
EML 5709 Fall 2006
Homework Problems

Do not print out this page. Keep checking for changes.

1 9/6

1. 1.4

2. If the density of air at sea level is 1.225 kg/m3, what is the average spacing of the molecules? Molecular
mass of air is 28. For what size of bodies would you expect major problems in trying to use a continuum
approximation? If the free path length is 6.6 10−8 m, at what size would you expect that normal
equations of motion (like the Euler and Navier-Stokes equations) become unusuable? When the body
size becomes comparable to the mean molecular spacing or to the mean free path length?

Repeat for 200 km height, where the number of molecules is 8 1015/m3 and the free path length 200 m.

2 9/13

1. 4.1

2. A two-dimensional flow field is given in Eulerian (and Cartesian) coordinates by:

u = −y v = x

Integrate the Cartesian particle path of a typical particle in this flow, assuming that the particle is
initially at the point x = ξ and y = η. Sketch the particle path. Write down the Lagrangian description
of this flow. (Hint: If you do not remember how to solve systems of ordinary differential equation,
differentiate the ODE for x once and then get rid of y in the equation using the other equation. Solve
that 2nd order ODE for x. Then go back to the original ODE to figure out what y is. Then apply the
initial conditions.)

3. What is the acceleration vector of the fluid particles for the flow above? So what do you think about
the pressure field? How do isobars look?

4. Find the streamlines for the flow above from solving

d~r//~v, dt = 0

Do you think this flow would be easier to solve in polar coordinates r, θ?

3 9/20

1. Consider the following flow of water through a two dimensional duct:
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If the length of the duct is 10 m and the total vertical height of the duct is

h(x) = h(0) − 0.05x (0 ≤ x ≤ 10)

with h(0) = 1 m and the fluid enters at x = 0 with a velocity u0 = 3 m/s, show that the centerline
velocity at arbitrary x equals

u =
3

1 − 0.05x
m/s v = 0 m/s

and that the pressure is

p = p(0) + 4500 −
4500

(1 − 0.05x)2
Pa

where p(0) is the pressure at x = 0, which you can take to be zero. Use mass conservation and Bernoulli.
What are the exit velocity and pressure at x = 10 compared to the ones at the entrance x = 0?

2. See whether or not Euler’s differential momentum equations are satisfied on the centerline:

ρ
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −
∂p

∂x

ρ
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(By symmetry, v and ∂p/∂y are zero on the symmetry line.)

3. Use differential mass conservation,
∂u

∂x
+

∂v

∂y
= 0

to determine the sign of ∂v/∂y on the centerline. So, will v be positive or negative above the centerline?
And is that what you would expect?

4. 4.5 (v3 = 0. Note that this is our old stagnation point flow.)

5. 4.8 (v3 = 0. Note that this is our old stagnation point flow.)

6. 4.2 (Note that you can find expressions for the vorticity in cylindrical coordinates in the appendices at
the back of the book.)

7. 4.9 (Note that you can find expressions for the strain rate tensor in cylindrical coordinates in the
appendices at the back of the book.)

2



4 9/29

1. Find the circulation around a circle around the origin for the difused vortex flow of question 4.2c by
directly integrating the line integral. Also find it by integrating the vorticity in accordance with Stokes’
theorem. Do you get the same result? If not, explain why not.

2. Find the circulation around a square around the origin for the line vortex flow of question 4.2b by directly
integrating the line integral. Also find it by integrating the vorticity in accordance with Stokes’ theorem.
Do you get the same result? If not, explain why not. (Hint: Note that the flow of the previous question
is the same as the one here if seen from a large distance. So, if you do the integrals of the previous
question over a large circle and you look at them from far away, things would look the same.)

3. 5.1 (b). Also do and explain
∫

FR
ρ dV . Note that this is incompressible inviscid flow. The viscous flow

is much more complex.

4. If the jet leaves a rocket through an area of 0.5 m2 at a velocity of 500 m/s relative to the rocket, and
the exit density is 0.5 kg/m3, what can you say about the total mass of the rocket?

5. Find the average exit velocity in the pipe flow of question 5.13. Do the same for the flow of 5.14.

6. If in question 5.12, the liquid comes out of the tube of radius R with a Poiseuille axial velocity

vz = Vmax

(

1 −
r2

R2

)

,

and unknown radial and swirl velocity components, and with density ρ, then derive the mass flowing out
of the tube per unit time. If at the short distance below the pipe, the stream has contracted to a radius
Rc and the velocity has become uniform and equal to ~v = Uı̂z, then what is the value of the constant U
in terms of the other parameters?

7. Suppose you want to compute the flow in a square region. Show how you can reduce the number of
unknowns to a finite set by restricting the computation to a finite set of points. Formulate an equation
for each (non boundary) point based on the law of mass conservation (continuity).

5 10/4

1. 5.1 (a).

2. 5.1 (d).

3. 5.1 (c) and (e).

4. 5.1 (f).

5. 5.3.

6 10/13

1. 5.11

2. 5.12

3. 5.22
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1. In the last problem of set 9/29, you wrote and approximate continuity equation for a small Cartesian
volume element in 2D. Show that if the size of the volume element becomes zero, the equation becomes
the conservative differential continuity equation.

2. 5.2

3. Rederive the results of question 5.2 by writing integral continuity for the region between two cylinders,
respectively two spheres, of radius r0 and r.

8 10/27

1. 6.3

2. 6.5

9 11/6

All problems are for incompressible flow (constant density and coefficient of viscosity.)

1. 7.9. You can assume that the film thickness is so small that the curvature of the pipe wall can be
ignored. In that case, it becomes 2D steady flow along a flat wall of spanwise length 2πr0 in the z-
direction. Steady 2D flow means in this case that velocity and pressure are independent of z and time t
and that the velocity in the z-direction w = 0. Do not ignore gravity. Assume “developed flow” in which
the velocity components have become independent of x (taken to be downwards, with y the distance from
the cylinder surface). For the boundary conditions at the free surface, assume that the liquid meets air
of zero density and constant pressure pa there. Also write appropriate boundary conditions where the
fluid meets the cylinder surface. Do not make any other assumptions than listed above; they should be
all you need.

2. What is the wall shear for the previous flow? Explain this value physically.

3. 7.5 Ignore gravity. To be original, assume that, in cylindrical coordinates, the streamlines are circles
around the axis (which tells you that some velocity components are zero) and that the velocity and
pressure are steady and independent of the axial coordinate z. Do not assume that the velocity com-
ponents are independent of θ. Skip the r-momentum equation for now, you can do without by showing
that the pressure gradient in the θ direction must be zero. To show that the pressure gradient in the
θ direction is zero, first show that it must be independent of θ, (like we showed in class for duct flow).
Next integrate to find the form of the pressure and use the fact that the pressure at a given point must
have a unique value, so that if θ increases by 2π, the pressure must return to the same value. (p 785 has
the NS equations you need and 781 the continuity equation.)

4. Show that the skipped r-momentum equation in the previous problem can also be satisfied, and give the
most general pressure if all equations are satisfied.

5. (noncredit question) Consider the below graph for the minor head losses due to sudden changes in pipe
diameter:
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Discuss the following issues as well as possible from the sort of flow you would expect.

(a) How come the head loss become zero for an area ratio equal to 1?

(b) Why would the head loss be exactly one for a large expansion? Coincidence?

(c) Why would the head loss be less than one if the expansion is less? If the expansion is less, is not
the pipe wall in the expanded pipe closer to the flow, so should the friction with the wall not be
more??

(d) Why is there a head loss for a sudden contraction? The mechanism cannot be the same as for the
sudden expansion, surely? Or can it?

10 11/15

1. 7.17a corrected. Repeat the Stokes problem analysis, but now assume that instead of the plate velocity
for t > 0 constant being a constant V0, the plate velocity is V0(t) = Atn. (So that Stokes’ 2nd problem
corresponds to the special case n = 0.) Assume the velocity profiles become similar in terms of fn =
u/V0(t) and η = y/δ(t) where δ(t) is a typical boundary layer thickness to be determined and fn(η) the
scaled velocity profile. Plug the similarity assumption u = V0(t)fn(η) into the PDE, and note that it
does not separate if n is not zero. But show that δ is still the same as for Stokes 2nd by writing the
PDE at η = 0 and noting that f ′′(0)/nf(0) is just a constant that you can take to be 4 (any other value
only changes the definition of δ.) With δ found, clean up the PDE to a simple ODE for fn(eta). Verify
that for n = 0 it is Stokes’ one (f ′′

0
+ 2ηf ′

0
= 0.)

2. 7.17b Differentiate the Stokes ODE and verify that it produces the ODE for f−1/2 if f ′

0
= f−1/2. Since

the general solution for the Stokes problem was

f0 = C1 + C2erfc(η),

where erfc(∞) was zero, its derivative provides a solution for f−1/2. Show that it can satisfy both
boundary conditions for f−1/2, at η = 0 and η = ∞. What does C2 have to be?

3. 7.17c. Now go the other way, to get the requested solution at n = 1/2. Differentiate the equation for
f1/2, and you will get an equation for f ′

1/2
for which you know the solution. Integrate to find f1/2 itself,

and make sure that the boundary condition at η = ∞ is satisfied. Don’t worry too much about the
boundary condition at η = 0. (This process can be repeated to find solutions for any half-integer value
of n.)
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4. 7.17d. Is there a value of n for which the shear stress that the plate applies to the fluid is constant? If
so, sketch the plate velocity for that case as a function of time.

5. It is sometimes claimed that bathtub vortices rotate counterclockwise in the northern hemispere and
clockwise in the southern one. Assume you are on the north pole and fill a cylindrically symmetric
bathtub of radius 1 m with water. When a circular contour of water particles of initial radius 1 m goes
out the drain of radius 1 cm, the tangential rotating velocity of the cicular contour increases according to
Kelvin’s theorem. Find out how much the tangential velocity was when the water was at rest compared
to the tub with the drain closed, and from that, the tangential velocity when it is going in the drain.
Express in terms of the revolutions per second the contour makes.

6. Solve the incompressible irrotational flow around an expanding cylinder of radius r0(t). Write the
partial differential equation and boundary conditions. Solve after assuming that the tangential velocity
component vθ is zero by symmetry. (Actually, you might notice that the tangential velocity component
does not have to be zero, but anyway.)

11 11/22

1. The potential of irrotational transverse flow around a circular cylinder of radius r0 is

φ = U

(

r +
r2
0

r

)

cos(θ) −
Γ̄

2π
θ

where U is the magnitude of the velocity at large distances, and Γ̄ the circulation around the cylinder.
Verify that the correct boundary conditions at the surface of the cylinder and at large distances are
satisfied.

2. Verify that the circulation around the cylinder is indeed Γ̄ by integrating around a suitable contour.

3. For the flow of the previous question, find the pressure on the cylinder surface as a function of angular
location.

4. For the flow of the previous question, find the force on the cylinder assuming the viscosity is zero, so there
are no viscous stresses on the cylinder surface. Is d’Alembert satisfied? Is Kutta-Joukowski satisfied?

5. Derive the streamfunction of ideal stagnation point flow. The steps are similar to the ones used to derive
the corresponding potential flow in class. From the streamfunction, determine the mathematical form
of the streamlines.

12 12/01

1. Derive the streamfunction of irrotational incompressible flow around a cylinder from solution of the
PDE. The steps are similar to the ones used in class to derive the potential.

2. Compute approximate values of the Reynolds number of the following flows:

(a) your car, assuming it drives;

(b) a passenger plane flying somewhat below the speed of sound (assume an aerodynamic chord of 30
ft);

(c) flow in a 1 cm water pipe if it comes out of the faucet at .5 m/s,

In the last example, how fast would it come out if the Reynolds number is 1? How fast at the transition
from laminar to turbulent flow?
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3. If the complex potential flow of a source and a line vortex equal

F =
Q

2π
ln(z) F = i

Γ̄

2π
ln(z)

then what would be the real velocity potentials φ? (use polar coordinates.) Differentiate to find the
velocities and compare to questions 4.2 and 4.9.

4. According to potential flow theory, what would be the lift per unit span of a flat-plate airfoil of chord 2
m moving at 100 m/s at sea level at an angle of attack of 10 degrees? What would be the drag?

5. What would be the circulation around the airfoil of the previous question?

6. Identify the boundary layer variables x, y, u, and v for the case of a circular cylinder of radius r0 in
terms of the cylindrical variables r, θ, vr, and vθ.

7. Using the result of the previous question, write the continuity equation in cylindrical coordinates from
table C.3 in terms of the boundary layer coordinates and comment on the differences from the boundary
layer continuity equation. Is the difference small?

8. Similarly, write the r and θ momentum equations of table C.5 in 2D and cross out the terms the boundary
layer approximation ignores. Ignore gravity.

13 12/06

1. Write the boundary layer equations for the unsteady boundary layer flow around a cylinder that is
impulsively started from rest at time t = 0 into a velocity U compared to the ambient air. (In other
words, relative to the cylinder, the flow velocity far away equals Uı̂.) Give the pressure inside the
boundary layer and the boundary conditions at the wall and at the outside edge of the boundary layer.

2. The potential flow towards a sink of fluid at the origin has polar velocity components

vr = −
Q

2πr
vθ = 0

An infinitely thin, semi-infinite flat plate is placed in this flow field along the positive x-axis. Write the
equations for the boundary layer problem along the top of the plate.

3. Fully specify the boundary conditions for the boundary layer problem at the surface at the plate and
just above the boundary layer. Identify the pressure at all points in the boundary layer. What happens
to the pressure when the sink is approached?

4. Formulate an appropriate similarity assumption u = ue(x)f ′(η), η = y/δ(x). Sketch unscaled and scaled
velocity profiles.

5. Satisfy continuity by defining a streamfunction for the boundary layer flow. Write the momentum equa-
tion and the boundary conditions in terms of this streamfunction. (Actually, the v-boundary condition
would need to replaced by the condition that the wall is the ψ = 0 streamline, if you are picky.) Answer:

f ′2 − ff ′′ −
ueδ

′

u′

eδ
ff ′′ = 1 +

ν

u′

eδ
2
f ′′′

f(0) = f ′(0) = 0 f ′(∞) = 1

6. Evaluate the momentum equation at the wall, noting the wall boundary conditions and the fact that
f ′′′(0) is just some constant that you can take equal to minus one. (Any other value just changes the
definition of δ, not the physical flow.) Determine what the representative boundary layer thickness δ(x)
is. Answer the question whether the boundary layer gets thicker when more and more fluid is being
retarded by the viscous forces. If it does not, explain why not.
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7. Plug the expression for the boundary layer thickness into the momentum equation and note that f drops
out. So our third order equation for f ′ is really a second order equation for a variable g = f ′. Reduce
this second order equation to a first order equation for g′ considered as a function of g. Use the chain
rule of differentiation. Answer:

g2 = 1 +
dg′

dg
g′

8. Solve this equation for g′ as a function of g. The integration constant can be found from the boundary
condition at infinite η: f ′(∞) = 1, so f ′′(∞) = 0. Answer (with the right sign of the square root:)

√

3

2
g′ =

√

g3 − 3g + 2

9. Show that the cubic in the above first order ordinary differential for g can be factored as (1− g)2(2+ g),
and then integrate to find η as a function of g. Use a wall boundary condition to find the integration
constant. Then invert the formula for η to find g, hence the velocity profile f ′ as a function of η.
Congratulations. You have just solved the boundary layer equations analytically for this flow. Answer:

f ′(η) = 3 tanh2

(

η
√

2
+ tanh−1

(

√

2

3

)

)

− 2

with

u = −
Q

2πx
f ′(η) v =

y

x
u p = p∞ −

ρQ2

8π2x2
η =

y
√

2πν/Qx
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