1.1 Enirance
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Exercise:
Which one is larger:
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1.2 Developed

At and bevond station O the flow is called developed. We will assume that the fow is nonturbulent and that
the streamlines have become parallel. These assumptions allow us to solve the incompressible Navier-Stokes
equations exactly!

Note that for parallel streamlines, (unidirectional flow), © = 0,
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Exercise:
Why is it constant? If the duct is long, how can vou approximate the constant? What is the
sign of dP/dx?
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The boundary conditions uf{()) = u(h) — U give the constants:
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Mass Hux {per unit span):
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The volumetric flow rate Q@ = rifp
Average velocity:
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Note that @ = vgeeh and 11 = pogvelt.

Vorticity:
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Shear:

Exercise:

Verify the integral momentum equation for any duetr length L.
s What is the rate of change of linear wowentum inside?
o What is the net outiow of momentum through the boundary?
s What are the forces on the control volume?
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Note that this fow becomes turbulent at a Revnolds nunber of say 1,500 (in the range from LOOD to 8,000).
The above expressions do uot apply to turbulent How.

2 Head Loss

Steady incompressible flows through pipes are very inportant for many applications. In the simplest case we
will have a single duet with & mass Qux o = pQ} = pvS through it:

Mote that according to continmity, i is constant, so that the average velocity v increases when S becomes
smaller.

ldeally, the flow would be inviscid (no dissipation) and in each cross section the velocity, pressure and the
height would be constant. In that case the Bernoulli law applies as:
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I real flows with dissipation and nonuniforn velocity in the cross sections, we can write
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where fiy is the head loss, the cffect of irreversible dissipation of energy. Also, iqm:"r is the averape kinetic

puerpy per unit mass of the fluid at the cross section: o — | as long as the [ow is uniform at the cross section.
For the developed duct with the parabolic profile, o = 54/35 = 1.5, For laminar pipe flow, o = 2. For
turbulent Hows, o is usually not very far from 1. Finally, p and / are the average pressure and height of the
cross section.

MNote: The ahove equation can be derived by integrating the mechanical energy equation over the duct. It
may then be verified that all averages are weighted over the mass fux, The exceplion is v, which is still the
plain average velocity.

Note: When treating air at low velocities as incompressible, nse a single density: do not use py /g and pa/ps.
even if both densities are known precisely.

Mote: Conventionally head loss is expressed in units of height, by dividing the head loss above by g. (1o
particular, gh becomes h.) That makes the head loss equal to the height loss of a manometer measuring the
head loss, assuming the manometer is filled with the same Huid.

2.1 Values

Typical head loss values for important situations m w be found in tables. For bends and area changes, they

can be expressed as a head loss coefficient: iy = K2 3 n'f
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Exercise:
Why express the headloss in terms of Sl Why not, say, pr.p/ e

For the developed two-dimensional duct flow in the previous sulmection, the head loss over a distance L of the

duct 1s:
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This head loss (ealled major head loss) can be given in terms of a friction factor
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For buninar flow in a circular pipe,
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There will be an additional head loss for the entrance effects (called minor head loss);
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For the duct exit, the kinetie energy will probably be mostly lost:

Separation

~*n
Fn

2.2 Finish
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Individual pressure differences:
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Total:
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where ¢ is the average velocity in the doct.




