
8 PLOTS
Contents

LESSON SUMMARY 1

Key areas of the online book 3

PLOTTING ANALYTICAL FUNCTIONS 4

Plotting a function of a single variable simply 4

But in real life, you must specify the limits 4

Plotting an implicit function 4

Plotting a parametric curve 6

Plotting a parametric curve in three dimensions 7

Plotting a function of two variables as a mesh surface 8

Plotting a function of two variables as a true surface 9

Plotting contour lines for a function of two variables 11

Plotting both mesh and contour lines 12

Warning: do not use on interpolated data 12

LOG-LOG PLOTS 13

Application to strongly varying data 13

Application to power relationships 14

Finding the approximate power relationship 15

Additional remarks 17

PLOTTING THREE DIMENSIONAL (3D) DATA 17

The example problem 18

Defining a grid 18

Finding the height of the membrane using SimplePoisson 20

1

Let’s have a look at the raw data 21

Plot as a surface 22

Plot contour lines 23

POLAR COORDINATES 24

% make sure the workspace i s c l e a r
i f ~exist (’___code___ ’ , ’ var ’) ; clear ; end

% reduce n e e d l e s s wh i te space
format compact
% reduce i r r i t a t i o n s (pausing and b u f f e r i n g)
more o f f
% s t a r t a d iary (in the a c t u a l l e c t u r e)
%diary l ec tureN . t x t

LESSON SUMMARY
This lesson is all about making plots of various kinds. That is an important
thing for engineers to be able to do. It is used for understanding systems,
representing data on systems, publicizing results, and advertising them.

1) The first main part of this lesson discusses how to easily plot functions whose
analytical form is known. Covered functions include:

• ezplot(FUN1V,[START END]) is an easy way to plot a function of one
variable. Here FUN1V should be a quoted string describing the function to
plot. START and END are the start and end values of the variable range
that is plotted.

• ezplot(FUN2V,[XMIN XMAX YMIN YMAX]) is an easy way to plot an im-
plicitly given function (for example x2 + y2 − 4 = 0 for a circle of radius
2). Here FUN2V should be a quoted string describing the function of both
the independent variable and the dependent one that must be zero (like
’x^2+y^2-4’ in the example). XMIN, XMAX, YMIN, and YMAX are the plot
limits of the independent, respectively dependent variable.

• ezplot(FUN1,FUN2,[START END]) is an easy way to plot a parametrically
given curve of the form x = f1 and y = f2, where f1 and f2 are functions
of a single parameter (often time). Here FUN1 and FUN2 should be quoted
strings describing f1, respectively f2. START and END are the start and
end values of the parameter range that is plotted.

2

• ezplot3(FUN1,FUN2,FUN3,[START END]) plots a parametrically given curve
in three dimensions instead of two.

• ezmesh(FUN2V,[XMIN XMAX YMIN YMAX],POINTS) is an easy way to plot
a function of two variables as a surface in a three-dimensional graph. Here
FUN2V should be a quoted string describing the function of two variables to
plot. XMIN, XMAX, YMIN, and YMAX are the plot limits of the two variables.
POINTS is the number of plot points to use in each direction. If ",POINTS"
is left away, POINTS is 60. For better plot quality, increase POINTS at
your own peril.

• ezsurf works just like ezmesh, and generates a better looking surface.
However, ezsurf is also much less user- and printer-friendly. Use at your
own peril.

• ezcontour(FUN2V,[XMIN XMAX YMIN YMAX],POINTS) is an easy way to
plot a function of two variables as contour lines in the plane of the two
variables. Arguments are like those of ezmesh.

• ezmeshc and ezsurfc create combinations of surface and contour plots.
They are used in the same way as the individual functions.

Note that if the functions to plot are a bit too complex to be easily described
in a single string, you can instead provide the ez... functions a handle to the
desired function, which can then be defined some other way.

2) The second main part of this lesson is using so-called "log-log" plots. In
these two-dimensional plots, the plotted position along the two axes does not
vary according to the value of the variables, but according to the value of their
logarithm.

• Log-log plots are useful for dealing with variables that vary by orders of
magnitude.

• Log-log plots are also useful for recognizing power relationships between
variables, like in y = Cxp. If the log-log plot looks like a straight line,
there is a power relationship. You can get the parameters of the power
relationship using the trick of taking the logarithms of the variables as
new variables and then performing linear regression on that, like in the
lesson on interpolation. In particular, if xVals and yVals are the given
values of x and y, use:

Coefs=polyf it (log (xVals) , log (yVals) , 1) ;
p=Coefs (1) ; C=exp(Coefs (2)) ;

3) The third main part of this lesson is on how to plot a function of two variables,
let’s call it f(x, y) here. Unlike in the first main part, now it is assumed that
the values of f are measured or computed on a grid, rather than analytically
known. Relevant functions include:

3

• [xGrid yGrid] = meshgrid(xValues,yValues) generates the x and y
values of all the grid points of a rectangular mesh. Here xValues should
be a one-dimensional array of n increasing x-values and yValues a one-
dimensional array of m increasing y-values. The created xGrid and yGrid
are two-dimensional arrays of size m× n describing all the x and y values
of the complete two-dimensional grid. In particular xGrid(i,j) equals
xValues(j) and yGrid(i,j) equals yValues(i).

• fGrid = SimplePoisson(xValues,yValues,forcing) generates function
values fGrid on the grid points above for typical simple real-life problems
in physics and engineering. Here SimplePoisson is a function provided
by the instructor. One-dimensional arrays xValues and yValues are as
above. Array forcing must be an m× n two-dimensional array that de-
scribes the physics of what forces the function f to be nontrivial. For the
interior grid points 2≤i≤m−1 and 2≤j≤n−1 the forcing is some "force"
that the instructor will specify. For the four boundaries with i=1, i=m,
j=1, respectively j=n, the forcing is simply the value of function f at the
boundaries, which again the instructor will specify.

• stem3(xGrid,yGrid,fGrid) will show the individual function values on
the grid above as "spikes" or "stems", starting from the corresponding grid
point in the x, y-plane.

• mesh(xGrid,yGrid,fGrid) or surf(xGrid,yGrid,fGrid) will plot the
function as a surface, similar to what ezmesh or ezsurf did for analytical
functions.

• contour(xGrid,yGrid,fGrid) will plot contour lines of the function in
the x, y-plane, similar to what ezcontour did for analytical functions.

4) The final part of this lesson shows how you can use polar, instead of Carte-
sian coordinates. There is one additional function needed to deal with polar
coordinates:

• [xGrid yGrid] = pol2cart(thetaGrid,rGrid) takes the polar coordi-
nates of your grid and converts them to Cartesian. That then allows you
to use the Cartesian functions like mesh, surf, and contour to plot your
function. Note the order θ, r in pol2cart.

Key areas of the online book
Before the lecture, in the online book do:

• 9.2 2D data plots I: skip example 9.2.1 at the end.

• 9.8 2D data plots II: all.

• 9.9 3D line plots: skip final question 3 in PA 9.9.1.

4

• 9.10 Rectangular data grids: skip ndgrid, PA 9.10.6 question 3, PA 9.10.8
all, and everything behind the surface plot.

• 9.12 3D mesh and surface graphs: all.

• 18.2 Curve fitting - Least squares: PA 18.2.4. Try to read through the
material leading up to PA 18.2.4. If it leaves you clueless, as I think it will,
just solve PA 18.2.4 by trial and error. Also complete whatever material
in this section from lesson3 you might not have done yet.

• 21.5 Plots: all.

PLOTTING ANALYTICAL FUNCTIONS
In many previous lessons we have seen how you can use the Matlab plot function
to plot functions given a set of function values. However, Matlab also provides
a series of ez... functions (where "ez" stands for "easy") that can make plots
of functions given as an analytical expression.

The analytical function can usually most simply be described in a quoted char-
acter string. However, you can instead give the ez... functions a handle to the
function to plot if you want.

Here we will look at a few important examples.

Plotting a function of a single variable simply
Function ezplot will easily plot analytical functions of a single variable. For
example, the absolute simplest way to plot, say, sin(t) versus t in Matlab is:

% use e z p l o t to p l o t s in (t) aga ins t
e zp l o t (’ s i n (t) ’)

Note that ezplot did all the work for us, including title and axis labels!

But in real life, you must specify the limits
By default, ezplot takes the independent variable to go from −2π to 2π. Of
course, this is very unlikely to be what you really want. So normally you must
specify the range of the dependent variable to plot as a second argument. For
example, if you want to plot sin(x)/x from −4π to 4π, you can do it as:

% p l o t s in (x)/x wi th s p e c i f i e d l i m i t s on x
e zp l o t (’ s i n (x) /x ’ ,[−4∗pi 4∗pi])

Function sin(x)/x is known as the "sinc" function. As noted in the lesson on
symbolic math, its antiderivative is "Si", the "sine integral".

5

http://mathworld.wolfram.com/SincFunction.html
http://mathworld.wolfram.com/SineIntegral.html

6

Plotting an implicit function
Often, you do not know the dependent variable as a given function of the inde-
pendent one, but you know only some equation relating the two variables. That
is called an implicitly given function. For example, unit hypercircles are given
by the implicit equation

x2n + y2n = 1

where n is a positive integer. You can easily see that if n = 1, the equation
above is just the equation for a normal unit circle around the origin. You do
not have y explicitly as a given function of x here, so this is an implicitly given
function.

To plot implicitly given functions with ezplot, first take all terms to the left
hand side. For the above equation, we need to take the 1 in the right hand side
to the left hand side. Now give the left hand side, a function of both x and y,
to ezplot. Ezplot will then draw the curve on which this function is zero. You
will also need to specify the plot limits on x and y as a vector [xMin xMax yMin
yMax]:

% p l o t the f i r s t (hyper) c i r c l e , f o r n=1, wi th e z p l o t
e zp l o t (’ x^2+y^2−1 ’ ,[−1 1 −1 1])

% make sure the next h y p e r c i r c l e s go in the same p l o t
hold on

% add h y p e r c i r c l e f o r n=2, 3 , 4 , and 5 to the p l o t
e zp l o t (’ x^4+y^4−1 ’ ,[−1 1 −1 1])
e zp l o t (’ x^6+y^6−1 ’ ,[−1 1 −1 1])
e zp l o t (’ x^8+y^8−1 ’ ,[−1 1 −1 1])
e zp l o t (’ x^10+y^10−1 ’ ,[−1 1 −1 1])

% change the t i t l e
t i t l e (’ Five Hype r c i r c l e s ’)
% e q u a l l y s c a l e d axes t i g h t l y around the curves , hidden
axis (’ equal ’ , ’ t i g h t ’ , ’ o f f ’)

% al l ow the next p l o t to erase the curren t one again
hold o f f

Plotting a parametric curve
Sometimes a function is described in terms of some additional parameter, like,
say, time, which is not plotted. That is called a parametrically given curve.

7

For example, consider a bicycle wheel of unit radius that rolls with unit angular
velocity. The point on the tire thread of this wheel that is at the ground at time
zero moves according along the parametric equations

x = t− sin(t) y = 1− cos(t)

The curve in the x, y-plane that this point traces out is called the "cycloid". It
can be easily drawn using ezplot. Just specify both functions. And, of course,
the range of the parameter to plot.

% draw the c y c l o i d over a b i t more than a f u l l r e v o l u t i o n
e zp l o t (’ t−s i n (t) ’ , ’1−cos (t) ’ , [− .5∗pi 2 .5∗ pi])

% e q u a l l y s c a l e d axes t i g h t l y around the curve , hidden
axis (’ equal ’ , ’ t i g h t ’ , ’ o f f ’)
% change the t i t l e
t i t l e (’The Cyclo id : Path o f a Point on a B i cyc l e Tire ’)

Plotting a parametric curve in three dimensions
The previous subsection used ezplot to draw a parametrically given curve in a
plane. Parametrically given curves in three dimensions also occur a lot. They

8

can be drawn using ezplot3.

For example, the parametric equations

x = cos(t) y = sin(t) z = t

2π
describe a spiral in three dimensional x, y, z space. The spiral can be plotted
as:

% p l o t the s p i r a l in t h r ee dimensions f o r 3 turns
e zp l o t3 (’ cos (t) ’ , ’ s i n (t) ’ , ’ t /(2∗ pi) ’ , [0 6∗pi])

% e q u a l l y s c a l e d axes t i g h t l y around the curve , hidden
axis (’ equal ’ , ’ t i g h t ’)

Plotting a function of two variables as a mesh surface
Suppose that you want to plot a function of two variables, call it f(x, y) for
now. Then the most straightforward way is to make a three-dimensional plot
in which two coordinates are the independent variables, x and y here, and the
third coordinate is the function value, f here. You will then get a surface, in this

9

three-dimensional space, in which the height of the surface above the x, y-plane
at any x and y gives the function value at that x and y.

In Matlab you can plot this surface easily using ezmesh; that will show the
surface as a "mesh" of little quadrilaterals.

For example, let’s plot a generalization of our previous example, "sinc" function
sin(x)/x, to two dimensions:

f = sin(
√
x2 + y2)√
x2 + y2

We will use a plot range from −4π to 4π for both x and y.

% p l o t the func t i on us ing ezmesh
ezmesh (’ s i n (s q r t (x^2+y^2)) / sq r t (x^2+y^2) ’ , . . .

[−4∗pi 4∗pi −4∗pi 4∗pi])

% use axes o f the same l e n g t h to avoid d i s t o r t i o n
axis (’ square ’)

To understand the function better, in an interactive session grab hold of the
graph with the mouse and move it around! (You may need to click the rotate
button first.)

10

Plotting a function of two variables as a true surface
The surface created by ezMesh would definitely look better if the quadrilaterals
were filled up. Using ezsurf instead of ezmesh will do that for you.

But there are some problems with that. For one thing, it takes Matlab a lot of
time to do it. In particular, it can be very slow to publish.

In addition, if you print it out, all these colored pixels will take a lot of expensive
toner. And if your laser printer is not in the best state of maintenance, it may
also make a mess of these solid areas.

Anyway, here it goes:

% use e z s u r f
e z s u r f (’ s i n (sq r t (x^2+y^2)) / sq r t (x^2+y^2) ’ , . . .

[−4∗pi 4∗pi −4∗pi 4∗pi] , 1 2 0)

% use axes o f the same l e n g t h to avoid d i s t o r t i o n
axis (’ square ’)

% needed f o r a good l o o k i n g su r f a c e
shading i n t e rp

11

% change co l o r to copper tones
colormap copper

The final 120 in the ezsurf command tells Matlab to subdivide the x and y
ranges into 120 intervals. The default is 60, but 120 makes the peak look better.
It does take more time to publish (10 seconds more on my Windows 7 PC).

Plotting contour lines for a function of two variables
Of course, the previous "three dimensional" graphs were really fake. In reality,
they were pictures on the two dimensional surface of a piece of paper or computer
screen. They were not really three-dimensional.
In many cases it is a better idea to simply show the function in the two-
dimensional x, y-plane of the two independent variables. You can do that by
drawing lines on which the function has a constant value. Such lines of constant
function value are called "contour lines." On weather maps, thermo graphs, and
such, if the function is pressure, contour lines are also called "isobars"; if the
function is temperature, "isotherms". In general, "iso" is Greek for "equal".
To plot contour lines easily, use ezcontour:

% use ezcontour on our be l o ved s inc func t i on .
ezcontour (’ s i n (s q r t (x^2+y^2)) / sq r t (x^2+y^2) ’ , . . .

12

[−4∗pi 4∗pi −4∗pi 4∗pi])

% use axes o f the same l e n g t h to avoid d i s t o r t i o n
axis (’ square ’)

There does not seem to be a way to influence what values of the function are
plotted. For that, you would need function contour, as shown in the third part.

Plotting both mesh and contour lines
For a combination of a surface and contour lines, use ezmeshc or ezsurfc:

% use ezmeshc
ezmeshc (’ s i n (sq r t (x^2+y^2)) / sq r t (x^2+y^2) ’ , . . .

[−4∗pi 4∗pi −4∗pi 4∗pi])

% use axes o f the same l e n g t h to avoid d i s t o r t i o n
axis (’ square ’)

To see better how contour lines relate to the function surface, grab again hold
of the figure and move it around.

13

Warning: do not use on interpolated data
Unlike, say, plot, the ez... functions above do not handle sets of discrete
function values. Do not try to get around this by interpolating the function
values and giving the ez... functions the function handle of the interpolated
function. Interpolated functions are only a guess at the true function. So, if you
show people interpolated data, you should also show them the discrete functions
values that you actually measured or computed, as symbols. Anything else is
grossly misleading and completely unacceptable.

LOG-LOG PLOTS
In "log-log" plots, the distances along the two axes do not vary according to
the values of the variables themselves, but according to the values of their
logarithms. In Matlab you can make log-log plots by using function loglog
instead of plot.

Application to strongly varying data
Log-log plots are very useful for dealing with variables that vary by orders of
magnitude. The logarithm of a variable varies only slowly when the variable
grows by a large factor. So you get a decent looking graph. If in the lesson

14

on ODE, you looked up the drag coefficient Cd from a sphere on Wikipedia as
suggested, you saw an example.

From Wikipedia:

If the horizontal axis would not have been logarithmic, the range from 102 to
103 would have been far smaller than a single pixel compared to the range from
106 to 107. With a logarithmic axis however, you can see all orders of magnitude
of the Reynolds number Re properly.

Note also that on logarithmic axes, the tick marks are no longer equally spaced.
That is because the tick marks still indicate values of the variables themselves,
not those of their logarithms.

You might wonder whether the vertical, Cd axis would really have to be loga-
rithmic. But if the plot had included small Reynolds numbers, you would have
wondered no more; the drag coefficient becomes infinite when the Reynold num-
ber goes to zero. In the log-log plot, the curve becomes an oblique straight line
growing to infinity going towards the left. You can see that much better at the
following two, equivalent, links:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648403/figure/f1/
https://www.nature.com/articles/srep12304/figures/1

Application to power relationships
Log-log plots are also very useful for recognizing "power relationships" between
variables; relationships in which the dependent variable is proportional to some
power of the independent variable. Assuming for now that the independent
variable is called x and the dependent one y, a power relationship looks like:

y = Cxp

15

https://en.wikipedia.org/wiki/Drag_coefficient
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648403/figure/f1/
https://www.nature.com/articles/srep12304/figures/1

where the power p is some constant and the constant of proportionality C is
some other constant.
Do power relationships occur a lot in science and engineering? Yes! Basically
because in physical relationships the units must match up. When you learn
dimensional analysis in fluid mechanics you will better understand why. For
now just note that since the radius of a circle has units of length, and its area
units of length squared, the area of a circle must be proportional to the radius
to the power 2. That is a power relationship. In this elementary example, the
power p is 2 and the constant of proportionality C is π: A = πr2. (The drag
coefficient of a sphere at small Reynolds numbers is also a power relationship,
with p=−1 and C=24.)
So how do log-log plots help in recognizing these relationships? Well, simple: if
the log-log plot looks like a straight line, there is a power relationship.
To show this, we will make up an arbitrary example, in which we take y to be
equal to 3x3/2. We will also add some random "measurement" errors to make it
look "real", and then plot the result in a log-log graph.

% choose supposed va l u e s o f x o f the " measurements "
xVals=[1 2 3 5 8 13 22 36 60 1 0 0] ;

% crea t e the supposed " measured " va l u e s o f y
yVals=3∗xVals . ^ 1 . 5 ;

% add about 10% exper imenta l e r ror to make i t l ook " r e a l "
%rng (’ d e f a u l t ’) % Matlab ve r s i on
randn(’ seed ’ , 9) % Octave ve r s i on
yVals=yVals .∗(1+0.10∗randn(s ize (xVals))) ;

% p l o t on a log−l o g s c a l e
loglog (xVals , yVals , ’ o− ’) ;
xlabel (’ x ’)
ylabel (’ y ’)

Note that indeed this pretty much looks like a straight line, allowing for the
random errors.

Finding the approximate power relationship
For the made up example of the previous problem, suppose these measurements
were all you knew about the variables in question. Then from the fact that the
log-log graph is well described as a straight line, you can reasonably conclude
that there is some power relationship between the variables. But how to get the
power p and the constant of proportionality C in that relationship?

Well, there is a trick. First note what you get if you take a logarithm of both
sides of the power relationship:

16

y = Cxp =⇒ ln(y) = p ln(x) + ln(C)

So if you take ln(x) to be a new independent variable X, and similarly ln(y) to
be a new dependent variable Y , you get

Y = C1X + C2 C1 ≡ p C2 ≡ ln(C)

Note first that according to the above, the relationship between Y and X is lin-
ear. That confirms mathematically that a power relationship becomes a straight
line when plotted on a log-log scale.

And then remember from the lesson on interpolation that for a linear relation-
ship like the one between Y and X, you can easily get the coefficients C1 and
C2 using polyfit. And C1 is the power p and C2 is the logarithm of the constant
of proportionality C, so you can find these too.

Let’s try that for our example (remember that Matlab uses log for ln:

% the c o e f f i c i e n t s o f the l i n e between l o g (x) and l o g (y)
Coefs=polyf it (log (xVals) , log (yVals) , 1) ;

% f i n d p and C
p=Coefs (1)
C=exp(Coefs (2))

17

p = 1.5079
C = 3.0183

Note that despite the errors, the found values are close to the exact values
p = 1.5 and C = 3.

We might also want to plot the approximate power relation versus the measure-
ments to see graphically how well it stands up.

And we might guess that the power should really be 1.5 exactly. (There is
normally no way to guess what the coefficient C really is.) So we could try
plotting that too.

% e v a l u a t e the found approximate power r e l a t i o n s h i p
yPower=C∗xVals .^p ;
yPower2=C∗xVals . ^ 1 . 5 ;

% p l o t i t and the measured po in t s
loglog (xVals , yVals , ’ o ’ , . . .

xVals , yPower2 , ’−b ’ , xVals , yPower , ’−−b ’) ;
t i t l e (’ V e r i f i c a t i o n o f the Power Re la t i on sh ip ’)
legend (’Measured ’ , . . .

[num2str(C, 3) , ’ x^{ ’ , num2str(p , 3) , ’ } ’] , . . .
[num2str(C, 3) , ’ x^{1.5} ’])

legend (’ l o c a t i o n ’ , ’ southeas t ’)

Additional remarks
Be sure to make appropriate name changes if your variables are not called x
and y.

Because of the taking of the logarithms, function polyval does not make the
average absolute errors in y as small as possible, but the relative ones. However,
that is typically exactly what you want in these relationships.

Matlab also has functions semilogx and semilogy, in which only the horizontal
coordinate, respectively only the vertical one, is logarithmically spaced. Use
these functions if only one of your variables changes greatly in magnitude.

Function semilogx can also be used to check for a logarithmic dependence of y
on x, and semilogy for an exponential one.

In particular, in the lesson on interpolation we could have checked for exponen-
tial behavior of the temperature by plotting it using semilogy. And the trick
for getting the constants of the exponential relationship was already explained
in the lesson; we just skipped it. So look it up there if you ever need it.

18

PLOTTING THREE DIMENSIONAL (3D) DATA
In the first main part of this lesson we plotted analytical functions of two vari-
ables using Matlab functions ezmesh, ezsurf, and ezcontour.

But suppose you knew the function only at discrete points? Well, if that hap-
pened for a function of one variable, you would use plot instead of ezplot.
Similarly, for two variables, use mesh instead of ezmesh, surf instead of ezsurf,
and contour instead of ezcontour.

The example problem
Recall that in a homework, you looked at the sag of power lines. You solved a
system of equations to get the height of the power line, call it h, at a number
of points. In that example, you could plot the height of the power line versus
the horizontal position coordinate x in a simple two-dimensional plot.

But what if you want to look at the sag of a drum membrane under its own
weight? Then there are two horizontal position coordinates, call them x and y.
For every point (x, y) in the horizontal plane, there is a corresponding height of
the membrane at that location. Now a three-dimensional plot is needed to see
the sag. Mathematically the height h is some function h(x, y) of x and y. We
will now address ways that you can plot such a function.

19

Defining a grid
For simplicity, we will assume that the drum membrane is square, with sides of
unit length. So the relevant x and y values form a unit square. Unfortunately, a
square contains infinitely many points, and that is too many. We must restrict
the number of points to a finite number. We can do so by selecting a finite
number, call it n, of x-values with linspace, and similarly a finite number, call
it m, of y-values. Then we restrict the points in the square to only the m × n
points that have those x and y values. Such a set of points is called a "mesh"
or a "grid".

Function meshgrid gives the x-and y values of the grid points, as m×n arrays.

% number o f x−va l u e s we w i l l use f o r now
n=5
% ge t the n x−va l u e s themse l ve s from l i n s p a c e
xValues=linspace (0 , 1 , n)
% number o f y−va l u e s we w i l l use f o r now
m=4
% ge t the m y−va l u e s themse l ve s from l i n s p a c e
yValues=linspace (0 , 1 ,m)

% crea t e a [m n] g r i d o f a l l combinat ions o f t h e s e va l u e s
[xGrid yGrid]=meshgrid (xValues , yValues)

% p l o t the g r i d
plot (xGrid , yGrid , ’ or ’)
xlabel (’ x ’)
ylabel (’ y ’)
t i t l e (’The g r id po in t s are e n c i r c l e d : ’)

n = 5
xValues =

0.00000 0.25000 0.50000 0.75000 1.00000
m = 4
yValues =

0.00000 0.33333 0.66667 1.00000
xGrid =

0.00000 0.25000 0.50000 0.75000 1.00000
0.00000 0.25000 0.50000 0.75000 1.00000
0.00000 0.25000 0.50000 0.75000 1.00000
0.00000 0.25000 0.50000 0.75000 1.00000

yGrid =
0.00000 0.00000 0.00000 0.00000 0.00000
0.33333 0.33333 0.33333 0.33333 0.33333
0.66667 0.66667 0.66667 0.66667 0.66667

20

1.00000 1.00000 1.00000 1.00000 1.00000

Note that in the graph, y increases going upwards, as usual. However, in the
way the arrays are printed, y increases going downwards.

Finding the height of the membrane using SimplePoisson
Unfortunately, finding the height of the membrane requires the solution of what
is called a "Partial Differential Equation". And solving such equations is far,
far, beyond the scope of this class. That is true even for one of the simplest
of such equations, the so-called "Poisson" equation, that governs the height of
the membrance. So I have created a function, SimplePoisson, that finds the
solution for you. The only thing you need to do is create an array forcing with
information on the desired solution.

At any interior point of the grid, array forcing should contain the value of the
"force" at the interior point, i.e. whatever wants to make the solution nontrivial.
For the membrane, that is the scaled weight of the membrane per unit area. You
will always be given the value of the "force" in this class. In particular, for the
membrane here we take the "force" to be constant and equal to 2 for simplicity.

At any boundary point, (i=1, i=m, j=1, or j=n), array forcing should contain
the desired value of the solution at that point. (In a sense, nontrivial boundary

21

values make the solution nontrivial at the boundary.) You should again be given
that. In particular, here we assume that the membrane is attached to the drum
at a constant height 1 at all boundaries.

% the i n t e r i o r po in t f o r c i n g
f o r c e=2

% the attachment h e i g h t o f the membrane
heightBoundary=1

% i n i t i a l i z e the f o r c i n g array to the i n t e r i o r f o r c e
f o r c i n g=f o r c e ∗ones (s ize (xGrid)) ;

% now change i t to heightBoundary on the four boundar ies
f o r c i n g (1 , :)=heightBoundary ; % boundary y = 0
f o r c i n g (m, :)=heightBoundary ; % boundary y = 1
f o r c i n g (: , 1)=heightBoundary ; % boundary x = 0
f o r c i n g (: , n)=heightBoundary ; % boundary x = 1

% l e t SimplePoisson f i n d the h e i g h t s a t the g r i d po in t s
he ight=SimplePoisson (xValues , yValues , f o r c i n g)

f o r c e = 2
heightBoundary = 1
n = 5
m = 4
N = 20
solRelerrDueToMatlab = 2.3583 e−14
he ight =

1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 0.90248 0.87511 0.90248 1.00000
1.00000 0.90248 0.87511 0.90248 1.00000
1.00000 1.00000 1.00000 1.00000 1.00000

Let’s have a look at the raw data
Matlab function stem3 will show you the raw data graphically: For each grid
point x, y, a vertical line segment is plotted whose length represents the height
of the membrane at that grid point.

% show the func t i on stems
stem3 (xGrid , yGrid , he ight)

% avoid d i s t o r t i o n
axis (’ square ’)

22

Try rotating the graph to see more clearly how it looks.

Plot as a surface
Functions mesh or surf will show our function values as a surface, similar to
the way ezmesh and ezsurf do it for continuously defined functions.

% l e t ’ s have some more po in t s f o r a b e t t e r appearance
f o r c e =2;
heightBoundary=1;
n=40
xValues=linspace (0 , 1 , n) ;
m=40
yValues=linspace (0 , 1 ,m) ;
[xGrid yGrid]=meshgrid (xValues , yValues) ;
f o r c i n g=f o r c e ∗ones (s ize (xGrid)) ;
f o r c i n g (1 , :)=heightBoundary ;
f o r c i n g (m, :)=heightBoundary ;
f o r c i n g (: , 1)=heightBoundary ;
f o r c i n g (: , n)=heightBoundary ;
he ight=SimplePoisson (xValues , yValues , f o r c i n g) ;

% use func t i on mesh to p l o t
mesh(xGrid , yGrid , he ight)

23

% avoid d i s t o r t i o n
axis ([0 1 0 1 0 1] , ’ square ’)

n = 40
m = 40
n = 40
m = 40
N = 1600
Using an est imated L1 cond i t i on number .
solRelerrDueToMatlab = 2.9006 e−12

Plot contour lines
Function contour will draw contour lines for our function values as a surface,
similar to the way ezcontour does it for continuously defined functions.
Note that if the membrane get rained upon, the edge of the water surface will
be a contour line: it has everywhere the same height. That is why contour lines
are sometimes referred to as water lines. (But of course, the weight of the water
would add to that of the membrane, and the shape will change.)
We will draw the contour lines corresponding to heights 1, 0.975, 0.95,

24

% use func t i on contour to p l o t the de s i r ed h e i g h t s
contour (xGrid , yGrid , he ight , [1 : − . 0 2 5 : . 8 5]) ;

% avoid d i s t o r t i o n
axis (’ square ’)

Note that since the 0.85 contour line is not plotted, the minimum height is in
between 0.85 and 0.875.

POLAR COORDINATES
If your problem is best described in polar coordinates, things gets a bit messier.
You will need to convert the polar coordinates to Cartesian ones using function
pol2cart before plotting. Remember that this stupid function uses the order
(θ, r) instead of (r, θ).

As an example, here we will plot our beloved sinc function in polar coordinates.
In polar coordinates the function is sin(r)/r, where r =

√
x2 + y2.

% crea t e a s e t o f r va l u e s from 0 to , say , 2 p i
rValues=linspace (0 ,2∗pi , 4 0) ;

25

% crea t e a s e t o f t h e t a va l u e s from 0 to , o f course , 2 p i
thetaValues=linspace (0 ,2∗pi , 4 0) ;

% crea t e a mesh o f a l l combinat ions o f t h e s e va l u e s
[rGrid thetaGrid]=meshgrid (rValues , thetaValues) ;

% the d i s c r e t e f unc t i on va l u e s on the g r i d equa l s in (r) / r
fGr id=sin (rGrid) . / rGrid ;

% f i n d the Cartes ian coord ina t e s o f the po in t s
[xGrid yGrid]=pol2cart (thetaGrid , rGrid) ;
% note the s t u p i d order the ta , r

% p l o t as a mesh
mesh(xGrid , yGrid , fGr id)
% s e t square axes o f a s u i t a b l e s i z e
axis ([−2∗pi 2∗pi −2∗pi 2∗pi −Inf Inf] , ’ square ’)
% does t h i s seem l i k e a b e t t e r name than s inc ?
t i t l e (’The " Sombrero Function " ’)

26

	LESSON SUMMARY
	Key areas of the online book
	PLOTTING ANALYTICAL FUNCTIONS
	Plotting a function of a single variable simply
	But in real life, you must specify the limits
	Plotting an implicit function
	Plotting a parametric curve
	Plotting a parametric curve in three dimensions
	Plotting a function of two variables as a mesh surface
	Plotting a function of two variables as a true surface
	Plotting contour lines for a function of two variables
	Plotting both mesh and contour lines
	Warning: do not use on interpolated data
	LOG-LOG PLOTS
	Application to strongly varying data
	Application to power relationships
	Finding the approximate power relationship
	Additional remarks
	PLOTTING THREE DIMENSIONAL (3D) DATA
	The example problem
	Defining a grid
	Finding the height of the membrane using SimplePoisson
	Let's have a look at the raw data
	Plot as a surface
	Plot contour lines
	POLAR COORDINATES

