
Stokes First Problem

1 Stokes’ 1st

Stokes’ first problem, also erroneously called Rayleigh flow:
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The x-momentum equation becomes:
ut = νuyy

where ν = µ/ρ is the kinematic viscosity.

Exercise:

How would you normally find u?

•
A simpler way to solve is to guess that the solution is similar: after rescaling u and y, all velocity profiles look
the same.
Original profiles:



Supposed shape after scaling u with V0, and y with a characteristic boundary layer thickness δ that increases
with time:

Mathematical form of the similarity assumption:
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The proof is in the pudding; if it satisfies the P.D.E., I.C., and B.C., it is OK.
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Separate into terms depending only on η and terms depending only on t:
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It does not make a difference what you take the constant; this merely changes the value of δ, not the physical
solution.
Solving the O.D.E.s for δ and f , we solve the P.D.E. For the boundary layer thickness δδt = 2ν so

δ =
√
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For the velocity profile f ′′ = −2ηf ′ hence
f = erfc(η)

where erfc is the complementary error function defined as
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Exercise:

Derive the expressions for δ and f .

•
Total:
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)
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You should now be able to do 7.14, 16, 17
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