
EML 5709 Fall 2010
Homework Problems

Do not print out this page. Keep checking for changes. Homeworks should normally be online three school
days before they are due. Deviations may occur due to holidays or the end of the semester.

Explain all reasoning.

1 9/1 W

1. If the density of air at sea level is 1.225 kg/m3, and the molecular mass 28 g/mol, then what is the
number of molecules per unit volume? What is the average spacing ` of the molecules?

Consider a molecule of diameter d that moves over one free path length λ. During that motion it will hit
another molecule if the center of the other molecule is within a radius d from the path of the molecule.
In other words, the center of the other molecule must be inside a cylinder of radius d around the path
λ of the first molecule. There should be about one collision in a free path, so there should be about one
other molecule within the cylinder. So the free path can be ballparked from setting the volume of the
cylinder equal to the average volume per particle:

πd2λ = average volume occupied per particle

Take the average diameter of the molecules to be 0.3 nm and compute λ. A more careful analysis says
you still need to divide this by

√
2, so do so.

Suppose you have a body of typical size L. Which length, ` or λ, relative to L, determines whether
you can define a continuum density and velocity? Which length determines whether you can define a
continuum density and velocity that you can use to compute the flow development?

2. A carbon nanotude has a diameter of 1 nm. There is a steady flow of standard air around it. Can you
define a continuum density and velocity? Do not answer to quickly. Note that in a steady flow you can
average over both space and time.

Now suppose the flow about the nanotube is truly unsteady. Can you define a continuum density and
velocity in that case? Comment in particular about the “ensemble average.”

Will you be able to use the Euler or Navier-Stokes to find these continuum fields? If not, will you be
able to write modified equations for the continuum quantities that you can use instead?

3. Is a rain droplet in saturated air a Lagrangian region / material region / control mass? How about a
droplet in dry air? Explain.

4. For ideal stagnation point as discussed in class, compute the pressure field (Eulerian) from the Bernoulli
law. Then verify Newton’s second law ρ~a = −∇p.

5. Convert the velocities of ideal stagnation point flow to polar coordinates using

vr = u cos θ + v sin θ vθ = −u sin θ + v cos θ x = r cos θ y = r sin θ

Then find the streamlines in polar coordinates. Show that you get the same answer.

6. The velocity field of water waves near the surface is given by

u = ε sin(kx + ωt) v = −ε cos(kx + ωt)

where ε, k, and ω are all positive constants. Find and draw the streamlines of the flow. You can assume
that the water surface is (approximately) at y = 0 and the water is below that surface.

7. The pathlines for water waves are more difficult to find. Therefor, assume that ε is small. In that case
the particle displacements are small, and that allows you to approximate x in the sine and cosine by the
x-value x0 of the initial particle position which is constant:

u = ε sin(kx0 + ωt) v = −ε cos(kx0 + ωt)

Find and draw the particle paths under that assumption. Compare with the streamlines. Why are they
not the same?
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2 9/8 W

1. A steady stream of air enter a pipe with a diameter of 1” at a velocity of 20 m/s at a pressure of
1 bar. The pipe has a gradual contraction in diameter to 1

2
”. What are the velocity and pressure

after the contraction? Ignore viscous effects. (This involves the Bernoulli law and mass conservation
of undergraduate fluid mechanics.) This is a steady flow, ∂~v/∂t = 0, so explain how it is possible for
the fluid to change velocity in a steady flow. In particular, write the material derivative of the velocity
in Eulerian coordinates and discuss the various terms. Write in particular also the expression for the
acceleration on the axis of the pipe, taking it as your x-axis.

2. You are driving your Miata at 80 mph on a standard day. At a point on the nose just above the boundary
layer the flow velocity of the air relative to the car is 120 mph. What is the pressure on the car surface
at that point?

3. Newton’s second law per unit volume reads

ρ
D~v

Dt
= ~f

where f is the net force on the fluid per unit volume. Assume inviscid flow, in which case the force per
unit volume is minus the pressure gradient plus the force of gravity, so

ρ
D~v

Dt
= −∇p + ρ~g

Write these equations out fully in Eulerian coordinates for each of the three Cartesian velocity compo-
nents u, v, and w. Use the Eulerian form of the material derivative as given in class. The equations you
should get are known as the Euler equations.

4. Substitute the Eulerian velocity field of stagnation point flow into the Euler equations that you obtained
above. You get three equations for the pressure, one giving its x-derivative, one its y derivative, and
the third its z-derivative. More than one equation for a single unknown p is usually too much, but show
that in this case, there is indeed a solution p that satisfies all three equations. Find out what it is. Take
gravity to be in the negative y-direction, so that gx = gz = 0 and gy = −g.

5. The velocity field in Couette flow is given by

u = cy v = 0 w = 0

Draw the streamlines of this flow and a couple of velocity profiles. Find the velocity derivative tensor
A, the strain rate tensor S, and the matrix W .

6. In Poiseuille flow (laminar flow through a pipe), the velocity field is in cylindrical coordinates given by

~v = ı̂zvmax

(
1 − r2

R2

)

where vmax is the velocity on the centerline of the pipe and R the pipe radius. Use Appendices B and
C to find the velocity derivative and strain rate tensors of this flow. Do not guess. Evaluate the strain
rate tensor at r = 0, 1

2
R and R. What can you say about the straining of small fluid particles on the

axis?

3 9/15 W

1. If the surface temperature of a river is given by T = 2x + 3y + ct and the surface water flows with a
speed ~v = ı̂ − ̂, then what is c assuming that the water particles stay at the same temperature? (Hint:
DT/Dt = 0 if the water particles stay at the same temperature. Write this out mathematically.)
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2. A boat is cornering through this river such that its position is given by xb = f1(t), yb = f2(t). What is
the rate of change dT/dt of the water temperature experienced by the boat in terms of the functions f1

and f2?

3. Is the Poisseuille flow of the previous homework an incompressible flow? Derive the principal strain rates
and the principal strain directions as a function of the radial position. Also find the vorticity.

4. For the Poisseuille flow of the previous question, describe what motions small particles perform. Neatly
sketch a particle, that was spherical at time t, at time t + dt. Show both the individual motions and the
combined motion. Repeat for an initially cubical particle.

5. Write the velocity derivative tensor for two-dimensional ideal stagnation point flow. (With the velocity
field as discussed in class.) From this tensor, decide whether or not ideal stagnation point flow is an
incompressible flow. Find the strain rate tensor. Diagonalize it. What are the principal strain rates?
What are the principal strain axes (i.e. the directions of ı̂′, ̂′, and k̂′)? Neatly sketch the deformation
of an initially cubical particle (aligned with the principal strain axes), during a small time interval. Also
sketch the deformation of an initially spherical particle. Also show the complete particle changes when
you include the solid body rotation.

4 9/24 F

1. If you put a cup of coffee at the center of a rotating turn table and wait, eventually, the coffee will be
executing a “solid body rotation” in which the velocity field is, in cylindrical coordinates:

~v = ı̂θΩr

where Ω is the angular velocity of the turn table. Draw samples of the streamlines of this flow. Find
the vorticity and the strain rate tensor for this flow, using the expressions in appendices B and C. Show
that indeed the coffee moves as a solid body; i.e. the fluid particles do not deform, and that for a solid
body motion like this, indeed the vorticity is twice the angular velocity.

2. An “ideal vortex flow” is described in cylindrical coordinates by

~v =
C

2πr
ı̂θ

where C is some constant. Draw samples of the streamlines of this flow. In cylindrical coordinates, nabla
is given by

∇ = ı̂r
∂

∂r
+ ı̂θ

1

r

∂

∂θ
+ ı̂z

∂

∂z

Evaluate ∣∣∣∣∣∣∣

ı̂r ı̂θ ı̂z
∂

∂r

1

r

∂

∂θ

∂

∂z
vr vθ vz

∣∣∣∣∣∣∣

for this flow. Compare the answer with the vorticity ω = ∇ × ~v, for which you can find the correct
expressions in appendix B. Explain why the determinant does not give the correct result for the vorticity.
In particular note that in

∇× ~v =

(
ı̂r

∂

∂r
+ ı̂θ

1

r

∂

∂θ
+ ı̂z

∂

∂z

)
× (̂ırvr + ı̂θvθ + ı̂zvz)

the unit vectors ı̂r and ı̂θ are not constants but depend on θ. (d̂ır/dθ = ı̂θ and d̂ıθ/dθ = −ı̂r.)

3. The “circulation“ Γ along a closed contour is defined as

Γ ≡
∮

~v · d~r
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For both the solid body rotation of question 1, and the vortex flow of question 2, find the circulation
along the unit circle in the x, y-plane. Next, only for the vortex flow, find the circulation along the closed
curve consisting of the following segments:

(a) The part of the curve y = cosh(x), z = 0 from x = 2 to x = −3;

(b) vertically downward to the curve y = − cosh(cosh(x)), z = 0 at x = −3;

(c) following the curve y = − cosh(cosh(x)), z = 0 from x = −3 to the point x = 0, hence y = − cosh(1),
z = 0;

(d) in a straight line along the z direction to the point x = 0, y = − cosh(1), z = 3.5;

(e) in a straight line from x = 0, y = − cosh(1), z = 3.5 to the starting point x = 2, y = cosh(2), z = 0.

Note that in cylindrical coordinates

d~r = ı̂rdr + ı̂θrdθ + ı̂zdz ~v = ı̂rvr + ı̂θvθ + ı̂zvz

4. According to the Stokes theorem of Calculus III, you should have

∮
~v · d~r =

∫
∇× ~v · ~n dS

where the second integral is over the inside of the contour. So instead of integrating the circulation Γ as
you did in question 3, you could have integrated the component of vorticity normal to the circle over the
inside of the circle. Show that if you do that integral using the vorticity that you found for solid body
rotation in question 1, you do indeed get the same answer as you got in question 3. Fine. But now show
that if you do the integral of the vorticity over the inside of the circle for the vortex flow of question 2,
you do not get the same answer for the circulation as in question 3. Explain which value is correct. And
why the other value is wrong.

5. Write down the worked-out mathematical expressions for the integrals requested in question 5.1. Explain
their physical meaning. Don’t worry about actually doing the integrations. However, show integrands
and limits completely worked out.

Take the surfaces SI , SII , SIII , and SIV to be one unit length in the z-direction. (To figure out the
correct direction of the normal vector ~n at a given surface point, note that the control volume in this
case is the right half of the region in between two cylinders of radii r0 and R0 and of unit length in the
z-direction. The vector ~n is a unit normal vector sticking out of this control volume.)

6. 5.14

5 9/29 W

1. 5.11. Cearly define what control volume you are using.

2. 5.12. This question explains why the water stream coming out of a faucet contracts in area shortly below
the faucet exit. As always, both mass and momentum conservation are needed.

The faucet exit velocity is assumed to be of the form of Poisseuille flow:

vz = vmax

(
1 − r2

R2

)

You can assume that the stress tensor at the faucet exit is of the form (in cylindrical coordinates)

¯̄τ =




0 0 τ0r/R
0 0 0

τ0r/R 0 0




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in other words, much like the strain rate tensor that you derived earlier for Poisseuille flow.

Take the faucet exit as the entrance of your control volume. Take as exit to your control volume a slighly
lower plane at which the radius of the jet has stabilized to R2 and the flow velocity has become uniform
(independent of r). For a uniform flow velocity there are no viscous stresses. Gravity and pressure forces
can be ignored compared to the high viscous forces in this very viscous fluid.

3. Write a finite volume discretization for the x-momentum equation for the little finite volume in polar
coordinates. Just like the continuity equation done in class, your final equation should only involve
pressures, densities, and velocities at the center points of the finite volumes. Ignore the viscous stresses
for now.

The unknown velocities used in the computation should be taken to be the polar components vr and vθ.
But momentum conservation for x-momentum is asked. (Conservation of r-momentum or θ-momentum
would be complete nonsense.) So you will need to write the x-component of velocity in terms of the
polar unknowns. Note that

ı̂r = cos(θ)̂ı + sin(θ)̂ ı̂θ = − sin(θ)̂ı + cos(θ)̂

4. Assuming that there are known viscous stresses at the centers of the sides of the finite element, what
additional terms do you get in the obtained equation due to viscous forces? Assume the stress tensor is
given in polar form. (So τrr, τrθ, etcetera.)

6 10/6 W

1. Unlike the ideal point vortex you analyzed in a previous homework, a true vortex diffuses out with time,
and its velocity field is given by

~v = ı̂θ
C

2πr

[
1 − exp

(
− r2

4νt

)]

Find the vorticity of this flow field. Also find the circulation along a circle of an arbitrary radius r. Then
show that Stokes theorem does work for this flow. (The velocity is zero at r = 0; just apply l’Hopital.)
Finally show that if the coefficient of viscosity is very small, the vorticity is only nonzero in some narrow
spike near the origin, so that it looks almost like a an ideal vortex. (But the vorticity still integrates to
Γ, despite the small radius of the region with appreciable vorticity.)

2. 5.2 Make sure to first write the full equations for the special case that the density is constant before
assuming a radial flow. Make that a neat graph, and include the streamlines.

3. 5.3. This is two-dimensional Poiseuille flow (in a duct instead of a pipe). Tij is the book’s notation for
the complete surface stress including the pressure,

Tij = −pδij + τij

where δij is called the Kronecker delta or unit matrix. So the book is really saying the pressure is −5
and there is an additional viscous stress τxy = −2µv0y/h2. Watch it, the expression njτji gives the
stress components in the x, y, z-axis system.

4. 5.6. Z is the height h. The final sentence is to be shown by you based on the obtained result. Hints:
take the curl of the equation and simplify. Formulae for nabla are in the vector analysis section of math
handbooks. If there is a density gradient, then the density is not constant. And neither is the pressure.
Tij is the book’s notation for the complete surface stress, so the book is saying there is no viscous stress.
(That is self-evident anyway, since a still fluid cannot have a strain rate to create viscous forces.)
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7 10/15 F

1. 6.1. Use the appendices. Based on the results, discuss whether this is incompressible flow, and in what
direction the viscous stresses on the surface of the sphere are. Also state in which direction the inviscid
stress on the surface is.

2. 6.2 Discuss your result in view of the fact, as stated in (6.1), that the Reynolds number must be small
for Stokes flow to be valid. What does it physically mean?

3. 7.5. Use the appendices. You may only assume that vr = vr(r), vθ = vθ(r), vz = 0, and p = p(r, θ) in
cylindrical coordinates. Do not assume that the radial velocity is zero, derive it. Do not assume that he
pressure is independent of θ, derive it. Ignore gravity as the question says. Note that p must have the
same value at θ = 0 and 2π because physically it is the same point. Answer for vθ:

Ωr2
0r1

r2
1
− r2

0

(
r1

r
− r

r1

)

4. In 7.5, what is the power needed to keep the rod rotating, per unit axial length? What is the pressure
difference between the surfaces of the pipe and the rod?

8 10/20 W

1. 7.9. You can assume that the film thickness is so small that the curvature of the pipe wall can be ignored.
In that case, it becomes 2D steady flow in the x-direction along a flat wall of spanwise length 2πr0 in
the z-direction. Take the x-axis downwards. Assume v = 0 (vertical streamlines), u = u(x, y) and w = 0
(two-dimensional flow), and that p = p(x, y, z). Everything else must be derived; derive both pressure
and velocity field. Do not ignore gravity. For the boundary conditions at the free surface, assume that
the liquid meets air of zero density and constant pressure pa there. Air of zero density cannot exert
nonzero tangential forces. Also write appropriate boundary conditions where the fluid meets the cylinder
surface.

2. 7.6. Do not ignore gravity, but assume the pipe is horizontal. Do not use the effective pressure. Careful,
the gravity vector is not constant in polar coordinates. Do not ignore the pressure gradients: assume the
pressure can be any function p = p(r, θ, z, t) and derive anything else. Merely assume that the pressure
distribution at the end of the pipe and rod combination is the same as the one at the start. For the
velocity assume vr = vθ = 0 and vz = vz(r, z). Anything else must be derived. Give both velocity and
pressure field.

3. For the case of question 7.6, what is the force required to pull the rod through the axis, per unit length?
In 7.9, (previous homework), what is the net downward shear force on the pipe? Does the simple answer
surprise you? Why not?

4. 7.1a Assume only that the cylindrical velocity components only depend on r, vr, vθ, vz = vr, vθ, vz(r),
that p = p(r, θ, z, t) is arbitrary, and that the pipe is horizontal. Use the effective pressure. Show
that two velocity components must be zero. (You should be able to show that the effective pressure is
independent of θ from the appropriate momentum equation by noting that p at θ = 2π must be the
same as at θ = 0; otherwise just assume it is. Also note that the velocity can obviously not be infinitely
large on the pipe centerline.)

5. 7.1b Continuing the previous question, derive the velocity and pressure fields.

9 10/27 W

1. (A small part of 7.17 with n = 1.) Assume that an infinite flat plate normal to ̂ accelerates from rest,
so that its velocity is given by up ı̂ = U̇ t ı̂ where U̇ is a constant. There is a viscous Newtonian fluid
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above the plate. Assuming only that ~v = ~v(y, t), w = 0, and that the effective pressure far above the
plate is constant, derive a partial differential equation and boundary conditions for the flow velocity of
the viscous fluid. List them in the plane of the independent variables.

2. (A small part of 7.17 with n = 1.) Assuming that the velocity profile is similar, derive that

f − δ̇t

δ
ηf ′ =

νt

δ2
f ′′

where f(η) is the similar velocity profile and δ(t) is the boundary layer thickness used to get similarity.
By examining the above equation at the plate, where η = 0, show that within a constant, δ must be the
same as in Stokes’ second problem. Take it the same, then write the final equation for the similar profile
f .

3. (A small part of 7.17 with n = 1.) Differentiate the equation for f twice with respect to η, and so show
that g = f ′′ satisfies the equation

g′′ + 2ηg′ = 0

This equation is the same as the one for f in Stokes’ second problem, and was solved in class. The
general solution was

g(η) = C1

∫
∞

η̄=η

e−η̄2

dη̄ + C2

Explain why C2 must be zero. Explain why then f ′ can be found as

f ′(η) = −
∫

∞

η̄=η

g(η̄) dη̄ = −C1

∫
∞

η̄=η

∫
∞

¯̄η=η̄

e−
¯̄η2

d¯̄η dη̄

Draw the region of integration in the η̄, ¯̄η-plane. Use the picture to change the order of integration in
the multiple integral and integrate η̄ out. Show that

f ′(η) = C1

[
η

∫
∞

¯̄η=η

e−
¯̄η2

d¯̄η − 1

2
e−η2

]

Integrate once more to find f(η). Apply the boundary condition to find C1.

10 11/5 F

1. Do bathtub vortices have opposite spin in the southern hemisphere as they have in the northern one?
Derive some ballpark number for the exit speed of a bathtub vortex at the north pole and one at the
south pole, assuming the bath water is initially at rest compared to the rotating earth. Use Kelvin’s
theorem. Note that the theorem applies to an inertial frame, not that of the rotating earth. What do
you conclude about the starting question?

2. A Boeng 747 has a maximum take-off weight of about 400,000 kg and take-off speed of about 75 m/s.
The wing span is 65 m. Estimate the circulation around the wing from the Kutta-Joukowski relation.
This same circulation is around the trailing wingtip vortices. From that, ballpark the typical circulatory
velocities around the trailing vortices, assuming that they have maybe a thickness of a quarter of the
span. Compare to the typical take-off speed of a Cessna 52, 50 mph.

3. Find boundary conditions for the streamfunction for transverse ideal flow around a circular cylinder.
The velocity far away from the cylinder is Uı̂ and the radius of the cylinder is r0. Note that appendix
D.2 has an error. The correct equation is

vθ = −∂ψ

∂r
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4. Following similar lines as in class, but watching the new boundary conditions, solve the equation for the
streamfunction around the circular cylinder. Before continuing, check your results for the radial and
tangential velocity components at the surface of the cylinder against the one from the velocity potential
solution obtained in class. Is the velocity at the top and bottom points 2U? Are the stagnation points
correct?

5. Find the pressure on the surface of the cylinder.

11 11/12

1. Integrate the pressure forces over the surface of the irrotational flow about a cylinder to get the net force
on the cylinder.

2. Now add to the velocity field the velocity field of an ideal vortex,

~v =
Γ

2πr
ı̂θ

Check whether the correct flow boundary conditions are still satisfied at the surface of the cylinder
and far from the cylinder. Integrate the pressure again, and compare the forces to D’Alembert and
Kutta-Joukowski.

3. Write the complete velocity potential and streamfunction of cylinder plus circulation.

12 11/19 F

1. Sketch streamlines for the potential flow
F = z2/3

Explain why such a flow might be relevant to flow about a corner. What is the (effective) pressure on
the positive x-axis? Comment on what happens to the pressure when x = 0.

2. Find the polar velocity components and pressure of the source flow

F =
Q

2π
ln z

where Q is a constant. Show that this is a valid solution of the Navier Stokes equations for the flow
outside a cylindrical balloon whose radius R is expanding according to the relationship

dR

dt
=

Q

2πR

Then show that this means that the cross sectional area of the balloon is linearly increasing with time.

3. Show that the potential flow

F =
Q

2π
ln z

where Q is not a constant but equal to 2πt is an exact solution of the viscous Navier-Stokes equation
for flow around a balloon whose radius expands as R = t. Then find the pressure, using the correct
Bernoulli equation for an unsteady potential flow. Comment on the pressure far from the balloon.

4. In the familiar potential flow around a cylinder,

F = U

(
z +

r2
0

z

)
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the Uz term produces the incoming uniform flow and the Ur2
0/z term produces the flow induced by the

cylinder. That means that if the fluid is at rest at infinity and it is the cylinder that moves, the potential
is given by

F = −ẋ0

r2
0

z − x0

where x0(t) is the position of the center of the cylinder on the x-axis. Find the time derivative ∂F/∂t
and the spatial derivative W = ∂F/∂z. Watch it: both x0 and ẋ0 in F depend on time. Now evaluate
these derivatives on the surface of the cylinder where z−x0 = r0e

iθ. (Here the angle θ is measured from
the center of the cylinder, not from the origin.) Then find ∂φ/∂t as the real part of ∂F/∂t. Also find
the square magnitude of the velocity as WW̄ , where W̄ is the complex conjugate of W . Use this to find
the pressure on the surface of the cylinder. Answer:

peff = p∞ − 1

2
ρẋ2

0 + ρr0ẍ0 cos θ + ρẋ2

0 cos 2θ

5. From the pressure of the previous question, find the force on the cylinder. Show that it implies that to
accelerate the cylinder, in addition to the force required to accelerate the cylinder itself, there will be
an additional force as if an additional mass equal to an amount of fluid with the volume of the cylinder
also must be accelerated. Explain why an apparent mass effect must be there on behalf of the second
law of thermodynamics.

6. Write the complex velocity potential F for nose flow. From its derivative, identify the location of the
stagnation point. Identify the streamfunction from F . From it, find the value of the streamfunction at
the stagnation point. From that, find the equation for the wall streamline, which passes through the
stagnation point. From that, find the thickness of the nose far downstream. From the derivative of F ,
find the square magnitude of the velocity in terms of polar coordinates. Write the pressure on the wall
as a function of the polar angle θ by writting the equation for the wall streamline in polar coordinates
and plugging it in the square velocity.

13 11/24 W

1. Draw the streamlines of the uniform flow F = Uz, with U a positive real constant. Now define a new
coordinate ζ =

√
z. Plot the streamlines of the same flow F in the ζ-plane.

2. The flow around a circular cylinder is

F = U

(
z +

1

z

)

Apply the Joukowski transformationw

ζ = z +
1

z
to find a new coordinate ζ. How does the cylinder flow in the z-plane look in the ζ plane? How does
the cylinder look in the ζ-plane? So, are you surprised by the flow field?

That was too boring. Take the flow around a circle of radius 2,

F = U

(
z +

4

z

)

and apply again the Joukowski transformation:

ζ = z +
1

z

Show that the circle transforms to an ellipse in the ζ plane by setting z = 2eiθ on the surface of the circle
and transforming that. What is the aspect ratio of the ellipse? Find the velocity at the top and bottom
points of the ellipse and compare with the value 2U that applies for a circle. To find the velocity, use

vξ − ivη =
dF

dζ
=

dF

dz

/dζ

dz
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where vξ and vη are the velocity components of the flow in the ζ plane.

3. Read through the cylinder flow program cylinder.m1. Save it as type “all files” and run it in Matlab or
Octave 3.0 or higher. Make plots to show the effect of changing the angle-of-attack parameter and of the
circulation. In particular, plot the flow for the values of the circulation for which the stagnation points
are at opposite sides of the cylinder, for which they are apart by a 90◦ angle, for which they coincide,
and for which they are completely off the cylinder. Use screen capture or the print command to make
hardcopies of the plots. Try help print if needed.

4. Read through the cylinder flow program airfoil.m2. Save it as type “all files” and run it in Matlab or
Octave 3.0 or higher. Do a “clear all” first to get rid of the cylinder stuff. Make plots to show zero
thickness airfoil. Change the radius of the cylinder to produce a symmetric Joukowski airfoil with and
without lift. Destroy the top/bottom symmetry of the conformal mapping to create camber. Be sure to
create a reasonable cambered airfoil shape, thickness ratio about 15%, angle of attack about 15 degrees.

5. Airfoils have a suction peak at the nose. Read through and download pressure.m3. Adjust to get a good
picture. Mark both the stagnation point and the suction peak in the picture. Comment on the pressure
at the trailing edge. How big is it?

6. According to potential flow theory, what would be the lift per unit span of a flat-plate airfoil of chord 2
m moving at 100 m/s at sea level at an angle of attack of 10 degrees? What would be the drag? What
would be the circulation around the airfoil?

14 12/3 F

1. Compute approximate values of the Reynolds number of the following flows:

(a) your car, assuming it drives;

(b) a passenger plane flying somewhat below the speed of sound (assume an aerodynamic chord of 30
ft);

(c) flow in a 1 cm water pipe if it comes out of the faucet at .5 m/s,

In the last example, how fast would it come out if the Reynolds number is 1? How fast at the transition
from laminar to turbulent flow?

2. Using suitable neat graphics, show that the boundary layer variables for the boundary layer around a
circular cylinder of radius r0 in a cross flow with velocity at infinity equal to U and pressure at infinity
p∞ are given by:

x = r0θ y = r − r0 u = vθ v = vr

Write the appropriate equations for the unsteady boundary layer flow around a circular cylinder in terms
of the boundary layer variables above.

3. Rewrite the exact Navier-Stokes equations in polar coordinates, (the continuity equation and the r and
θ momentum equations) in terms of the boundary layer variables x, y, u, and v and the radius of the
cylinder r0.

4. Compare the equations you got above with the exact equations in polar coordinates, (the continuity
equation and the r and θ momentum equations). Explain for each discrepancy why the difference is
small if the boundary layer is thin.

5. Reconsider the unsteady boundary layer flow around a circular cylinder in terms of the boundary layer
equations. Assuming that the potential flow outside the boundary layer is steady and unseparated, give
all boundary conditions to be satisfied. Make sure to write them in terms of boundary layer variables
only. Solve the pressure field inside the boundary layer.

1cylinder.m
2airfoil.m
3pressure.m
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6. According to potential flow theory, what would be the lift per unit span of a flat-plate airfoil of chord 2
m moving at 30 m/s at sea level at an angle of attack of 10 degrees? What would be the viscous drag
if you compute it as if the airfoil is a flat plate aligned with the flow with that chord and the flow is
laminar? Only include the shear stress over the last 98% of the chord, since near the leading edge the
shear stress will be much different from an aligned flat plate. What is the lift to drag ratio? Comment
on the value. Use ρ = 1.225 kg/m3 and ν = 14.5 10−6 m2/s.

7. Assume that a flow enters a two dimensional duct of constant area. If no boundary layers developed
along the wall, the centerline velocity of the flow would stay constant. Assuming that a Blasius boundary
layer develops along each wall, what is the correct expression for the centerline velocity?

8. Continuing the previous question. Approximate the Blasius velocity profile to be parabolic up to η = 3,
and constant from there on. At what point along the duct would you estimate that developed flow starts
based on that approximation? Sketch the velocity profile at this point, as well as at the start of the duct
and at the point of the duct where the range 0 ≤ η ≤ 3 corresponds to 1

8
of the duct height accurately

in a single graph. Remember the previous question while doing this!

11


