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Abstract

In order to simulate diffusion processes in discrete vortex computations, the vorticity
of each vortex is redistributed over its neighbors. A sufficient condition for convergence is
derived. This condition is cast as the solution of an underdetermined system of equations.
Computed examples of diffusion in one space dimension are compared to random-walk
results.



1. Introduction.

Vortex methods show promise for incompressible flow at high Reynolds numbers since
only the vorticity must be described, saving storage. In addition, Van Dommelen & Run-
densteiner [1] introduced a fast numerical scheme in which the number of numerical oper-
ations per vortex is finite, so that flows with limited regions of vorticity can be computed
rapidly. In a vortex method, the computational domain can truly be infinite.

Besides, when combined with, for example, a random walk simulation of the diffusion
terms in the Navier-Stokes equations, the method can be completely mesh-free. This
makes it possible to address complex multi-component configurations, such as a missile
which is fired from a submarine, in a simple way.

Yet the random walk method has several significant disadvantages, such as random
perturbations in the results that introduce an awkward uncertainty in interpretation. In
addition, the center of vorticity is not preserved, and can drift sizably for longer times. Such
a drift can have sizable influence on the flow. Finally, the asymptotic order of accuracy is
low.

This paper examines an alternate mesh-free algorithm which achieves the diffusion
through a process of redistribution of vortex strength. During each time-step, the circu-
lation of each vortex is redistributed over adjacent vortices in a way to give the correct
amount of diffusion. Such a procedure is consistent with the fast velocity summation of
[1] that already groups neighboring vortices together to reduce the number of numerical
operations required.

This method is deterministic; its convergence for the Stokes’ equations is proved in
section 3. A ‘stability’ condition must be met that can be cast as a standard problem
involving the solution of an underdetermined system of linear equations. The solution of
that problem is fairly easy; it is roughly equivalent to the generation of suitable stable
finite difference formulae for an arbitrary set of points. In addition, the accuracy can in
principle be as high as desired, when a sufficient vortex density exists, simply by increasing
the number of equations in the linear system. The method preserves the center of vorticity
of each vortex exactly.

Some preliminary simple one-dimensional numerical experiments are presented in sec-
tion 4. While the method seems to generalize straightforwardly to the two-dimensional
Navier-Stokes equations, the question whether the vortex stretching in three-dimensional
flow can be handled by a similar redistribution procedure must be addressed separately.

2. Basic Method.

In the vortex redistribution method, the vorticity is at each time step 5 = 0,1,...



described as a set of vortex blobs;
Wi = Z l |r B rp| 2 1
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where v, is the circulation of vortex p and ¢ is a symmetric smoothing function that
integrates to unity. For convenience, we will assume that the number of dimensions is
two, although this is not essential. Given a more general initial vorticity distribution than
(2.1), it may be convolved with the function ¢ and the convolution approximated by the
trapezium rule to find an approximation of the form (2.1).

As usual in vortex procedures, the convection terms in the Navier-Stokes equations
are modelled through the motion of the vortices. The purpose of the redistribution algo-
rithm is to approximate the viscous diffusion during each time step At. This is done by
redistributing the strength -, of each vortex p over vortices ¢ in a neighborhood of vortex
p- Thus the new vorticity distribution assumes the form

1 r—r
Wiyl = Z’ypwpqg—2¢> (‘ 7 q‘) (2.2)
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where wp, is the relative fraction of vy, assigned to vortex q.

Since the vortex positions are assumed to be given by the convection approximation,
the correct diffusion effects must be obtained by a suitable choice of the redistribution
weights w,,. Conditions for these weights follow from taking the Fourier transform of the
vorticity distribution,

@j = G(ke) Y ype ™ (2.3)
p

where k is the wave number vector. Similarly, the redistributed vorticity distribution
transforms as

Djp1 = d(k0) Z’prpqe_ik'rq (2.4)

p.q

On the other hand, after time step At exact diffusion would give the transformed vorticity
Of 41 = (k) Y e KTV (2.5)
P
where k is the magnitude of k.
The general procedure is now to choose the redistribution fractions wy, to bring the

expression (2.4) in agreement with the exact result (2.5) as long as the k is finite. To this
end, (2.4) is rewritten to a form similar to (2.5),

Wjt1 = <£(k£) Z’Ype_ik'rp Z wpqe_ik.dpq 2vat (2.6)

p q



where
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Expanding both (2.5) and (2.6) into a Taylor series for small A¢, the leading order equations

become:
D wpg =1 (2.8)
q
D wpglipg =0 > wpeday, =0 (2.9, ¢)
q q
Z Wpq (dlpq)2 =1 prqdlpqd2pq =0 Z Wpq (d2pq)2 =1 (2.10a, b, c)
q q q

prq (dlpq)3 =0 prq (dlpq)2 dapg =0 (2.11a,b)
q q

Z Wpqdipg (d2pq)2 =0 prq (d2pq)3 =0 (2.11c,d)
q q

Thus a system of linear equations for the unknown weights w,, results.

Equation (2.8) expresses the preservation of the circulation of each vortex, (2.9) the
conservation of the center of vorticity, and (2.10) the leading order diffusion. This can be
compared with the random walk procedure, which does preserve circulation, but preserves
the center of vorticity only in the limit of infinitely many vortices.

For consistency, at least equations (2.8) through (2.10) must be satisfied, while further
equations such as (2.11) may be included to improve the accuracy. There is no fundamental
limitation on the order of accuracy that can be achieved, although the system of equations
may become ill-conditioned for higher accuracy. And obviously, the number of vortices ¢ in
the neighborhood of any vortex p must at least equal the number of equations retained in
(2.8), (2.9), (2.10),... Since the inclusion of vortices at distances much larger than v/2vAt
decreases accuracy (cf. the next section), a sufficient density of vortices must be present.
If it is not, new vortices of zero strength can be added.

There is an additional restriction on the solution of (2.8) and following; the conver-
gence proof of the next section requires that all weights w,, are non-negative. If the initial
vortices are confined to a finite domain, the non-negativity condition cannot be satisfied
at the boundaries of that domain, and new vortices must be added at each time step.
Physically this addition of points allows the vorticity to spread over the total flow region,
instead of being confined to the initial domain.

The main problem is to find a non-negative solution to (2.8) and following, given a
neighborhood of points ry. Note that we will want to include sufficient points to make the

existence of a non-negative solution wy, likely, in which case the system of equations will
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usually be underdetermined. From all possible solutions, we need to select a non-negative
one, if it exists. To do that, we first note that on behalf of (2.8) all weights w,, must be
less than unity, so that we need a solution in the range

0<wpy <1
Alternatively, if we introduce shifted unknowns
Ug = Wpg — 5 (2.12)

we need a solution
(2.13)

1
max(|ug|) < 3
Therefor, if we find the solution with the least possible maximum, it will be an acceptable
solution if the maximum is less than % If it is greater, the set of vortices is insufficient and
one or more new vortices must be added. An efficient algorithm to find the least maximum

solution to an underdetermined system is described in [2].
3. Convergence For The Stokes Equations

In this section, we will examine the convergence of the redistribution algorithm. Since
the convection terms are described separately as vortex motion, in the analysis we will re-
strict ourselves to the solution of the Stokes equations. We will first estimate the difference

(5]' = C:)j—}—l — (;Jje_kQVAt (31)
between the redistributed solution (2.6) and the exactly diffused solution (2.5).

By satisfying (2.8) and following, the first few terms in the Taylor series expansions
with respect to time for the redistributed and exact solutions agree. If M > 3 is the order
of the first term in the Taylor series expansion of the redistributed solution that is not
equated to a corresponding term in the exactly diffused solution, then the Taylor series
remainder theorem gives:

5= |00 S e ({5 e gy VAL - ) ¥feos(an) +isin(an)]
_ (2:\,1])\;7 VTN e—a’“QVAt) (3.2)

where N = M/2 when M is even or N = (M + 1)/2 when M is odd, while 0 < a < 1.
Using the triangle equality,

1
2N NI
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P q
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where we used the fact that the w,, are non-negative.

If the maximum allowed distance between any point p and any neighboring point g is
d07
|dpg| < do (3.4)

the sum in (3.3) can be further bounded using (2.10),

prq“{ : dpq|M < max (|k ) dpq|M_2) Z Wpq(k - dpq)2 < EMdoM? (3.5)

q q

Further, the total absolute circulation may be defined as

I'=> |yl (3.6)

On behalf of (2.8) I' cannot increase with time when none of the w,, are negative. Thus
the final bound becomes independent of j:

05| <6 (3.7)

; s M 1 N
¢ = |¢p(kO)|T (MdoM VovAt kM + 2NN!M 32N (3.8)

Starting from an initial set of vortex blobs wg, the solution after J = t/At steps
follows as

Gy = aoe—k%/t + 5Oe—k2u(J—1)At + 5le—k2u(J—2)At +. o+ 5J_2e—k2uAt Y (3.9)

Since the first term of the right hand side describes the exact solution, the error can be
bounded by

Gy — woe—k2ut‘ <5 (e—k2u(J—1)At L M-t L kAL | 1) (3.10)

or after approximating the geometric series,

TS 5
‘LL)J — Wpe k t| S m (311)
or
. N k2wt 20
|0y — woe | < T2 AL (3.12)
provided
1
At < oo (3.13)
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Substitution of (3.8) in (3.12) yields the final error bound

Gy — Goe ¥t < |d(kO)|T (ido 2oAt kM2 4 \/2VAt2N_2k2N_2>

(3.14)

2N N1

To show that the error (3.15) can be reduced to any desired amount, we first introduce
a value K of k so that the region £ > K contributes less than half the desired error to the
Ly-norm of (3.14). The exponential decay of the function ¢(k£) allows such a value for K
to be found. Further, in the region k£ < K, the error (3.14) decreases uniformly with At
so that its L, norm also can be made less than half the desired error.

To simply (3.14), we can introduce a mesh length scale
Ly, = doV2vAt = max(|ry — 1p)) (3.15)

and a diffusion length scale

tg = V2vAt (3.16)

in which case (3.14) reads

@y — Goe ¥ < |p(ke)|T

(4*[(15 BM-2 4 QNN, (Cak)2N - 2) (3.17)

Each mode is therefor integrated accurately when both the mesh and diffusion length scale
are small compared to the wave length 1/k.

However, small errors in the modes do not necessarily imply a small total square error.
To obtain an integrated square error of order €2I'2, we would need

K= CEK (3.18)

on account of (2.3), where Ck is only logarithmically large in e. Then the mesh and
diffusion length scales must be of order

1

Uy ~ Gy T2 4312 (3.19)
0y ~ Cge™=2 f3v=2 (3.20)

4. Numerical test for the one-dimensional heat equation

To test the performance of the proposed algorithm, an appropriate one-dimensional
exact solution is the diffusing vortex,

1 —z? /4vt
W = e 4.1
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The corresponding circulation, given as the integral with respect to x, is

G = \/vrerfe (— \/Zﬁ> (4.2)

To simulate the solution using the random walk method, initially 64 vortices of equal
strength were placed at the origin. At each time step the vortices are given a random
displacement proportional to v/2vAt selected from a data base of 8000 gaussian random
numbers. The deviations from the exact solution are appreciable for longer times. Figure
1b shows the values of the first vorticity moment

€ = Z’prp (4.3)
P

which should be zero, reflecting conservation of the position of the center of vorticity.
However, the lower curve in figure 1b shows that a significant drift of the center does
occur. Further the ratio )
— Zp TpTp
YN

also shows significant deviations from its exact, unit, value.

Cs (4.4)

The drift of the center of vorticity may be reduced by slightly adjusting the distribution
of the 8000 random numbers to give exactly zero mean. Under that condition, the results
appear as shown in figure 2. Yet, there is no real justification for this correction.

In the redistribution procedure, initially a single vortex was placed at the origin. At
each time step, vortices were added to satisfy the non-negativity condition. The procedure
followed here was to take the neighborhood of a vortex as all vortices within a distance
2¢4. A first attempt was made to satisfy (2.8) through (2.11) in this neighborhood with
a non-negative solution. If this failed, next an attempt was made to satisfy (2.8) through
(2.10) only. If again no non-negative solution could be found, vortices were added until a
non-negative solution did result.

In adding vortices, a simple and effective procedure is to add the new vortex at a
distance v/3lg from the considered vortex. The side at which to add the vortex is chosen
by maximizing the distance between the new vortex and the closest existing vortex in the
neighborhood. The results are shown in figure 3, and are clearly much more accurate than
the random walk procedure. It can be shown that a non-negative solution to equations
(2.8) through (2.10) must exist when there are two vortices in the neighborhood at opposite
sides of the considered vortex, at a geometric mean distance of at least £45. Thus the number
of vortices that needs to be added in the described procedure is at most 2.

In fact the procedure of figure 3 simply generates a uniform mesh, and the redistri-
bution algorithm then generates second order accurate explicit finite difference formulae,
explaining the good results.



Such an effective procedure would be much more difficult to develop in two or more
dimensions, and would not hold in the presence of convection. Therefor, to get a more
realistic assessment of the redistribution algorithm, we need to destroy the mesh regularity.

This was done by displacing each added vortex a random distance away from the nominal
V344 value.

Using a gaussian random displacement with a standard deviation of 0.83¢4, (and
ignoring values outside the range from 0 to 2¢3), the results of figure 4 were obtained. In
this case the high frequency errors predicted by the analysis of the previous section are
observed. It is noted that figure 4 has not been smoothed; the size of the vortex blobs
is zero. In fact, the integration of the vorticity (4.2) ensures that Ls-convergence occurs
regardless of smoothing.

To make the position at which the vortices are added essentially random, the random
displacement was increased to v/3/4. Results for various time steps are shown in figures
5a through c. The results are very satisfactory.

A second example, in which the random walk method experiences considerably more
difficulty, is the diffusing dipole,

—x 2
_ —z° /4vt 4.5
W e .
21/?5\/?? ( )

Figure 6a compares the exact solution with the random walk results, while figure 6b
presents the invariants

> _p VoL
Dy =-=2—2 4.
1 N (4.6)
Dy =) vl (4.7)
p

Figure 7 shows that this case is again integrated much more accurately with the redistri-
bution method, even using randomly chosen points.

1. L. L. Van Dommelen and E. A. Rundensteiner, “Fast solution of the two-dimensional
Poisson equation with point-wise forcing”, Journal of Computational Physics, to ap-
pear.

2. L. L. Van Dommelen “Least-maximum solution of underdetermined linear systems”,
in preparation.



Figures

. Random walk results for a diffusing one-dimensional vortex. (a) Circulation. (b)
Invariants.

. As figure 1, but with corrected random numbers.

. Performance of the redistribution algorithm for the one-dimensional diffusing vortex
when well chosen vortex positions are used.

. Similar to figure 3, but with less well chosen vortex positions.

. Similar to figures 3 and 4, but with randomly chosen vortex positions. (a) At = 0.125
(b) At =0.0625 (c¢) At =0.03125

. Random walk results for a diffusing dipole. (a) Circulation. (b) Invariants.

. Circulation for the diffusing dipole using the redistribution method.



