EML 3100 Exam 2
Page 1/3

THERMODYNAMICS
Solutions (dommelen@eng.fsu.edu)

3/1/07 11:45-1:00 pm
series a

DO NOT WRITE ON THE BLUE TABLES. RETURN THE BLUE TABLES WITH YOUR EXAM. DO NOT STAPLE THE EXAM SHEETS TOGETHER. Put your answers on the same sheet as the question, Use many digits in your computation. You must give the units of your answers. You must write clearly. Encircle the right answer number in multiple choice. To correct, erase the wrong circle as well as you can and encircle the corrected answer number twice. Best possible answer for multiple choice. For questions asking a number, putting the clear correct formula(s) below the question might result in partial credit even if the answer is wrong. Not following those requirements will result in reduced or no credit.

1. (5%) The temperature of Helium is changing at a rate of $5^{\circ} \mathrm{C} / \mathrm{s}$. Its internal energy is changing at a rate of \qquad $\mathrm{kJ} / \mathrm{kg}$-s.
2. (5%) To change the temperature of 0.5 kg of Helium that is kept at ambient pressure by $1000^{\circ} \mathrm{C}$, we need to add \qquad 2.5963 MJ of heat.
3. (5%) The specific heat of Xenon at constant pressure is $0.1583 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. The specific heat at constant volume is $0.09498 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
4. (5%) If $27^{\circ} \mathrm{C}$ air isothermally expands from $2 \mathrm{~m}^{3}$ to $3 \mathrm{~m}^{3}$, the work done by the air is \qquad kJ .
5. (5%) If the specific enthalpy of a substance at 2 bar of pressure is $400 \mathrm{~kJ} / \mathrm{kg}$ and its specific volume is $0.5 \mathrm{~m}^{3} / \mathrm{kg}$, then its internal energy is $\quad 300 \quad \mathrm{~kJ} / \mathrm{kg}$.
6. (5%) If 100 kJ of heat enters a 2 kg common brick, its temperature changes by \qquad 63.29 ${ }^{\circ} \mathrm{C}$.
7. (5%) Write the expression for the work done from in the shown process, using numerical subscripts to identify the correct points of the quantities to use:

$\frac{1}{2}\left(P_{1}+P_{2}\right)\left(V_{2}-V_{1}\right)+\frac{1}{2}\left(P_{2}+P_{3}\right)\left(V_{3}-V_{2}\right)$
8. (33%) A cylinder contains 2 kg of water that is pressurized by a piston pushed down by a linear spring. Initially the water is in vapor form at 200 kPa and $300^{\circ} \mathrm{C}$. The water is then cooled to 100 kPa , at which time the volume has been reduced to $1.5 \mathrm{~m}^{3}$. Find the final temperature, quality if defined, and heat removed.
You must construct all phases that are not given in the $P v$-diagram, marking all lines and points used to do it with their values. Unambiguously number the phases in the diagram.
Also show the process as a fat curve in the diagram.
You must show the derivations and reasoning completely and correctly for full credit. You must give units for your answers. Most accurate procedure only unless stated otherwise.

Asked: $T_{2},,^{x_{2}}$ heat removed $\left(=-C_{12}\right)$
Solution:

THERMODYNAMICS

Solutions (dommelen@eng.fsu.edu)
series a
9. (32%) Air at 1000 K and 1 MPa enters a horizontal nozzle at a rate of $2 \mathrm{~kg} / \mathrm{s}$ with negligible velocity. It exits at $800 \mathrm{~m} / \mathrm{s}$ through an circular exit of diameter 5 cm . Heat is lost from the duct to the tune of $30 \mathrm{~kJ} / \mathrm{s}$. Find the temperature and specific volume of the exiting air.
You must show the derivations and reasoning completely and correctly for full credit. You must give units for your answers. Most accurate procedure only unless stated otherwise.

$$
\begin{aligned}
& \text { Asked: } T_{2}, v_{2} \text {, } \\
& \text { Solution } A-1: R=0.287 \mathrm{lO} / \mathrm{L} \\
& \text { No moving parts } \rightarrow \dot{W}=0 \quad z_{2}=z_{i} \sin a \text { hovizondal } \\
& \text { (4) } \dot{m}_{2}=m_{1} \quad A-17: h_{1}=1046.04 \frac{l_{1} 7}{l_{8}} \\
& \text { (4) } A_{2}=\frac{\pi}{4} D_{2}^{2} \quad \text { iss law: } 2 \frac{\mathrm{ls}}{\mathrm{~s}}\left(h_{2}+\frac{1}{2} 0000^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~J}^{2}} \frac{0 \mathrm{D} / \mathrm{D}_{\mathrm{s}}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}-1046.04 \frac{\mathrm{~kJ}}{\mathrm{lg}}\right)=-30 \mathrm{~kJ} / \mathrm{s} \\
& \text { (4) } v_{2}=\frac{A_{2} V d_{2}}{\dot{m}} \quad h_{2}=-\frac{1}{2} 000^{2} \frac{\mathrm{~m}^{2}}{s^{2}} \frac{10 / l_{s}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}+1046.04-15 \frac{\mathrm{lJ}}{\mathrm{~g}} \\
& \text { (4) istlun } \quad=711.04 \mathrm{~b} / \mathrm{ar} \\
& \text { (4) } \dot{W}=0 \quad \text { Table } A-17 \partial l=7^{11.04} \quad b 7 h_{g}:
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) Solver/ahr: mils! } \dot{Q}^{\prime} \text { ! } \\
& \text { (4) interpolate } T_{2} \text { (} T_{2}=d_{1}+\left(d_{2}-d_{1}\right) \frac{5-g_{1}}{52-91}=690 \mathrm{~K} \\
& \dot{m}=\frac{A_{1} V d_{2}}{v_{2}} \quad v_{2}=\frac{A_{2} V d_{2}}{\dot{m}}=\frac{\frac{\pi}{4} 0.05^{2} \mathrm{~m}^{2} 800 \mathrm{~m} / \mathrm{s}}{{ }_{2} \mathrm{O}_{\mathrm{s}} / \mathrm{s}}=0.7854 \frac{\mathrm{~m}^{3}}{\mathrm{l}}
\end{aligned}
$$

