Incompressible Flows

1 Duct Flow
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Bernoulli:

p1+ 2pVE + pghy = pa + 2pVZ + pghs

Since p; = ps = p, and V; = Va:

hence hq

pghi = pghs
= hy.

Exercise:

A S A

What is wrong in this analysis?

Is p1 = po = p, correct?

Is Vi = V5 correct?

When does the Bernoulli law apply?
How about the energy balance?

Is the Bernoulli law the correct one?

Is the length of the connecting duct AD important?



1.1 Entrance

Thin boundary layer
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Near the entrance we can learn a lot from Bernoulli:

pL+ 2oV + pghy = p2 + 2V5 + pghs
Exercise:
Explain Why PB = PB = pPpBr although VB 75 0 while VB/ = VB// =0 and hB/ ~ hB ~ hB//
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Exercise:

Which one is larger:
® py or pyr?
o Vyor Vy?

1.2 Developed
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At and beyond station C the flow is called developed. We will assume that the flow is nonturbulent and that
the streamlines have become parallel. These assumptions allow us to solve the incompressible Navier-Stokes
equations exactly!

Note that for parallel streamlines, (unidirectional flow), v = 0.

Continuity:



y-momentum:

D dp
p%:_pg_a_—i_qu/ = p=—pgy+ P(x)
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r-momentum:
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hence:
(12_u = EE = constant
dy2  pdx
Exercise:

Why is it constant? If the duct is long, how can you approximate the constant? What is the
sign of dP/dx?
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The boundary conditions «(0) = u(h) = 0 give the constants:

dr tant L 4P (h ) 0 + dr + tant

— =constant uw=—-———(h— v= =— — 1 + constan

dz 2u dx vy b gy dz
Maximum velocity:

h? dP 4(h —y)y
v =——— u=——-"20
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Mass flux (per unit span):
h
m = /pﬁ-ﬁdS z/ pudy = %pvmaxh
0

The volumetric flow rate @ = m/p
Average velocity:

o 2
m = pQ) = pvaveh  vave = 5Umax

Note that @@ = vayeh and 1 = pvayeh.
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Vorticity:



Shear:

TETey = <%;/+ g_z) - _%%(h_2y)
Cf
=
R

CH

Exercise:

Verify the integral momentum equation for any duct length L.
e What is the rate of change of linear momentum inside?
e What is the net outflow of momentum through the boundary?

e What are the forces on the control volume?
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Note that this flow becomes turbulent at a Reynolds number of say 1,500 (in the range from 1,000 to 8,000).
The above expressions do not apply to turbulent flow.

You should now be able to do 7.1, 2, and 5 to 11 Notes:

e In 7.5, write and solve the Navier-Stokes equations in cylindrical coordinates assuming that ¢ = 2guvg(r)
e In 7.9, write and solve the Navier-Stokes equations in cylindrical coordinates assuming that ¥ = i,v,(r)

e In 7.11, write and solve the Navier-Stokes equations in 2D planar flow for each fluid separately assuming
that U1 = uq(y) and ¥y = fus(y). Carefully consider the boundary condition where the fluids meet.

2 Head Loss

Steady incompressible flows through pipes are very important for many applications. In the simplest case we
will have a single duct with a mass flux m = pQ = pvS through it:

i

2 vt = AT,

Note that according to continuity, 7 is constant, so that the average velocity v increases when S becomes
smaller.



Ideally, the flow would be inviscid (no dissipation) and in each cross section the velocity, pressure and the
height would be constant. In that case the Bernoulli law applies as:

=4 103 4+ ghy = — Ly 10} + ghy = constant
P p

In real flows with dissipation and nonuniform velocity in the cross sections, we can write

% + 3205 + ghy = % + 3ot + ghy — hy

where h; is the head loss, the effect of irreversible dissipation of energy. Also, Qav is the average kinetic
energy per unit mass of the fluid at the cross section; & = 1 as long as the flow is uniform at the cross section.
For the developed duct with the parabolic profile, « = 54/35 = 1.5. For laminar pipe flow, @ = 2. For
turbulent flows, « is usually not very far from 1. Finally, p and h are the average pressure and height of the
cross section.

Note: The above equation can be derived by integrating the mechanical energy equation over the duct. It
may then be verified that all averages are weighted over the mass flux. The exception is v, which is still the
plain average velocity.

Note: When treating air at low velocities as incompressible, use a single density: do not use p1/p; and pa/pa,
even if both densities are known precisely.

2.1 Values

Typical head loss values for important situations may be found in tables. For bends and area changes, they

can be expressed as a head loss coefficient: h; = K1 ’Uref
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Exercise:
Why express the headloss in terms of %vief? Why not, say, pyes/p?
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For the developed two-dimensional duct flow in the previous subsection, the head loss over a distance L of the

duct is:
—+2?/2“2+9/ —+ ?/1U1+9/ hy
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This head loss (called major head loss) can be given in terms of a friction factor:

For laminar flow in a circular pipe,

There will be an additional head loss for the entrance effects (called minor head loss):

vy

For the duct exit, the kinetic energy will probably be mostly lost:

You should now be able to do 7.3 and 4
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Individual pressure differences:

DLy ghy =22 4 102
p p
L
p—A—F%vgz%—s—a%vQ—FKe fﬁ%Q
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Total:
ghl—ghg—K52U +f 211 +KD

where v is the average velocity in the duct.

3 Stokes’ 2nd

Stokes’ second problem, also erroneously called Rayleigh flow:
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Continuity:
y-momentum:
x-momentum:

The z-momentum equation becomes:

where v = p/p is the dynamic viscosity.
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Exercise:



How would you normally find u?
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A simpler way to solve is to guess that the solution is similar: after rescaling u and y, all velocity profiles look
the same.

Original profiles:

Supposed shape after scaling u with Vj, and y with a characteristic boundary layer thickness 0 that increases
with time:
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Mathematical form of the similarity assumption:

v_ (Y
i = (5t77)
The proof is in the pudding; if it satisfies the P.D.E., I.C., and B.C., it is OK.

1
Up = Vlyy = —Vof’é%ét = V%fl/5—2

Put n =y/é:
Vo = Vo
) 62
Separate into terms depending only on 1 and terms depending only on ¢:

I
v
—M = — = constant = 5

1" - 56,

It does not make a difference what you take the constant; this merely changes the value of §, not the physical
solution.
Solving the O.D.E.s for  and f, we solve the P.D.E. For the boundary layer thickness dd; = 2v so

6 = Vdut

For the velocity profile f”/ = —2nf’ hence
= erfe(n)

where erfc is the complementary error function defined as

erfe(x) = % /00 e ¢ d¢

Exercise:



Derive the expressions for § and f.

Total:

quOerfc(
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6 = Vdut

You should now be able to do 7.14, 16, 17




