out the name of an antiderivative.
For example, let’s figure out what the antiderivative of e−x2 is called:

% the a n t i d e r i v a t i v e o f exp(−x ^2)
intExp_Minus_xSqr=in t (exp(−x^2) , x)

intExp_Minus_xSqr = (sym) sq r t (p i) ∗ e r f (x) /2

% Show with p r e t t y
pre t ty (intExp_Minus_xSqr)

\/ pi ∗ e r f (x)
−−−−−−−−−−−−−

2

Using help erf will tell you that function erf is called the "error function."

How about the antiderivative of sin(x)/x?

% the a n t i d e r i v a t i v e o f s in (x)/x
intSinx_Over_x=in t (sin (x) /x , x)

intSinx_Over_x = (sym) Si (x)

Function Si is called the "sine integral". Matlab uses the name sinint.

Suppose we want the Taylor series of an antiderivative. One way is to write
the Taylor series of the original function and then integrate that. Below we
demonstrate that for function Si:

% wr i t e the Taylor s e r i e s o f s in (x)/x
sinx_Over_xTaylor=tay l o r (sin (x) /x , x)

% l e t s have a few more terms than t h a t
sinx_Over_xTaylor=tay l o r (sin (x) /x , x , ’ Order ’ , 10)

% i n t e g r a t e the Taylor s e r i e s to g e t t h a t o f Si
s i n i n tTay l o r=in t (sinx_Over_xTaylor)

sinx_Over_xTaylor = (sym) x∗∗4/120 − x∗∗2/6 + 1
sinx_Over_xTaylor = (sym) x∗∗8/362880 − x∗∗6/5040 + x

∗∗4/120 − x∗∗2/6 + 1
s i n i n tTay l o r = (sym) x∗∗9/3265920 − x∗∗7/35280 + x
∗∗5/600 − x∗∗3/18 + x

17

% show i t wi th p r e t t y
pre t ty (s i n i n tTay l o r)

9 7 5 3
x x x x

−−−−−−− − −−−−− + −−− − −− + x
3265920 35280 600 18

We can use that to figure out the logic of how to get each term from the previous
one in the Taylor series of Si.

First put the individual terms in the Taylor series in an array called terms.
Function children can do that:

% ge t the i n d i v i d u a l terms
terms=ch i l d r en (s i n i n tTay l o r)

terms = (sym) Matrix ([[x , −x∗∗3/18 , −x∗∗7/35280 , x
∗∗5/600 , x ∗∗9/3265920]]) (1 x5 matrix)

However, you would probably prefer to have the terms indexed by the power
of x, call it n, rather than by the term number. Call the renumbered terms
t1, t3, t5 They are

% the renumbered terms
t1=terms (1)
t3=terms (2)
t5=terms (4)
t7=terms (3)
t9=terms (5)

t1 = (sym) x
t3 = (sym) −x∗∗3/18
t5 = (sym) x∗∗5/600
t7 = (sym) −x∗∗7/35280
t9 = (sym) x∗∗9/3265920

Now examine the ratio of successive terms tn/tn−2:

For n=3, that is t3/t1:

% the r a t i o t3 / t1
r a t i o 31=s imp l i f y (t3 / t1)
f a c t o r s 1 8=f a c t o r (18)

18

r a t i o 31 = (sym) −x∗∗2/18
f a c t o r s 1 8 =

2 3 3

Note that 2∗3∗3 equals (n− 1)n2.

For n=5:

% examine t5 / t3
r a t i o 53=s imp l i f y (t5 / t3)
f a c t o r s 100=f a c t o r (100)

r a t i o 53 = (sym) −3∗x∗∗2/100
f a c t o r s 100 =

2 2 5 5

Note that 2∗2∗5∗5 equals 4∗5∗5, again being (n− 1)n2. Also note that the 3 in
the numerator equals n− 2, and that that was 1 when n was 3.

For n=7:

% examine t7 / t5
r a t i o 75=s imp l i f y (t7 / t5)
f a c t o r s 294=f a c t o r (294)

r a t i o 75 = (sym) −5∗x∗∗2/294
f a c t o r s 294 =

2 3 7 7

For n=9:

% examine t9 / t7
r a t i o 97=s imp l i f y (t9 / t7)
f a c t o r s 648=f a c t o r (648)

r a t i o 97 = (sym) −7∗x∗∗2/648
f a c t o r s 648 =

2 2 2 3 3 3 3

In every case,
tn
tn−2

= − (n− 2)x2

(n− 1)n2

So this seems to be generally true for all terms beyond the first.

Matlab has a function funtool to play with functions. This has not (yet) been
implemented in Octave, at least not the older version I have. In Matlab, have
fun!

19

% run f u n t o o l (can only run i n t e r a c t i v e l y , not in Octave)
%f u n t o o l

20

	LESSON SUMMARY
	Key areas of the online book
	INTRODUCTION
	Playing with a quadratic numerically
	Playing with a quadratic symbolically
	SIMPLIFYING ANSWERS
	VERY HIGH ACCURACY
	SOLVING EQUATIONS
	Solving quadratic equations
	Solving other equations
	PARTIAL FRACTIONS
	FUNCTION MANIPULATIONS

