EML 3100 Exam 4
Page $1 / 4$

THERMODYNAMICS
Solutions (dommelen@eng.fsu.edu)

4/29/09 3:00-5:00 pm
series a

DO NOT WRITE ON THE BLUE TABLES. RETURN THE BLUE TABLES WITH YOUR EXAM. DO NOT STAPLE THE EXAM SHEETS TOGETHER. Put your answers on the same sheet as the question, Use many digits in your computation. You must give the units of your answers. You must write clearly. Encircle the right answer number in multiple choice. To correct, erase the wrong circle as well as you can and encircle the corrected answer number twice. Best possible answer for multiple choice. For questions asking a number, putting the clear correct formula(s) below the question might result in partial credit even if the answer is wrong. Not following those requirements will result in reduced or no credit.

1. (3%) What would you normally best model as a control volume:
(a) An isolated lake
(b) A stretch of river
(c) A mountain
2. (3%) If you have saturated liquid in an insulated container and you increase the temperature reversibly,
(a) it turns into compressed liquid
(b) it turns into two-phase
(c) it turns into superheated vapor
3. (3%) Air in the room is heating up at a rate of $2^{\circ} \mathrm{C} / \mathrm{min}$. Its internal energy is changing at a rate of $\mathrm{kJ} / \mathrm{kg}$-min.
4. (3\%) Engine oil is being compressed by the reversible oil pump from 1 bar to 2.5 bar. The work needed by the pump is \qquad $\mathrm{kJ} / \mathrm{kg}$. Ignore kinetic and potential energy.

5 . (3\%) Half a kg of lead cools from $100^{\circ} \mathrm{C}$ down to the ambient temperature of $25^{\circ} \mathrm{C}$. The net entropy generated during this process is \qquad kJ / K.
6. (3%) If liquid water at standard ambient conditions flows with a velocity of $5 \mathrm{~m} / \mathrm{s}$ through a pipe with a 3 cm diameter, the amount of water flowing through the pipe will be \qquad kg / s.
7. (3%) Helium enters a reversible adiabatic turbine at 1 Mpa and 300 K and comes out at 120 K at the same height and velocity that it entered. The work produced by the turbine is \qquad $\mathrm{kJ} / \mathrm{kg}$.
8. (3%) A heat engine extracting heat from a $100^{\circ} \mathrm{C}$ underground geothermal reservoir on a $25^{\circ} \mathrm{C}$ day can produce up to \qquad kJ of work for each kJ of heat extracted.
9. (3%) If the ambient pressure is 75 kPa , then water boils at \qquad ${ }^{\circ} \mathrm{C}$.
10. (3\%) Suppose that it is $-10^{\circ} \mathrm{C}$ outside and $25^{\circ} \mathrm{C}$ inside your house. Then a resistance heater using 2 kW of electricity would add kW of heat to your house while an ideal heat pump using
2 kW of electricity would add \qquad kW .
series a
11. (35\%) An insulated piston-cylinder combination contains 0.2 kg diatomic nitrogen at $10^{\circ} \mathrm{C}$ and 100
kPa . The nitrogen is now reversibly compressed until its temperature is $427^{\circ} \mathrm{C}$.
(a) Find the final pressure, the heat transfer, and the work.
(b) Find the same quantities but now assuming that the specific heats of nitrogen are constant at their $25^{\circ} \mathrm{C}$ values.

You must show the derivations and reasoning completely and correctly for full credit. You must give units for your answers. Most accurate procedure only unless stated otherwise.
12. (35\%) An reversible isothermal compressor takes in $2 \mathrm{~kg} / \mathrm{s}$ of water at 500 kPa and $200^{\circ} \mathrm{C}$. It exits the compressor with an entropy of $3 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. Kinetic and potential energy can be neglected.
(a) Construct the initial phase of the water in the $P v$ diagram. Construct the final phase of the water in the Ts diagram. Mark all lines and points used to do it with their values. Do not put more info in the diagrams than is needed to construct the phases. State the phases. Show the process in the $P v$ diagram.
(b) Find the heat transfer from the water and the work required by the compressor.
(c) If the surroundings are at $27^{\circ} \mathrm{C}$, then what is the total entropy generated? Is the second law violated or not? Why?

You must show the derivations and reasoning completely and correctly for full credit. You must give units for your answers. Most accurate procedure only unless stated otherwise.

