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High-speed incompressible flow past a thin airfoil in a uniform stream is considered.
When the angle-of-attack for a solid airfoil exceeds a certain critical value, the boundary
layer in the leading-edge region separates in a process known to lead to dynamic stall.
Here suction near the leading edge is studied as a means of controlling separation and
thereby inhibiting dynamic stall. First, steady boundary-layer solutions are obtained to
determine the nature of suction distributions required to suppress separation on an airfoil
at an angle-of-attack beyond the critical value (for a solid wall). Unsteady boundary-layer
solutions are then obtained, using a combination of Eulerian and Lagrangian techniques,
for an airfoil at an angle-of-attack exceeding the critical value; the effects of various
parameters associated with the finite length suction slot, its location and the suction
strength are considered. Major modifications of the Lagrangian numerical method are
required to account for suction at the wall. It is determined that substantial delays in
separation can be achieved even when the suction is weak, provided that the suction is
initiated at an early stage.

1. Introduction

Dynamic stall is a term used to describe a process in which flow separation occurs
on an airfoil oriented at a sufficiently high angle-of-attack in a uniform flow. Different
types of stall have been identified in the past (see, for example, McCullough & Gault
1951; McAlister & Carr 1979; Currier & Fung 1992) but the most important type for
thin airfoils occurs in the leading-edge region (Currier & Fung 1992; Acharya & Metwally
1992; Shih et al. 1992, 1995) when the flow is at high Reynolds number Re. Leading-
edge stall is generally preceded by laminar boundary-layer separation near the airfoil
nose. At high Re, separation is a strongly interactive event wherein the boundary layer
erupts from the surface in a sharply-focused narrow plume; the onset of this process was
first identified by Van Dommelen & Shen (1980, 1982) and subsequently described by
other authors (see, for example, Cowley 1983; Elliott et al. 1983; Peridier et al. 1991;
Cowley et al. 1990). Doligalski et al. (1994) argue that leading-edge separation initiates

† During the final edits of this paper, J.D.A. Walker unexpectedly passed away. As a fluid
dynamicist who deeply believed in the value of theoretical analysis, and the driving force behind
this paper, he will be very much missed by us all.
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the dynamic stall process in which a vortex is quickly created above the upper surface
of the airfoil. While the stall vortex is resident above the airfoil, significant increases in
lift are experienced, compared to the steady flow maximum value (Ham 1968; Francis
& Keesee 1985). However, this extra lift is normally short-lived since the stall vortex
induces a second separation process in the boundary layer near mid-chord that quickly
leads to detachment of the vortex. As the stall vortex convects into the airfoil wake, a
substantial penalty is paid in terms of a sharp decrease in lift, accompanied by an abrupt
pitching moment.

In recent times, dynamic stall has received increasing attention in connection with
future designs for helicopters and combat aircraft. Experimental observations of certain
unsteady airfoil motions show that angles-of-attack well beyond the static stall angle
can be attained without provoking breakaway separation (at least for a brief interval).
The static stall angle may be regarded as the minimum angle-of-attack for which stall
occurs from a stationary airfoil in uniform flow. In practice, the measured lift on an
airfoil grows linearly with small angles-of-attack and the static stall angle is defined
(somewhat subjectively) as the first angle for which a significant deviation from the
linear relationship is observed. This definition is not necessarily synonymous with the
first onset of separation. With increasing angle-of-attack, a short bubble of recirculating
flow is first observed near the nose and experiments suggest that this event does not
produce an appreciable deviation from the linear lift/incidence relationship; however
at higher angles, unsteady breakaway separation is observed. It appears that relatively
high lift can be achieved in unsteady flow (at least for short periods) and Francis &
Keesee (1985) were able to briefly obtain lift values up to thrice the maximum static
lift using an airfoil pitched up rapidly in a uniform flow. This phenomenon is attractive
since it suggests that higher values of lift, and thus increased maneuverability, could be
realized in aeronautical applications. For example, rotorcraft blades are configured to
pitch up rapidly as each blade on the main rotor moves in a direction opposite to the
forward motion of the helicopter (the retreating side) in order to balance the lift on the
advancing side, where a relatively higher mainstream speed is encountered. Although
enhanced lift can be achieved as the blade is pitched above the static stall angle, it has
been difficult to exploit the phenomenon due to the severe penalty that must eventually
be paid when the stall vortex leaves the upper surface of the blade. For this reason,
current helicopters are designed to try to avoid the dynamic stall regime insofar as this is
possible. It is likely, however, that future designs of rotorcraft could achieve substantial
gains in maneuverability and much recent work has concerned various ways to control
the leading-edge separation (see, for example, Karim & Acharya 1994; Wang 1995; Yu
et al. 1995; Alrefai & Acharya 1996).

To gain advantage in air-to-air combat, maneuverability is generally believed to be
more important than speed and for brief periods, the wings of a fighter aircraft could
be at angles-of-attack up to 75 degrees (Francis 1995). Thus the operating environment
is at times deep within an unsteady regime where the airfoil would normally stall in
steady flow and control mechanisms must be considered to avoid abrupt loss of lift and
the potential instabilities associated with unsteady flow. A common feature of combat
aircraft and rotorcraft is that the airfoil maneuvers which penetrate the unsteady regime
are rapid and often of relatively short duration. Thus practical control measures that
inhibit separation from the leading-edge region are of considerable interest, in order that
the process leading to dynamic stall may be delayed (and potentially suppressed), whilst
still maintaining enhanced levels of lift.

The issue of boundary-layer control at the leading-edge is difficult in a practical sense,
especially for helicopter blades, where complex mechanical control surfaces do not seem
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feasible. In the past, suction has been used for control and, for example, Poppleton (1955)
showed that weak suction applied over the first 15% of chord on the upper surface could
produce a 40% increase in lift for an airfoil at 15 degrees angle-of-attack. More recently,
Karim & Acharya (1994) and Alrefai & Acharya (1996) have carried out experiments
with a small suction slot over the first 2% to 5% of chord, for Reynolds numbers Rec

(based on chord length c) up to around 105; the airfoil was pitched up to angles-of-
attack approaching 35 degrees, and thus was within the post-stall regime. It was found
that leading-edge separation was inhibited, and in some cases, the dynamic stall process
was suppressed. Wang (1995) has carried out numerical solutions of the Navier-Stokes
equations at Rec = 5000 using a vortex method. For uniform suction in the slot, the
most effective configuration was similar to that studied by Poppleton (1955), wherein
the slot extended over the first 20% of chord for an NACA 0012 airfoil. The airfoil was
pitched up uniformly from rest to angles in excess of 30 degrees. It was determined that
if the suction was applied early enough, leading-edge separation and dynamic stall could
be effectively prevented, while enhanced lift was still realized.

In an earlier partial study, similar conclusions were reached by Shen and Xiao (S. F.
Shen, 1990, private communication) concerning the effectiveness of suction as a separation
control on the rear half of an impulsively-started circular cylinder. For a solid wall, the
boundary-layer solution reaches a separation singularity at a time of t∗ ≈ 1.5r∗0/U0, where
r∗0 is the cylinder radius and U0 the freestream velocity. When a suction distribution of
the form vr(θ, r

∗

0 , t∗) = −V̄ cos(θ − π/4)
√

U0ν/r∗0 was applied for 0 ≤ θ ≤ π/2 (θ is
measured from the downstream radius and ν is the viscosity) starting at t∗ = 1.05r∗0/U0,
separation could be suppressed during the considered time interval for sufficiently large
values of V̄ ≈ 10. The results for other cases considered indicated that more suction was
required to suppress separation when suction is started later, and for a narrower slot.

In view of the previous work, the central focus here is on the leading-edge region of
the airfoil and the primary purpose is to investigate the question of what can be done to
avoid separation† in transient flows. In the present study, a suction slot was introduced

on the upper surface of the parabola with a total suction volumetric rate O(εRe
−1/2
c ),

where ε is the airfoil thickness ratio (defined as the maximum thickness divided by c).
Experience shows that a Lagrangian solution is necessary for an accurate and reliable
determination of the Van Dommelen & Shen (1980) singularity but because there are
no existing schemes to account for suction, a method is developed in §6. As results were
being obtained, it seemed there was a lack of basic knowledge, which was required to
embed the unsteady computations in a larger context. For example, even in steady flow,
there was a question of whether separation could be avoided for any angle-of-attack by
an appropriate amount of suction and if so, how much suction was needed. In addition
should the suction be applied locally with a narrow slot or would it be more desirable
to distribute the suction over a larger area (to be determined)? Some answers to these
questions are given in §4.

The case of primary interest is the transient flow in the nose region when the scaled
angle of attack changes due to alterations in the incoming flow. The flow change is
assumed to be initiated impulsively, corresponding most directly to a sudden gust or a
sudden initiation of rotation of the airfoil section about some suitable axis. It is further
assumed that the entire flow is impulsively started from rest, as is common in these type

† Here ”separation” implies that a smooth thin boundary layer fails to exist. Separation
will not occur if the Goldstein (1948) and Van Dommelen & Shen (1980) singularities can be
avoided in steady and unsteady flow, respectively. Flow reversal does not necessarily imply that
the boundary-layer solution terminates in unsteady flow (Sears & Telionis 1975).



4 H. Atik et al.

of studies; the reason is that this initial condition is cleaner than an arbitrary assumption
of some type of pre-existing boundary layer, which would also lead to the complication
of a two-layer structure at early times. It seems unlikely that a thin attached initial
boundary layer will fundamentally change any of the processes involved.

The analysis assumes laminar flow in the leading-edge region, which is believed to be of
significant practical utility. While as one referee has pointed out, the boundary layer may
be very unstable after flow reversal (see Cowley et al. 1985), in the transient situations
considered, disturbances have only a limited time to grow. Although turbulence may be
observed experimentally downstream of the nose, it is unclear whether a turbulence model
(to characterize small fluctuations in a possible transitional zone) will have a dramatic
influence on the Van Dommelen & Shen process, which is driven by the convective terms.
In any event, it is believed to be important to understand the laminar problem before the
turbulent equivalent is addressed. In the present study, it was found that the separation
process could be significantly delayed at all finite scaled angles-of-attack, and under the
right circumstances completely eliminated.

2. Governing Equations

Consider an airfoil of thickness ratio ε which is immersed in a uniform flow of speed
U0 and which is thin in the sense that ε << 1. When the airfoil executes a maneuver
such that the angle-of-attack is O(ε), the inviscid flow field may be determined using
thin airfoil theory. For a given airfoil shape with a smooth nose, the inviscid solution
describing the perturbation tangential velocity (about the uniform flow) is singular at
the leading-edge. This solution is interpreted as an outer solution, which must be matched
to an appropriate solution in the leading-edge region (see, for example, Van Dyke 1956,
1964; Katz & Plotkin 1991). The nose of the airfoil can be represented by a parabola
with a dimensionless nose radius r0 (referred to c/2), given by r0 = R0ε

2. Here R0 is
an O(1) constant and, for example, R0 = 2.204 for an NACA 0012 airfoil (ε = 0.12)
and R0 = 2.370 for a Joukowsky airfoil (Katz & Plotkin 1991). Let x′ and y′ denote
dimensionless scaled Cartesian coordinates (referred to the nose radius) centered at the
parabola vertex y′ = ±

√
2x′.

The inviscid motion around the parabola can be conveniently described in terms of
parabolic coordinates (ξ̃, η̃) defined by

x′ + iy′ =
1

2
+

1

2

{

ξ̃ + i(η̃ + 1)
}2

. (2.1)

The parabola surface is η̃ = 0 and ξ̃ varies from −∞ to +∞ on the surface. It can be
shown (Van Dyke 1956, 1964) that the inviscid slip velocity U∞, (referred to U0) is

U∞(ξ̃, t) =
ξ̃ + a

√

ξ̃2 + 1
(2.2)

where a can be a specified function of time whose value is proportional to the effective
angle-of-attack for the flow near the nose, including the effects of Kutta condition, cam-
ber, motion, and ambient flow changes, divided by the square root of the nondimensional
nose radius r0 (see, for example, Wang 1995). The function a(t) can be determined by
matching the leading-edge solution to the global airfoil solution for a given shape and
maneuver (Zalutsky 2000). The stagnation point is the point of attachment of the inviscid
flow and occurs on the lower surface of the parabola (for a(t) > 0) at ξ̃ = −a.

The boundary-layer problem can be formulated in terms of the parabolic coordinates
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by introducing a scaled normal coordinate and velocity ỹ = Re
1/2
r η̃, ṽ = Re

1/2
r ũη̃, re-

spectively, where ũη̃ is the velocity component in the η̃ direction (referred to U0) and
Rer = r0cU0/2ν is the Reynolds number based on the nose radius, which is assumed
large. It is convenient to introduce new coordinates and a redefined normal velocity by

x =
1

2

{

ξ̃(1 + ξ̃2)1/2 + sinh−1 ξ̃
}

, y = (ξ̃2 +1)1/2ỹ, u = ũξ̃, v = ṽ+
ξ̃ỹ

(ξ̃2 + 1)3/2
u, (2.3)

where x measures arclength from the vertex (referred to the nose radius). The Eulerian
boundary-layer equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p∞

∂x
+

∂2u

∂y2
,

∂u

∂x
+

∂v

∂y
= 0, (2.4)

where

∂p∞
∂x

≡ −∂U∞

∂t
− U∞

∂U∞

∂ξ̃

dξ̃

dx
(2.5)

is equal to the nondimensional pressure gradient, assuming that noninertial terms, if any,
can be ignored compared to the large convective terms (White 1991, p.95). The boundary
conditions are

u → U∞(ξ̃(x), t) as y → ∞; u = uw(x, t), v = vw(x, t) at y = 0, (2.6)

where uw and vw represent the imposed surface velocities.
It is well known that for positive constant a less than a critical value of ac ≈ 1.16

(Werle & Davis 1972; Cebeci et al. 1980; Ruban 1981), a steady attached boundary-layer
solution exists. (A more precise value of ac will be obtained here in §3.) The inviscid flow
on the pressure side of the parabola accelerates smoothly and the boundary layer evolves
to the Blasius solution as ξ̃ → −∞. On the other hand, the inviscid flow is accelerated
around the nose, reaching a maximum on the upper surface at ξ̃ = 1/a. Thereafter the
pressure gradient is adverse, and the wall shear decreases to a positive minimum if a
is somewhat less than ac; the boundary layer then recovers, eventually approaching a
Blasius profile downstream as ξ̃ → ∞. At the critical value ac, the minimum in wall
shear is identically zero at x ≈ 6.8 (see §3 for a refined value). Within a small range

O(Re
−2/5
r ) of values of a near ac, Ruban (1981) and Stewartson et al. (1982, 3.19) have

shown that a family of steady solutions exists describing a short bubble of reversed flow.
This phenomenon is known as marginal separation. Once a exceeds ac by an amount
O(1), no matter how small, Degani et al. (1996) show that unsteady boundary-layer
separation (and a local eruption) occurs in the leading-edge region.

If design conditions for aerodynamic surfaces are configured to avoid separation en-
tirely, then the angle-of-attack (and hence the lift) is restricted to relatively low values.
For example, the critical value for steady flow for a NACA 0012 airfoil is 5.89◦ and for a
Joukowsky airfoil 6.12◦ (for ε = 0.12); for an abrupt start, these angles are doubled. Note
that the static stall angle for the NACA 0012 airfoil is larger than the former value and
estimates from experiments range from 14o to 18o. There are several possible reasons for
this. First the laminar flow at the leading edge may separate just above the critical angle
and provoke early transition; the turbulent boundary layer can then subsequently re-
attach downstream and in such a situation the observed lift would still roughly conform
to the linear relation with angle of attack. It is also possible that ”finite thickness effects”
play an important role for the NACA 0012 airfoil; for example, at about 3.5% of chord
the deviation of the parabola is about 10% in excess of the actual airfoil thickness. Wang
(1995) noted significant deviations between Navier-Stokes simulations of a NACA 0012
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airfoil for Rec = 5000 and the corresponding approximating parabolic nose at Rer = 79.
The objective of the present work, however, is not to model a specific airfoil shape closely
but to determine if the limits on angle-of-attack can be substantially expanded through
leading-edge suction.

The reason that suction can be effective for inhibiting separation may be inferred from
the streamwise momentum equation (2.4). If ω = −∂u/∂y denotes the scaled boundary-

layer vorticity (with respect to 2U0Re
1/2
r /r0c), the scaled surface vorticity flux (Lighthill

1963) is

qw = − ∂ω

∂y

∣

∣

∣

∣

y=0

=
∂p∞
∂x

− vw(x, t)ω(x, 0, t), (2.7)

for uw = 0. Suppose that at some initial time, an unseparated flow exists with u > 0
and ω < 0 throughout the boundary layer for ξ̃ > −a and then an impulsive maneuver
of the airfoil or ambient flow change increases the effective angle-of-attack to some value
ao > ac. The new inviscid flow achieves an absolute maximum of U∞,m at ξ̃m = 1/ao and

for ξ̃ > ξ̃m, the pressure gradient is adverse. For a solid wall, the vorticity flux on the
major part of the upper surface is positive and just downstream of ξ̃m, where the pressure
is increasing most rapidly, a large amount of positive vorticity is soon created. Thus a line
of zero vorticity progressively penetrates into a region of otherwise negative vorticity. It is
somewhere along this line that the Van Dommelen & Shen (1980, 1982) process is born.
It is evident from equation (2.7) that if suction is applied at the wall (vw < 0) while
ω(x, 0, t) is still negative, then the suction provides a counteracting negative vorticity
flux. This control can, in principle, be effective at suppressing separation, depending on
the magnitude of vw and whether the suction is initiated at sufficiently early times.

Now let a suction slot be located on a section of the wall from x = x0 to x = x1, where
x0, x1 are constants. A number of suction distributions were considered in this study, but
for the majority of the calculations the following form was used:

vw = v(x, 0, t) = −V sini q, q =
(x − x0)π

(x1 − x0)
, (2.8)

where i is a chosen integer and V is the maximum scaled suction velocity. For uniform
suction i = 0 and v(x, 0, t) is discontinuous at the edges of the slot. In most of the
unsteady calculations, a higher value for i was selected to ensure a smoother transition
at the edges of the slot; derivatives up to order (i − 1) are continuous there.

A dimensionless suction coefficient can be defined as the rate of volume removal divided
by U0r0c/2 according to

cq = Re−1/2
r

∫ x1

x0

|v(x, 0, t)| dx = Re−1/2
r CQ, (2.9)

where it is easily shown that CQ = V (x1 − x0)ei; for i = 0, 1, ...4, the values of ei are
1, 2/π, 1/2, 4/3π and 3/8 respectively.

To assess whether weak suction through a slot can significantly inhibit separation
in the limit Rer → ∞, a representative base flow must be selected. First note that
in addition to the time t (referred to U0 and the nose radius), there is also a global
dimensionless time t̄ (referred to the chord) such that t̄ = R0ε

2t/2. Thus a time interval
that is O(1) in t̄ is effectively infinite in the nose time t (for thin airfoils). This means
that an airfoil maneuver on the global scale will produce an effectively steady flow near
the nose for a < ac and separation will be almost immediate for any angle-of-attack
such that a − ac > 0. Various maneuvers that take place on the “short” time scale
could be addressed. However, here the simplest situation where a suddenly achieves a
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constant value is considered; this is believed to be representative of the worst possible
case for a separation control to be effective. From a physical standpoint, this may be
viewed as a thin airfoil which is abruptly started at a small angle-of-attack at t = 0; the
determination of the unsteady inviscid flow is known as the Wagner (1925) problem when
the trailing-edge is cusped. For steady flow satisfying the Kutta condition, matching of
the global inviscid solution to the local inviscid nose solution yields an angle-of-attack,

measured from the direction of symmetric flow around the nose, α∗ = 1

2
R

1/2

0 εa (Degani
et al. 1996). For unsteady flow, the solution of the Wagner (1925) problem (see, for
example, Zalutsky 2000) predicts that the value of a achieves one-half of its final value
abruptly at t = 0, since the circulation around the steady airfoil increases a by a factor 2.
Since the frontal stagnation point moves along the leading-edge with the slow time scale

t̄ as the airfoil sheds vorticity and hence picks up circulation, α∗ = R
1/2

0 εa on the time
scale studied here. This is consistent with experimental observations that relatively high
angles-of-attack can be achieved in unsteady flow, as opposed to steady flow, without
rapidly provoking separation at the leading edge. We will now first examine the effect of
steady suction on this flow.

3. Steady Numerical Scheme

Calculations were carried out for steady flow to form a basis of comparison for the
unsteady computations, as well as to determine minimal suction distributions required to
eliminate separation. Steady boundary-layer calculations were initiated at the stagnation
point ξ̃ = −a and continued downstream over the top surface. A vorticity formulation,
previously used by one of us (LvD) in unsteady second-order (Van Dyke 1964) boundary-
layer computations, was employed. Advantages of this approach are that: (1) it is easier
to implement boundary conditions for large y numerically, especially at second-order,
and (2) wall boundary conditions on the vorticity can be enforced exactly. The vorticity
ω = −∂u/∂y satisfies

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

∂2ω

∂y2
,

∫

∞

0

ωdy = −U∞(x), ω → 0 as y → ∞. (3.1)

Equation (2.7) relates ∂ω/∂y and ω at y = 0 to the pressure gradient but using the
integral condition in (3.1) ensures that the external flow velocity at large y remains
correct regardless of numerical errors. Such integral conditions have been used with good
success in other contexts (see, for example, Collins & Dennis 1973).

The numerical method used is a Crank-Nicholson type scheme. A mapping of y to
a computational coordinate ŷ, of the form y = ky tan(πŷ/2), was used to define a non-
uniform mesh in y using a uniform spacing in ŷ. A value ky = 1.33δ̄∗(x) was selected, with
δ̄∗(x) being a rough least-squares approximation to preliminary values of the displacement
thickness (including a growth proportional to

√
x far downstream). In the x-direction,

another nonuniform mapping x = kx tan(A0 +A1x̂) was used, with kx a mesh-stretching
parameter, typically chosen to be 2 or 3; A0 and A1 were chosen to locate the stagnation
point at x̂ = 0 and produce infinite x at x̂ = 1. Differencing of the viscous term was
done in physical space in order that quadratic velocity profiles were differenced exactly
regardless of the mapping from y to ŷ. The y-derivatives in the relationship between
u and ω and in the continuity equation were treated similarly; in particular, near the
external flow region where v is O(y) as y → ∞, the integration is exact regardless of the
strong mesh stretching.

Situations were considered where either the normal velocity or the wall shear was
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prescribed; whichever was specified left the other unknown. At any x-station, the non-
linear Crank-Nicholson equations were solved using Newton iteration, requiring a sys-
tem of block-tridiagonal linear equations to be solved at each iteration if the unknown
wall boundary is handled through a shooting method. Because of linearity, the shooting
method converges in one step. Typically five to ten Newton iterations were required to
produce convergence to round-off error.

For a given value of a, the calculation was continued until the entire paraboloid had
been computed or until a Goldstein (1948) singularity was encountered. This singularity
evolves when the pressure distribution is prescribed and the wall shear tends to zero;
its occurrence has been classically referred to as steady separation and continuation of
the integration downstream is not then possible. The four term analytical expansion of
the wall shear, as generalized by Terrill (1960) to include suction, was used in some
computations to extrapolate the location of the separation singularity from the data
just upstream; this procedure avoids some numerical error provoked by the singular
behavior at the separation point itself. Computations were repeated at varying mesh
sizes to ensure that all presented results are mesh independent. Reasonable accuracy was
usually achieved with 128 or 256 mesh points in each direction, but most final results
were obtained with 2048 or 4096 mesh points. The circular cylinder flow of Terrill (1960)
was recomputed as a test and excellent agreement was obtained.

At the edges of the suction slot where an abrupt change in suction velocity occurs, the
usual algebraic singularities and a two-layer structure occur (see, for example, Rosenhead
1963; Walker & Dennis 1972; Smith & Stewartson 1973). Following well-known methods
and omitting the details, suppose a change in suction velocity occurs at x = xe, by
an amount ∆vw ≡ v+

w − v−

w , where the sign denotes values of vw just downstream and
upstream of xe. Downstream of xe a viscous sublayer of extent y = O

(

x̄1/3
)

forms (where
x̄ = x− xe), with the usual transposed main boundary layer above it. The sublayer flow
is readily solved in terms of incomplete Gamma functions and it is found that the scaled
wall shear behaves as

τw = −ω(x, 0) = τe −
35/6τ

2/3
e Γ(2/3)d1

π
∆vwx̄1/3 + · · · , (3.2)

immediately beyond the edge, with τe the wall shear of the boundary layer immediately
before the edge and d1 = π/

(

31/6Γ2(2/3)
)

. Similarly the displacement thickness and
displacement velocity at the boundary-layer edge show irregular behavior according to

δ∗(x) = δ∗(xe)+d1τ
−2/3
e ∆vwx̄2/3 + · · · , vd ∼ 2

3

(

x̄τ2
e

)−1/3
d1U∞(xe)∆vw + · · · , (3.3)

for x̄ << 1.
A very complex code was developed that actually resolved the two-layer structure

(see also Smith & Stewartson 1973). However, it was found that the basic scheme works
well if either the jump was represented as a smooth but rapid transition over a small
streamwise region or if a simple backward difference was used for one or two steps after an
abrupt jump (see also Walker & Dennis 1972). Calculated results (for a case where suction
terminates at x = 9.7) using the latter approach with two backward Euler steps are shown
by symbols in Figure 1; corresponding results with the complex code (which still has
visible stability problems downstream) are shown as solid lines. The asymptotic results
(3.2)-(3.3) are shown as broken lines. (The resolved code does not use the asymptotic
solution and thus provides a true test of it). The infinite displacement velocity cannot be
correctly captured by the unresolved scheme, but evidently the effects disappear after a
few steps and away from the jump, convergence with mesh size remained unaffected even
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Figure 1. Effect of not resolving the two-layer structure; numerical results for wall shear 4,
displacement thickness ¤, and displacement velocity o.

for the unsmoothed computations. The singularity induced by the jump in the normal
velocity can, in principle, be resolved by a triple deck structure on the edges of the slot;
these local interaction regions, however, do not affect the downstream results.

To further validate the scheme, the critical angle-of-attack at which separation first
occurs was recomputed. A refined value of ac = 1.15755 was determined using extrapo-
lation of the minimum shear, and a more precise value of 1.15757 by directly shooting
for zero shear, at x = 6.823. These values of ac agree with Werle & Davis (1972), who
indicate that 1.157 < ac < 1.158, as well as subsequent estimates by Cebeci et al. (1980)
of 1.155 and Ruban (1981) of 1.1556. The separation location at x = 6.823 corresponds
to ξ̃ = 3.351. This agrees with value ξ̃ ≈ 3.34 read off (by us, as 10.1 for the Görtler
variable) from the corresponding graph in Werle & Davis (1972), with the value ξ̃ ≈ 3.3
estimated by Stewartson et al. (1982)†, and with x = 6.99 found by Ruban (1981).

4. Calculated Steady Results

Various computations were carried out to determine if a finite amount of scaled suction,

i.e., a physical volumetric suction rate O(ε2Re
−1/2
r ), applied in a variety of ways, could

eliminate steady separation. The first implementation of suction considered is referred
to as ‘locally-minimal suction’ and just enough suction was applied at each x-station to
ensure that the nondimensional wall vorticity parameter

Ω ≡ uy(x, 0)

U∞(x)
δ∗(x) ≥ Ωm, (4.1)

where δ∗ is the displacement thickness and Ωm is a chosen tolerance level. Ω is dimen-
sionless and depends only on the velocity profile; for the asymptotic suction profile Ω = 1
(Rosenhead 1963), while Ω = 0.571 for the Blasius profile. Finite suction cannot occur
for Ωm > 0.571, since u must approach the Blasius solution as x → ∞.

Calculations were started at the front stagnation point and once Ω threatened to
drop below the specified value of Ωm in the region of adverse pressure gradient on the
upper surface, just enough suction was introduced at that x to maintain condition (4.1).
Such a suction distribution is admittedly difficult to implement in practice but is useful

† apparently using data from Cebeci et al. (1980)
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a/Ωm 0.2 0.1 0.5 0.025 0

2 2.5845 2.3974 2.3568 2.3471 (2.3439)
3 6.1721 5.8868 5.8247 5.8099 (5.8050)
4 9.953 9.570 9.486 9.466 (9.459)

Table 1. Scaled suction coefficient CQ for various a and Ωm for ‘locally-minimal’ suction.
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Figure 2. ‘Locally minimal’ suction profiles for a = 2. Steady profiles are for Ωm = 0.025 (solid
line), 0.05 (long dash), 0.1 (short dash), and 0.2 (short/long dash) (curves at smaller values
coincide). Unsteady profiles are for Ωm = 0.2 and times t = 4, 8, 16, 32, (solid lines) and ∞
(dash.)

in establishing the minimum suction volumes required to avoid separation. Computed
suction coefficients for various Ωm and a are given in Table 1. The last column gives
apparent limiting values as Ωm → 0, which are conjectured to be the minimum suction
amounts required to avoid separation for each a. The required suction increases fairly
linearly with a − ac.

Computed suction profiles on the upper surface for a = 2 and various Ωm are shown
in Figure 2(a). Evidently the suction must be continued relatively far downstream but
the profiles are almost the same for all Ωm.

The suction profiles for the corresponding unsteady problem, (with the flow impulsively
started from rest,) and using Ωm = 0.2, are shown in Figure 2(b). It may be observed
that the long tail to the suction distribution only becomes necessary for numerically
very large times; at earlier times, the suction volume is much reduced from the steady
requirement.

The steady wall shear is shown in Figure 3(a) and shows the effect of the suction as soon
as the vorticity parameter drops below the preset level Ωm. The displacement thickness
rises downstream of the nose in all cases to meet the Blasius solution far downstream
where δ∗ ∼ x1/2, but actual levels of δ∗ are reduced at fixed x with increasing values of
Ωm. The displacement velocity vd at the boundary-layer edge is shown in Figure 3(b).
A spike develops for Ωm → 0 at the streamwise location where suction starts; note that
the smaller the value of Ωm, the later suction begins and the closer the solution is to
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(b) Displacement velocity.

Figure 3. Wall shear and displacement velocity profiles corresponding to 2(a).
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Figure 4. Suction profiles for Ωm = 0.025 and a = 2, 3, and 4.

infinite displacement velocity as a Goldstein singularity is approached. The heights of
the spike shown in Figure 3(b) probably converge with mesh size, but convergence is
slow, especially at small Ωm, and seems to depend on exactly where the streamwise mesh
points happen to fall compared to the exact initiation of suction. Improved values of the
spikes could possibly be found from an appropriate extrapolation based on the analytical
structure near the initiation of suction. Lastly, the suction profiles for various values of
a are shown in Figure 4; for a = 4, the suction extends as far downstream as x = 125.

The case where suction is constant over a finite range, i = 0 in (2.8), has been studied
by many authors and this second situation is also considered here. Since the separation
singularity moves toward the nose with increasing a, it seems most reasonable to start
the suction at x0 = 0. In order to find the minimum suction volume under these two
constraints, first the minimum suction velocity V was determined by trial and error which
produced an unseparated state when suction is extended downstream indefinitely (i.e.,
x1 → ∞). For example, for a = 2, the case shown in Figure 5, it required a suction
velocity V = 0.303 to keep the minimum shear at x = 2.9 positive. When the suction
velocity was slightly reduced to V = 0.302, the minimum drops to zero and a Goldstein
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Figure 5. Wall shear and displacement thickness for a = 2 and uniform suction with
V = 0.303 applied from x = 0 to 9.57.

singularity forms. This result proved true for all meshes employed from 5122 to 40962

and whether central x-differences with a smoothed velocity jump or a couple of backward
Euler steps at an abrupt jump in suction was used at x0 = 0.

With a suction velocity V = 0.303, separation at x = 2.9 is just avoided, but further
downstream, the pressure gradient decreases, and at some point the boundary layer
has recovered enough that the suction can be terminated without causing any further
separation. To minimize the suction volume, the suction region should be terminated as
soon as possible. Note however from equation (3.2) and Figure 1 that at the termination
of suction at x = x1, the wall shear plunges proportional to −(x−x1)

1/3. Separation will
then occur downstream of the suction slot unless x1 is sufficiently large. The smallest
value of x1 to avoid downstream separation was found using a binary search technique
to be x1 = 9.57. Hence the minimum suction volume is obtained at a suction velocity
V = 0.303 and a slot extending to x1 = 9.57, producing a suction coefficient equal to
CQ = 2.9 and the final wall shear and displacement thickness distributions of Figure
5. Note that a true local minimum in suction volume has been obtained: V cannot be
reduced because the solution would separate at x = 2.9; variations in x1 play no part
in that. And if the value of x1 is reduced, keeping CQ constant, the minimum shear at
x = 24.6 in Figure 5, (most evident from the relaxation of the displacement thickness
growth after passing the region of marginal separation,) separates. Far downstream, the
wall shear approaches the Blasius value (|ω(x, 0)| ∼ 0.332x−1/2) but very slowly; there
is still a 30% error at x = 200, 20% at 400, 14% at 800 and 10% at 1700. Yet is seems
clear that the Blasius value is indeed approached, ensuring that the found suction does
indeed prevent separation for all x.

Calculated values for constant suction for other values of a are summarized in Table
2. A comparison with Table 1 shows that the suction coefficients for constant suction are
larger than those for ‘locally-minimal suction’, as conjectured. However the differences are
not large and it appears that constant suction starting at the nose is relatively efficient.
This result is in qualitative agreement with the experiments of Poppleton (1955) and
the numerical simulations of Wang (1995). Lastly, since solid-wall separation occurs at
x = 1.1867 for a = 2, it might seem worthwhile to try to save suction volume by starting
the suction at say, x0 = 1, instead of at the vertex x0 = 0; however this modification
changed the required suction velocity to 0.361 with x1 = 8.9 and hence CQ is almost the
same.
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a V x1 CQ

2 0.3026 9.57 2.90
3 0.6706 12.5 8.39
4 1.0002 17.2 17.2

Table 2. Minimum suction velocity and parameters for unseparated flow when x0 = 0 and
i = 0 in equation (2.8).
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Figure 6. Profiles for smooth suction, i = 3, between x = 0 and 2.9 at a = 2; peak suction
velocities V = 0 (broken), 0.5, 1, 2, 3, and 10.

In some experiments (see, for example, Alrefai & Acharya 1996), a narrow slot was
used. To determine the effect of applying a larger suction velocity over a narrower slot,
the suction velocity for a = 2 was raised from V = 0.303 to 1 with the start of suction
moved to x0 = 1, which is closer to the solid-wall separation location. It was found that
suction had to then extend to x1 = 5.2, giving a required suction coefficient CQ = 4.2,
which is significantly more than the value 2.9 in Table 2. Hence at least in this case
a smaller suction region requires a larger volumetric flow rate; this appears consistent
with existing data such as Poppleton (1955) and Wang (1995). Note that when the
slot is extended farther downstream, the average pressure at which the fluid is removed
increases, decreasing average required pumping vacuum.

Next suction of the type (2.8) was considered with i = 3, x0 = 0 and x1 = 2.90 for
various values of V . The wall shear and displacement thickness distributions for a = 2
are shown in Figures 6(a) and 6(b), respectively and the separation locations for various
parameters in Table 3. With increasing suction the separation point moves downstream
of the end of the slot but for a = 2, despite the fact that suction coefficients considerably
higher than 2.34 (see Table 1) were used (up to 12.3), separation still occurs.

Since separation could be completely avoided using longer suction slots (for example
those implied by Figure 2(a) or those of Table 2) this raises the question whether a
minimum slot size is needed if separation is to be avoided everywhere. It will be shown
that this is indeed the case; in particular, for given a, the slot must at least extend over
the range indicated in Figure 7. For the indicated example, a = 3, the slot must start
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a/V 0 0.5 1 2 3 4 6 10

2 1.1867 2.2809 2.9434 4.0615 4.9263 6.6405
3 0.7661 0.8415 2.8239 3.6785 4.1033 4.4113
4 0.6079 0.6289 0.6564 2.8350 3.5488 3.8651

Table 3. Location of steady separation for smooth suction, i = 3, between x0 = 0 and
x1 = 2.9.
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Figure 7. Minimum suction range required to prevent separation completely.

before x = 0.766 and must extend beyond x = 8.54. Otherwise, separation will occur
even in the presence of large scaled suction through the slot.

Note that below a scaled angle of attack a = 1.546, where the two curves of Figure
7 intersect, an arbitrarily narrow slot could be used, maybe located at x = 1.79, the
intersection point. However, a finite scaled slot size is needed above this critical value.

Turning to the justification of these observations, the restriction on the starting point of
the slot is simple: it is the location of separation for a solid wall, (Table 3 at V = 0). Since
in the considered boundary-layer approximation, suction cannot affect the boundary-layer
flow upstream of the slot, the slot must obviously start before the solid-wall separation
location to avoid separation.

Conversely, if this requirement on the starting point is met, there will be no separation
in the solid-wall boundary layer upstream of the slot. In addition, separation above the
slot can be prevented by applying enough suction through the slot. In particular, for
sufficiently large suction, u should approach an unseparated asymptotic suction profile
having a displacement thickness that decreases and a wall shear that increases with
increasing suction (Pretsch 1944). These trends are most evident in Figures 6(a) and
6(b) near the center of the slot; near the slot extremities the suction is relatively weak.

The second restriction, for the suction slot to extend at least as far downstream as
the x1,min-curve in Figure 7 is more complex. First consider the question how soon
the suction slot can be terminated assuming that the suction through the slot is very
strong. If the suction is strong, the boundary layer above the slot is very thin, (Pretsch
1944), and the boundary layer immediately behind the end of the slot has essentially
zero thickness. The question of separation downstream of the slot then becomes that of
whether a solid-wall boundary layer that starts at zero thickness at the end of the slot
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x = x1 will separate for x > x1. This question was answered using a modified code that
resolved the initially infinitely thin boundary layer profile at x1. It was found, using a
binary search, that if x1 was less than the values indicated by x1,min in Figure 7, (8.54
for the example a = 3), downstream separation occurs. Thus, for strong suction, the slot
must extend past the limits shown in Figure 7.

Note that there is another, vanishingly small, asymptotic region around x1; however,
since the pressure gradient is asymptotically negligible there, this region should only act
to modify the shape of the thin profile from the asymptotic suction profile immediately
upstream of x1 to the Blasius profile just downstream.

One would reasonably expect that if the suction is less strong, the slot would need
to be even larger than the limits of Figure 7. This is certainly true for our examples
of ‘locally-minimal’ suction and minimal constant suction above. It is also in agreement
with our other computational experiences. For example, Figure 6(b) shows that as suction
increases, separation is retarded, (the infinite suction solution in this case predicts that
the separation will reach x = 9.76 for infinite suction velocity V .) Using the Pohlhausen
approximation, it can in fact be shown in general that the slots for finite suction velocity
must be larger. This approximation produces an equation for Z = θ2/ν, (Schlichting
1979, p. 210), where θ and ν are the momentum integral thickness and the kinematic
viscosity, respectively, which can be cast in terms of a shape factor K = U ′

∞
θ2/ν to

obtain
U∞

U ′

∞

dK

dx
− U∞U ′′

∞

(U ′

∞
)
2

K = F (K), (4.2)

where F (K) is a known function. In the region behind the slot, U∞ > 1 and U ′

∞
<

0 and consequently the differential equation (4.2) is regular and must have a unique
solution. Separation occurs when K reaches the value -0.1567. Now suppose a suction
slot is terminated at an x1 before the position required according to Figure 7. Then the
boundary layer corresponding to strong suction, which starts at K = 0 at x1, reaches
separation, K = −0.1567, at some xs. A boundary layer starting with finite thickness
at x1, corresponding to finite suction, has an initial K-value that is negative, hence is
less than the infinite suction K-value. Going downstream, the K-values must stay below
those of the infinite suction case, because if the two solution curves crossed, it would
violate the uniqueness of the solution. That leaves no option but for the finite suction
curve to reach separation, K − 0.1567, before the infinite suction curve does. And to still
separate even when the limit of Figure 7 is reached.

It should be pointed out that if the suction volumetric rate is raised sufficiently, in
particular from O(ε2Rer

−1/2) to O(ε2), for example, it becomes strong enough to have
a significant effect on the external flow velocity and the present analysis is not valid.
However, a suction volume much larger than the one required here should be a practical
disadvantage.

5. Unsteady Formulation

In practical applications of suction control, a slot of finite length is used and by ad-
justing the hole sizes or density in the wall various suction profiles at the surface can
be produced. Here a profile of the form (2.8) was used with i = 3. To an extent, this is
an arbitrary choice and was selected partly to ensure a relatively smooth transition in
boundary conditions at the slot edges in this first application of the Lagrangian method
with suction.

The motion was taken to be impulsively started from rest, and for t > 0, an initially
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thin boundary layer forms on the parabola. To describe this phase of the motion in
Eulerian coordinates, it is convenient to introduce the Rayleigh variable ζ = y/2

√
t.

The initial solution is u = U∞(x)erf(ζ) for all x and ζ. It is convenient to introduce

computational coordinates x̂ and ζ̂ defined on the interval (0, 1) by

x − xc = hx(x̂) = kx tan

{

π

(

x̂ − 1

2

)}

, ζ = hζ(ζ̂) = kζ tan

(

πζ̂

2

)

. (5.1)

The parameters kx and kζ control the mesh spacing in physical space and xc is a value of x
around which the mesh is clustered. During the course of the work, clustering was carried
out about several locations as discussed in section 7. A uniform mesh in computational
space and smaller values of kx and kζ imply more points concentrated near the point xc

and near the wall, respectively.
The solution of the transformed system (2.4) was advanced numerically forward in

time from t = 0 using a Crank-Nicholson method with upwind-downwind differences
for the first order spatial derivatives (Doligalski & Walker 1984); the method is second-
order accurate in space and time. The difference equations were solved using a simple
alternating-direction-implicit (ADI) method, as opposed to the factored ADI method in
Peridier et al. (1991). At any stage in the process, the streamfunction was evaluated by
integration using Simpson’s rule (Degani et al. 1996). The Rayleigh transformation was
used only in the initial stages, when the boundary layer is thickening in physical space
proportional to t1/2. For large t the solution must approach the Blasius solution for large
x and continued use of the Rayleigh variable causes the effective boundary layer in the
computational domain to shrink toward the wall. Thus the computation was switched
back to the y variable at a finite time td given in section 7. Let ŷ denote a computational
variable defined in an analogous way to equation (5.1); if the factor ky is selected as
ky = 2

√
tdkζ , then mesh points in y and ζ match up and a return to the y variable was

made without interpolation.

6. Lagrangian Method

For those values of a where separation occurs, the Eulerian calculation eventually fails
to converge at a time denoted here by tf . Thus at a selected time to well in advance of
tf , section 7, the calculation was restarted in Lagrangian coordinates.

As discussed by Cowley et al. (1990), once separation starts to develop, the boundary-
layer flow starts to focus into an erupting plume which is very narrow in the streamwise
direction. The phenomenon is characterized by a rapidly thickening boundary layer and
strong local normal velocities. An effective way of dealing with this event is to introduce
Lagrangian coordinates wherein the trajectories of a large number of fluid particles are
evaluated. The main dependent variables are the streamwise particle positions and ve-
locities x and u, respectively, which are functions of their initial positions (ξ, η) and t.
The streamwise momentum equation takes the form (Van Dommelen & Shen 1982)

∂u

∂t
= −∂p∞

∂x
+

{

−∂x

∂η

∂

∂ξ
+

∂x

∂ξ

∂

∂η

}2

u,
∂x

∂t
= u. (6.1)

At any instant, the normal particle positions y(ξ, η, t) can be computed using the conti-
nuity equation in Lagrangian coordinates:

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1. (6.2)
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Figure 8. Schematic diagram of the solution domain in (a) Lagrangian space and (b)
computational space.

One important advantage of Lagrangian coordinates is that the occurrence of a separation
singularity is unambiguously defined as the first instant when a stationary point occurs
in the x field according to

∂x

∂ξ
=

∂x

∂η
= 0 at ξ = ξs, η = ηs, t = ts, (6.3)

since these conditions make the solution of equation (6.2) singular; see Van Dommelen
& Shen (1982) for details of the singularity structure. Note that the solution for x is
believed to be regular even at separation (see, for example, Van Dommelen 1991). A
Lagrangian integration may be initiated at any time to that the velocity field is a known
function uo of x and y, and initial conditions for the system (6.1),(6.2) are

x(ξ, η, to) = ξ, y(ξ, η, to) = η, u(ξ, η, to) = uo(ξ, η). (6.4)

When suction occurs through a slot between the points x = x0 and x = x1 on the wall,
the slot location in Lagrangian space is a curve C, with end points A and B located at
(ξ, η) = (x0, 0) and (ξ, η) = (x1, 0), which penetrates into the Lagrangian domain with
the passage of time, as shown schematically in Figure 8(a). The curve C represents the
initial starting location of fluid particles which arrive at the slot at time t; at the start
of the Lagrangian calculations t = to, the equation of C is simply η = 0. For an injection
slot, the trend shown in Figure 8(a) is analogous, except that C penetrates downward into
the region η < 0. Note that v does not appear in the Lagrangian streamwise momentum
equation and it is the movement of C in Lagrangian space that influences the solution
for u. Because the problem involves a moving boundary, it is not convenient to carry out
the calculation in the usual (ξ, η) coordinates. Instead, computational coordinates (α, β)
are defined such that the slot remains on the α axis between points A and B as indicated
in Figure 8(b).

There are a number of ways in which (α, β) can be defined; first consider a general
mapping to computational space of the form

α = α(ξ, η, t), β = β(ξ, η, t), τ = t − to, (6.5)

with a corresponding inverse mapping

ξ = ξ(α, β, τ), η = η(α, β, τ), t = to + τ. (6.6)

Note that subsequent partial derivatives with respect to τ are taken with α and β held
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constant, while derivatives with respect to t are with ξ and η constant. Increments in
computational space are given by





dα
dβ
dτ



 =





αξ αη αt

βξ βη βt

0 0 1









dξ
dη
dt



 , (6.7)

where the subscripts denote partial differentiation and the quantities in the matrix give
the metrics of the transformation. An analogous equation can be written for (dξ, dη, dt)T ,
and upon comparing with equation (6.7), it is easily shown that





αξ αη αt

βξ βη βt

0 0 1



 =
1

J̃(α, β, t)





ηβ −ξβ ξβητ − ηβξτ

−ηα ξα ηαξτ − ξαητ

0 0 J̃



 , (6.8)

where J̃ = ξαηβ − ξβηα is the Jacobian of the transformation.
Denote the equation of C at any time in the Lagrangian plane by

ξ = ξw(α, τ), η = ηw(α, τ), (6.9)

and to determine the equations satisfied by ξw, ηw, suppose that fixed values of xw and
yw = 0 on the slot in physical space are taken as fixed values of α and β = 0 in
computational space, (see Figure 8), in other words:

x [ξw(α, τ), ηw(α, τ), to + τ ] = xw(α), y [ξw(α, τ), ηw(α, τ), to + τ ] = 0. (6.10)

Differentiation with respect to τ yields,

∂x

∂ξ

∂ξw

∂τ
+

∂x

∂η

∂ηw

∂τ
+

∂x

∂t
= 0,

∂y

∂ξ

∂ξw

∂τ
+

∂y

∂η

∂ηw

∂τ
+

∂y

∂t
= 0, (6.11)

where the partial derivatives of x and y are evaluated on the slot at ξ = ξw, η = ηw at
time to + τ . In the most general case, where the suction is vectored (or the wall moves
in the x direction) with components specified as uw(x, t) and vw(x, t), substitution of

∂x

∂t
= uw(xw(α), to + τ),

∂y

∂t
= vw(xw(α), to + τ), (6.12)

in equations (6.11) yields the governing relations for ξw and ηw, viz.

∂x

∂ξ

∂ξw

∂τ
+

∂x

∂η

∂ηw

∂τ
= −uw,

∂y

∂ξ

∂ξw

∂τ
+

∂y

∂η

∂ηw

∂τ
= −vw. (6.13)

These equations must be solved at any stage to determine the motion of the wall in
Lagrangian space, subject to the initial conditions, from (6.4),

ξw = xw(α), ηw = 0 at τ = 0. (6.14)

To evaluate the coefficients in equation (6.13), first note that in general

∂x

∂ξ
=

∂x

∂α

∂α

∂ξ
+

∂x

∂β

∂β

∂ξ
,

∂x

∂η
=

∂x

∂α

∂α

∂η
+

∂x

∂β

∂β

∂η
, (6.15)

and using equations (6.8)

∂x

∂ξ
=

1

J̃

{

ηβ
∂x

∂α
− ηα

∂x

∂β

}

,
∂x

∂η
=

1

J̃

{

−ξβ
∂x

∂α
+ ξα

∂x

∂β

}

. (6.16)

Since x and u are evaluated in computational space as functions of (α, β, τ), then at any
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fixed τ , ∂x/∂α and ∂x/∂β can be calculated on β = 0. Furthermore, once a particu-
lar mapping (6.5) is adopted, ξα, ξβ , ηα, ηβ and J̃ , can be evaluated on the slot. Also,
differentiation of the second of equations (6.10) with respect to α yields

∂y

∂ξ

∂ξw

∂α
+

∂y

∂η

∂ηw

∂α
= 0. (6.17)

At any stage in the calculation ∂ξw/∂α and ∂ηw/∂α can be evaluated and consequently
the continuity equation (6.2) and (6.17) are two equations in two unknowns for ∂y/∂ξ
and ∂y/∂η evaluated on the slot. Thus equations (6.13) may be solved for the time
derivatives of ξw and ηw and a numerical procedure to advance the solution for ξw(α, τ)
and ηw(α, τ) in time can be developed.

Now consider the specific relation between ξ, η and α, β defined by

ξ(α, β, τ) = ξw(α, τ), η(α, β, τ) = ηw(α, τ) + β, (6.18)

so that the mesh lines are vertical in Lagrangian space with the wall defined by β = 0;
in addition choose xw(α) = α. Under this mapping

ξα =
∂ξw

∂α
, ξβ = 0, ηα =

∂ηw

∂α
, ηβ = 1, J̃ =

∂ξw

∂α
, (6.19)

and the metrics can be evaluated from equation (6.8); from (6.14) and (6.18) J̃ = 1 at
the initiation of a Lagrangian calculation (τ = 0). From (6.16)

∂x

∂ξ
=

1

J̃

{

∂x

∂α
− ∂ηw

∂α

∂x

∂β

}

,
∂x

∂η
=

∂x

∂β
, (6.20)

where the right sides are evaluated on β = 0, for α locations in the slot, when used in
(6.13). For locations on the solid wall ξw = α, ηw = 0 for all τ . Using (6.2) and (6.17)

∂y

∂ξ
= − 1

xα

∂ηw

∂α
,

∂y

∂η
=

1

xα

∂ξw

∂α
, (6.21)

and xα must be evaluated on the slot when (6.21) are used in the second of (6.13).
Substituting (6.20) and (6.21) into (6.13), it follows that ξw and ηw satisfy

∂ξw

∂τ
= −uw

xα

∂ξw

∂α
+ vwxβ ,

∂ηw

∂τ
= − vw

∂ξw/∂α

{

xα − ∂ηw

∂α
xβ

}

− uw

xα

∂ηw

∂α
, (6.22)

with xα and xβ evaluated on the slot β = 0. Since x = α on β = 0 for all τ , equations
(6.22) reduce to

∂ξw

∂τ
= vwxβ ,

∂ηw

∂τ
= − vw

∂ξw/∂α

{

1 − ∂ηw

∂α
xβ

}

, (6.23)

for uw = 0, with xβ evaluated on β = 0.
Under the transformation (6.18), the boundary-layer equations (6.1) become

∂u

∂τ
+ αt

∂u

∂α
+ βt

∂u

∂β
= −∂p∞

∂x
+

∂2u

∂y2
,

∂x

∂τ
+ αt

∂x

∂α
+ βt

∂x

∂β
= u (6.24)

where
∂

∂y
=

1

∂ξw/∂α

{

−∂x

∂β

∂

∂α
+

∂x

∂α

∂

∂β

}

, (6.25)

and the metrics αt and βt follow from equations (6.8) according to

αt = − ∂ξw/∂τ

∂ξw/∂α
, βt =

1

∂ξw/∂α

{

∂ηw

∂α

∂ξw

∂τ
− ∂ξw

∂α

∂ηw

∂τ

}

. (6.26)
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Because u and x, as well as the metrics αt, βt, are regular at separation, one of the main
advantages of Lagrangian coordinates is preserved in the system (6.24)-(6.26).

Computational variables x̂, α̂, β̂, are defined by the first of (5.1) and

α − xc = hα(α̂) = kx tan

{

π

(

α̂ − 1

2

)}

, β = hβ(β̂) = ky tan

(

πβ̂

2

)

, (6.27)

which have been chosen such that the Lagrangian mesh points match up with the Eulerian
ones from section 5 at time to. Upon substitution into equations (6.24), it is easily shown
that

∂u

∂τ
= −∂p∞

∂x
+ R

∂2u

∂α̂2
+ S

∂2u

∂α̂∂β̂
+ T

∂2u

∂β̂2
+ P

∂u

∂α̂
+ Q

∂u

∂β̂
, (6.28)

∂x̂

∂τ
+

αt

h′

α(α̂)

∂x̂

∂α̂
+

βt

h′

β(β̂)

∂x̂

∂β̂
=

u

h′

x(x̂)
, (6.29)

where

R

Π
=

(

∂x̂

∂β̂

)2

,
S

Π
= −2

∂x̂

∂α̂

∂x̂

∂β̂
,

T

Π
=

(

∂x̂

∂α̂

)2

, Π =

{

h′

x(x̂)

(∂ξw/∂α̂)h′

β(β̂)

}2

, (6.30)

P = − αt

h′

α(α̂)
+ Π

{

−∂2ξw/∂α̂2

∂ξw/∂α̂

(

∂x̂

∂β̂

)2

+
∂x̂

∂β̂

∂2x̂

∂α̂∂β̂
− ∂2x̂

∂β̂2

∂x̂

∂α̂
+

h′′

β

h′

β

∂x̂

∂α̂

∂x̂

∂β̂

}

, (6.31)

Q = − βt

h′

β(β̂)
+ Π

{

∂2ξw/∂α̂2

∂ξw/∂α̂

∂x̂

∂α̂

∂x̂

∂β̂
− ∂x̂

∂β̂

∂2x̂

∂α̂2
+

∂x̂

∂α̂

∂2x̂

∂α̂∂β̂
−

h′′

β

h′

β

(

∂x̂

∂α̂

)2
}

. (6.32)

The prime denotes differentiation and using equations (6.23), the metrics are

αt = −vw
h′

x(x̂)h′

α(α̂)

h′

β(β̂)∂ξw/∂α̂

∂x̂

∂β̂
, βt = vw

h′

α(α̂)

∂ξw/∂α̂
. (6.33)

In computational space, equations (6.23) become

∂ξw

∂τ
= vw

h′

x(x̂)

h′

β(β̂)

∂x̂

∂β̂
,

∂ηw

∂τ
= −vwh′

α(α̂)

∂ξw/∂α̂

{

1 − h′

x(x̂)

h′

α(α̂)h′

β(β̂)

∂ηw

∂α̂

∂x̂

∂β̂

}

. (6.34)

Finally, defining ŷ as in section 5, the continuity equation (6.2) transforms to

∂x̂

∂α̂

∂ŷ

∂β̂
− ∂x̂

∂β̂

∂ŷ

∂α̂
=

(∂ξw/∂α̂) h′

β(β̂)

h′

x(x̂)h′

y(ŷ)
. (6.35)

A singularity occurs in computational coordinates when

∂x̂

∂α̂
=

∂x̂

∂β̂
= 0 at τ = τs. (6.36)

7. Numerical Methods

For a given value of a greater than the critical value 1.1576, integrations were initiated
at t = 0 in the Eulerian system as described in §5; for a solid wall, the boundary layer
will eventually separate for all such cases (Degani et al. 1996). Generally, it was found
that suction should be started well in advance of the separation time tss for a solid wall;
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otherwise, the imposed suction is not as effective in delaying separation. A similar con-
clusion has been reached by Wang (1995) for flows at moderate Rer. Unsteady separation
is not located at the wall, but relatively far away from it on the boundary-layer scale.
Thus at times close to separation, asymptotically large controls are needed at the wall to
influence the forming separation. This was dramatically illustrated through a numerical
example by Van Dommelen (1990). For these reasons, suction was started shortly after
t = 0 at a time denoted by tv, given in Table 4. The values of the scale parameters in
equations (5.1) were selected pragmatically, and typical values of kx = 2.3 and kζ = 0.8
were used (Degani et al. 1996). For cases a = 2, 3 and a = 4 the switch to the y variable
was done at td = 1 and td = 0.2, respectively.

The majority of each calculation was done in the Eulerian formulation, which is more
efficient than in Lagrangian coordinates. However, as separation begins to develop, the
numerical solution process discussed in §5 encounters convergence problems and even-
tually fails at a time denoted here by tf . This behavior has been well-documented in
other studies of two-dimensional unsteady separation (Van Dommelen & Shen 1980,
1982; Cowley et al. 1990; Degani et al. 1996), and indicates the need to switch to the
Lagrangian method; this was done at a time to < tf , given in Table 4. The value of
to must be selected well in advance of tf so that the Eulerian velocity field is free of
the substantial numerical errors that develop near tf . A number of mesh sizes and time
steps were used as a check on the accuracy. With increasing a separation develops more
rapidly, necessitating the use of smaller time steps. In a typical preliminary calculation,
similar time steps were taken as in Degani et al. (1996), ranging from ∆t = 0.001 to
0.0001, with a (401 × 201) spatial mesh. All cases presented here are based on a final
(601 × 301) mesh and are believed to be grid independent. In the Eulerian integration
convergence at each time step was deemed to have occurred when the relative difference
of two successive iterates for u agreed to within 10−6 at each mesh point.

In Lagrangian space, the mesh moves according to (6.18), and the new slot position
in Lagrangian space must be computed by solving equations (6.34) at each time step.
If the solution is known at time τ − ∆τ (the previous time plane), the objective is to
advance the solution to the current time plane at τ . The x̂ field was first advanced by
approximating equation (6.29) at τ − ∆τ using a simple forward difference for ∂x̂/∂τ
and central differences for the spatial derivatives. This is an explicit predictor phase and
is first-order accurate in ∆τ . With estimates of x̂(α̂, β̂, τ) in hand, ∂x̂/∂β̂ at β̂ = 0 was
estimated at τ using a second-order sloping three-point difference. The first of equations
(6.34) was then approximated at τ −∆τ/2 using a simple average in τ for the right side
and a central difference for ∂ξw/∂τ ; this produces an estimate of ξw(α̂, τ) which is second-
order accurate in space and time. Similarly, the solution for ηw(α̂, τ) was advanced to the
current time plane, although on the first pass, ∂ηw/∂α̂ was estimated from the solution
in the previous time plane. At this stage, estimates of x̂, ξw and ηw are available, and
the solution of equation (6.28) was advanced using a Crank-Nicholson method similar
to that discussed in §5; the coefficients in equation (6.28) were approximated with a

simple average in τ and upwind differences were used for ∂u/∂α̂ and ∂u/∂β̂, depending
on the sign of P and Q respectively (Doligalski & Walker 1984). The resulting difference
equations were then solved using a single pass of a simple ADI scheme, in which the
mesh was swept in the α̂ and then the β̂ direction. At this point x̂(α̂, β̂, τ) was refined
by approximating equation (6.29) at τ −∆τ/2 in a corrector phase that yields a second-
order estimate of the x̂ field. Next the solutions of (6.34) and then (6.28) were refined.
The process was iterated until successive estimates of u agreed to six significant figures
at each point; typically, this required three global iterations per step.
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Figure 9. Penetration of the slot into the Lagrangian domain for a typical case a = 2, i = 2,
t = 4.0(0.1)4.3; the dotted lines are the trajectories of selected wall mesh points originally at
η = 0.

(a) (b)

Figure 10. Gradients of ξw for the case shown in Figure 9 at the same times.

The position of the slot penetrates the Lagrangian domain with increasing τ and, as an
example, consider the situation shown in Figure 9, where ξ̂ = h−1

x (ξ), η̂ = h−1
y η, a = 2,

V = 1, to = 4, i = 2 in (2.8), and the slot edges are at ξ = 0, 2.90. The position of the
slot changes at later times as indicated. The derivatives ∂ξw/∂α̂ and ∂2ξw/∂α̂2 appear
in equations (6.31)-(6.34), and the evolution of the corresponding physical quantities
∂ξw/∂α and ∂2ξw/∂α2 are shown in Figure 10 for the situation in Figure 9. At the
initiation of the Lagrangian integration at τ = 0, ∂ξw/∂α = 1 and ∂2ξw/∂α2 = 0.
The subsequent distribution of ∂ξw/∂α is evidently continuous, but ∂2ξw/∂α2 develops
growing discontinuities at the slot edges. To confirm this behavior, consider the upstream
edge of the slot at x0 and assume that xβ remains continuous there; it follows from (2.8)
and (6.23) that ∂ξw/∂τ ∼ (α−x0)

i just inside the slot edge while ∂ξw/∂τ = 0 upstream
of the slot. Consequently, for i = 2, a discontinuity in ∂2ξw/∂α2 occurs at α = x0,
hence in the coefficients of the equations being numerically integrated. This behavior
has potentially serious consequences if the integration continues for an indefinite period
of time. A lengthy Lagrangian calculation is also undesirable from another standpoint.
The position of the slot penetrates more deeply into the Lagrangian domain with the
passage of time and inevitably this will result in an unacceptable skewness in the grid in
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Lagrangian space. The problem manifests as an instability that develops in C (see Figure
8) in the form of a point-to-point oscillation about a well-defined mean.

Finally in a lengthy Lagrangian calculation, fluid particles which were initially close to
one another eventually become separated by large distances; consequently gradients of x̂
and û in (6.28)-(6.34) become large. The need for remeshing is signaled by a progressive
rise in the global iterations required for convergence at a time step. The cure to these
problems is to periodically remesh. The remeshing algorithm used here is similar to that
of Degani et al. (1998); briefly summarized, the continuity equation (6.35) is integrated
along its characteristics to locate the new mesh points in the previous mesh.

In order to test the present Lagrangian methods, Eulerian calculations were run for
specific cases up to a selected time tt. The mesh clustering location xc was initially chosen
at the vertex of the parabola x = 0 as in Degani et al. (1996). The computation was then
rerun by switching over to Lagrangian coordinates at an earlier time such as tt/2 and a
comparison of the Eulerian and Lagrangian results for wall shear (which is believed to
be most sensitive to error) was made. Outside the slot, agreement was typically O(10−8)
or smaller, while inside differences approaching 10−4 were seen, especially for cases with
large suction magnitudes V . To enhance the comparison and gain confidence in the
Lagrangian algorithm, several modifications were made. First the clustering location was
shifted to the middle of the slot where streamwise variations in both suction velocity and
pressure gradient are large. A second improvement concerned the remeshing process. The
decision as to when to remesh is somewhat subjective. The initial criterion adopted was
to evaluate η̂w = h−1

y (ηw) and once the maximum value exceeded 0.1, a remeshing was
carried out. Depending on the value of V , remeshing is needed on the order of every
100 time steps or more. There is a potential loss in accuracy at each remeshing and
to minimize this error, two actions were taken. First the bilinear interpolation formula
used by Degani et al. (1998) was replaced by a third order formula involving six points.
Second, in order to reduce the number of remeshings, the criterion for a remeshing was
changed so that the maximum of η̂w had to exceed 0.5. Since the maximum possible
value of η̂w is 1, the penetration of the slot boundary in Lagrangian space is fairly deep;
setting the criterion at larger values than 0.5 produced oscillations which were traced
back to excessive mesh skewness in Lagrangian space. All changes were beneficial such
that both computations agreed closely over a common time interval, even after several
remeshes. Note that remeshing too close to the singularity time ts is problematic and
for this reason, the remeshing criterion was often relaxed as t → ts. Finally, suction
was found to significantly weaken the separation process in some cases; such situations
were encountered by Degani et al. (1998), where separation was dramatically inhibited
by a moving wall. These cases are difficult to compute accurately since the computation
continues for relatively long times in the Lagrangian frame; indeed separation was often so
weak that Eulerian computations can be continued (with a coarse spatial mesh) through
the separation event, illustrating the problems in Eulerian computations. In these cases
the separation location was located approximately by a preliminary calculation. A refined
computation was then carried out with the cluster point in α switched to the suspected
separation point. This process was effective in accurately resolving the cases of ‘weak
separation’.

8. Calculated Results

Computations were carried out for various combinations of slot widths, slot locations
and suction characteristics. For a solid wall, a separation singularity occurs at times tss

(listed in Table 4 as ts for V = 0) at locations xs computed by Degani et al. (1996)
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a V tv tf to ts xs CQ

2 0 - 4.5 5.82 1.20 0
0.5 0.2 10.213 9.0 10.2 2.34 0.62
1.0 13.956 12.0 13.7 2.98 1.23
2.0 24.669 20.0 24.4 4.09 2.46
3.0 35.094 30.0 35.0 4.96 3.69
10.0 59.370 50.0 60.4 6.67 12.3

3 0 - 1.5 2.55 0.789 0
0.5 0.2 3.286 2.8 3.24 0.865 0.62
2.0 7.570 6.5 7.56 2.86 2.46
4.0 12.082 10.0 12.1 3.71 4.92
6.0 14.388 12.0 14.7 4.13 7.38
10.0 16.261 14.0 16.5 4.44 12.3

4 0 - 1.10 1.62 0.637 0
0.5 0.2 1.773 1.5 1.77 0.665 0.62
1.0 2.005 1.75 1.99 0.684 1.23
3.0 5.427 4.7 5.42 2.89 3.69
6.0 7.846 6.8 7.90 3.58 7.38
10.0 9.038 7.8 9.19 3.89 12.3

Table 4. Parameters associated with the calculations and results.

and to be an effective separation control, suction must be applied near these locations.
However separation can then occur downstream of the slot, and thus the slot should
extend a reasonable length along the upper surface. After considerable experimentation
(Kim 1999), the leading-edge of the slot was selected at x0 = 0. For most calculations
reported here, the downstream edge of the slot was at x1 = 2.90 and i = 3 in (2.8).

Results and parameters for the present calculations are listed in Table 4. All cases
considered ultimately terminate in a singularity, but it is evident that separation always
is delayed to a later time and shifted downstream (compared to the solid wall). The
unsteady separation locations are slightly downstream of those for the steady case in
Table 3 (c.f. Van Dommelen & Shen 1980). As V increases, substantial increases in ts
occur as shown in Figure 11: here, the separation time, scaled with respect to the solid wall
value tss, is plotted versus the suction strength for the three values of a. The broken lines
are spline fits to the data and are presented only as a visual aid to distinguish clearly
different values of a. The open symbols indicate cases in which the separation occurs
above the suction slot, and closed ones behind the slot. The drop-off in effectiveness of
suction at large V is related to the separation location moving downstream to regions
where suction is weaker and eventually disappears.

The flow development for a typical case when the suction is weak is shown in Figure 12.
Note that this and subsequent figures are not at a realistic Reynolds number and show
magnified instantaneous streamlines in a thin layer next to the parabola. The adverse
pressure gradient for a = 4 is relatively severe and separation takes place for a solid
wall near the leading vertex at xs = 0.637. As indicated in Table 4, separation occurs
for V = 0.5 a little later and a little further downstream, but the modification of the
process is only slight. In contrast, when the suction strength is increased, the evolution of
a recirculation zone is delayed substantially as shown in Figure 13; a recirculating eddy
is not evident until just before t = 7 in Figure 13(c). Separation eventually occurs at
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Figure 11. Calculated separation retardation by suction for a = 2, 3, and 4 versus V .

Figure 12. Instantaneous streamlines in the boundary layer for a = 4 and V = 0.5 at (a)
t = 0.5, (b) t = 1.0, (c) t = 1.5, (d) t = 1.7.

ts = 7.9, which is about 5 times longer than for a solid wall. Now separation is suppressed
above the slot but occurs on the solid wall downstream as shown in Figure 13(d). This
suggests that lengthening the slot downstream will produce a greater separation delay.
To verify this point, calculations were also done with the slot end at x1 = 4, and further
delays proved possible provided that V was adjusted. If, for example, the same V is used,
separation can actually occur above the slot at an earlier time. This happens because the
peak in suction velocity is shifted downstream, resulting in a weakening of local suction
near the leading-edge, thereby permitting separation there. Calculated results for a = 4,
V = 14 are shown in Figure 14 for x1 = 4. A singularity eventually occurs at xs = 5.85
(downstream of the slot) at t = 17.8. Evidently additional increases in the slot length
could be used to further delay separation.
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Figure 13. Instantaneous streamlines in the boundary layer for a = 4 and V = 6 at (a)
t = 2.0, (b) t = 4.0, (c) t = 7.0, (d) t = 7.9.

Figure 14. Instantaneous streamlines for a = 4, x1 = 4 and V = 14 at ts = 17.8.

Lastly, although the bulk of the results reported here used the suction distribution in
(2.8) with i = 3, other calculations were done for other values of i but a qualitatively
significant effect was not found. For example, for CQ = 7.38, a = 4, which is a case shown
in Table 4 with i = 3, V must be altered from 6 to 5.1 for i = 2 to maintain the same
suction volume. In this case, separation eventually occurred at ts = 8.54 and xs = 3.73,
which are close to the values in Table 4.

9. Concluding Remarks

By extending the Lagrangian approach for computing unsteady separation to include
a floating boundary, accurate numerical determination of unsteady separation in the
presence of suction was possible. The present results show that the boundary-layer sep-
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aration at high Re can be substantially inhibited using suction over a small slot near
the leading-edge of a thin airfoil. The physical suction velocity is O(Rer

−1/2), and con-
sequently the mass flow rates involved are not substantial. As shown in Figure 11, for a
slot occupying the first 3.3% of the chord (for a Joukowsky airfoil with thickness ratio
0.12), delays in separation of five to ten times are possible. Further delays are possible
by lengthening the slot. This is consistent with the Navier-Stokes calculations of Wang
(1995) for a Reynolds number based on chord length of 5000; the slot extended over the
first 20% of the chord of a NACA 0012 airfoil, and it was found that separation from the
leading-edge could be suppressed entirely using a suction volume CQ = 28 at a = 5.88
(30 degrees). However, the applications of potential interest in this study are associated
with rotorcraft and brief maneuvers of combat aircraft. Suppression of leading-edge sep-
aration is desirable but inhibiting and weakening the process and shifting it downstream
are also useful when the slot size or the volumetric flow rates involved in suction are a
concern. Lack of space has been cited for the failure to extend the leading edge suction on
an F86-F to later fighters that had thinner wings (Flatt 1961), and similar concerns may
apply to rotorcraft. The results obtained show that in the transient case, surprisingly
large effects on separation, and consequently on aerodynamic forces, can be obtained by
only slight amounts of suction through small slots, especially for brief intervals of time.
For example, at a scaled effective angle of attack a = 2, a scaled suction coefficient of
only 0.62 almost doubles both the separation time and its distance away from the nose.
This amount of suction is much smaller than the minimum amount of suction required
to avoid separation completely, 2.34, which would also need to be applied by means of
the lengthy and awkward distribution of Figure 4.
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Wagner, H. 1925 Über die Entstehung des dynamischen Auftriebs von Tragflächen. Z. angew.
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