FSGC NASA Human Powered Vehicle

Team 509:

Ryan Floyd, Nicolas Picard, Ninett Sanchez, Andrew Schlar

Presenters: Nicolas Picard, Ryan Floyd

NASA Human Powered Vehicle Team 509

Ryan Floyd Project and Materials Engineer

Nicolas Picard Design Engineer

Ninett Sanchez Design Engineer

Andrew Schlar Team Leader, Design Engineer, and Point of Contact

Nicolas Picard

2

Sponsor and Advisor

Florida Space Grant Consortium

Dr. Shayne McConomy

Special thanks to Dr. Shayne McConomy for advising and mentoring the team

Nicolas Picard

The objective is to design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition.

Project Background

- Apollo 14 lunar mission complications
- Annual NASA Human Exploration Rover Challenge
 Competition
- Artemis Moon Program
 - Lunar Mission 2024
 - Sustained Settlement 2028

Apollo 14 Flight Crew [1]

Ryan Floyd

Competition

Competition Date(s):

• April 15th - 17th, 2021

Location:

- Huntsville, Alabama
- Virtual hosting decision on February 4th, 2021

Course Details:

- 14 obstacles simulate lunar terrain
- 5 optional tasks, similar to astronaut missions
- 8-minute time limit represents theoretical oxygen supply

Student competitors completing competition challenge [2]

Department of Mechanical Engineering

Project Requirements

Department of Mechanical Engineering

Concept Generation

Medium and High Fidelity

Nicolas Picard

8

Department of Mechanical Engineering

Concept Selection

Nicolas Picard

9

System Concepts

Department of Mechanical Engineering

0

Tools

Five Tasks

- ☆ Spectographic Analysis
- ☆ Instrument Deployment
- ☆ Core Sample Retrieval
- ☆ Solid Soil Sample Retrieval
- ☆ Liquid Sample Retrieval

Nicolas Picard

Drivetrain

Two-Stage Chain Drive

Front Axle Components

- 32-tooth chainrings, 20-tooth freewheel pinions
- ANSI size 35 steel roller chains, 16-tooth solid pinion
- I" OD, 0.188" wall thickness steel driveshaft
- Axle mounts with embedded bearings

Front axle powertrain

Drivetrain

Two-Stage Chain Drive

Rear Axle Components

- ANSI size 35 steel roller chains, 45-tooth drive gear
- I" OD, 0.188" wall thickness steel driveshaft
- Axle mounts with embedded bearings
- Disk Brake mounts and disks
- Driveshaft couplings

Drivetrain – Future Work

Purchasing

Driveshafts, gears, bearings and axle mounts

Fabrication Process: Welding & Machining

- Intermediate axle and pinions to be welded
- Rear axle and driving gear to be welded
- Machine driveshaft couplings
- Disk brake mounts to be machined and welded

Wheels

Fabrication Process: Mold Casting

- Two female molds will be produced from plywood and veneer
- Each mold will be used to cast 2 wheels
 - 1 mold for front wheels
 - 1 mold for back wheels
- Pouring hole at the top of each mold

Thickness = 3.75 inches $Radius_{Front} = 8.5$ inches $Radius_{Rear} = 10.15$ inches

Wheels Continuation

Fabrication Material: Polyurethane 2-Part Expanding Foam

Cheap

- \$50 for enough material to make 12 wheels
- Ease of shaping
 - Starts out in liquid form, can take the shape of any mold
- Impressive mechanical properties
 - Compressive Strength: 580 psi
 - Tensile Strength: 450 psi
 - Shear Strength: 230 psi
 - Flexural Strength: 750 psi

Polyurethane 2-Part Expanding Foam, 2lb density[5] ** We will be using 8lb density

Support

Frame

- Using frame from last year's team
- Short wheelbase

Suspension

- Double wishbone with equal length arms in front
- No rear suspension

Seating

- Side-by-side
- Recumbent style position

Support - Future Work

Frame

Welds need to be checked and finished

Seating

- Angle and position
- Mounting to frame

Steering

Dual Tiller Steering

- ☺ Motion of the rover controlled by either rider
- Steering input is out of the way

Future Work

- Settle position of pivot joints
- Section 2 Sec
- Decide inner and outer tie rod locations

Project Progress Fall 2020

Ryan Floyd

Project Progress Fall 2020

21

Project Progress Spring 2021

Project Progress Spring 2021

Acknowledgement

✓ Florida Space Grant Consortium

✓ Special Thanks to Dr. Shayne McConomy

✓ Dr. Patrick Hollis

✓ Jessica Meeker

Ryan Floyd

Questions?

FSGC NASA Human Powered Vehicle

Our job is to design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition.

Feel free to ask us any questions.

Section Links

Project Background

Competition

Project Requirements

References

Team 509

References

[1] Apollo 14 Crew Portrait. (2016, February 5). NASA. https://www.nasa.gov/image-feature/apollo-14-crew-portrait/

[2] Archive, N. (2019, May 15). NASA Celebrates 25th Anniversary Human Exploration Rover Challenge. Retrieved October 15, 2020, from https://www.flickr.com/photos/nasamarshallphotos/40890053883/in/album-72157705115914232/

[3] Dunbar, B. (n.d.). Artemis. Retrieved October 15, 2020, from https://www.nasa.gov/specials/artemis/

[4] Landau. (2019, May 31). Artemis Moon Program Advances – The Story So Far. NASA. https://www.nasa.gov/artemis-moon-program-advances

[5] Registration Open for NASA's Human Exploration Rover Challenge. (2020, October 8). NASA.Gov. https://www.nasa.gov/centers/marshall/news/releases/2020/registration-open-for-nasa-s-human-exploration-rover-challenge.html

[6] Shear, E. (2016, February 7). Apollo 14's Edgar Mitchell passes away at age 85. SpaceFlightInsider. https://www.spaceflightinsider.com/space-flight-history/apollo-14s-edgar-mitchell-passes-away-at-age-85/

[7] Late Model Restoration. (2020). 3-POINT RETRACTABLE SEAT BELT - UNIVERSAL. Late Model Restoration. Retrieved November 5, 2020, from https://Imr.com/item/LRS-B4051000/3-point-retractable-seat-belt

[8] Grainger. (2020). Trash Pickers & Grabbers. W.W. Grainger. Retrieved November 4, 2020, from https://www.grainger.com/category/cleaning-and-janitorial/waste-recycling-trash-supplies/trash-pickers-grabbers

[9] Maxpeedingrods. (n.d.). For 110cc Go Kart Steering Wheel Quad Parts W/ Steel Gear Rack Pinion. Retrieved from https://www.maxpeedingrods.com/product/fit-110cc-go-kart-steering-wheelquad-parts-w-steel-gear-rack-pinion.html

[10] Quadratec. (2020). Seatbelt Solutions 2 Point Non-Retractable Lap Belt with Push-Button Buckle. Quadratec. Retrieved November 5, 2020, from https://www.quadratec.com/products/24247_20X_PG.htm

Backup Slides

Team 509

Validation

- ✓ Subsystems and components will be tested individually for their performance prior to competition
- ✓ Design will be fully validated in the field during the competition

Nicolas Picard

Medium Fidelity

Disk Brakes

Fronk Design

3-Point Seatbelt

Ninett Sanchez

30

Medium Fidelity

Sample Gathering Tool

Tiller Steering Mechanism

Double Wishbone Suspension (Front and Rear)

Ninett Sanchez

High Fidelity

Ninett Sanchez

Department of Mechanical Engineering

0

High Fidelity

Rear Axle Powertrain and Disk Brakes

Rack and Pinion Steering

2-Point Seatbelt

Ninett Sanchez

Binary Comparison

Importance Weight Factor

Customer Requirements Maintain Functionality Cost Effective
Maintain Functionality Cost Effective
Cost Effective
Maintain Operator Safety
Ease of Production
Handle Rough Terrain
Rider Size Accommodation
Ease of Assembly

House of Quality

			Engineering Characteristics						
inary	Improvement Direction	\uparrow	个	\checkmark	\uparrow	\uparrow	\uparrow	个	\uparrow
mparison Matrix	Units		N/A	inches	Number of seats	inches	inches*lbf	in	in ³ N/A
	Customer Requirements	Importance Weight Factor	Stability	Turning Radius	Seating Accommodation	Ground Clearance	Rover Torque	Stopping Distance	Storage
louse of Quality	Handle rough terrain	2	8	4	0	8	4	2	0
	Maintain operator safety	5	4	2	8	2	0	2	0
	Maintain functionality	7	2	2	0	2	8	8	4
Pugh Chart	Ease of production	4	0	0	4	4	4	2	2
	Rider size accommodation	2	4	0	8	2	2	2	4
	Cost effective	6	4	2	2	2	4	0	2
nalytical lierarchy	Ease of assembly	2	2	2	4	2	2	0	0
Chart	Raw Score (552)	86	48	92	76	112	82	56
	Relative Weight (%)		15.58	8.70	16.67	13.76	20.29	14.86	10.14
	Rank Order		3	7	2	6	1	4	5

Nicolas Picard

House of Quality

		Engineering Characteristics						
Improvement Direction	\uparrow	↑	\checkmark	1	↑	1	1	↑
Units		N/A	inches	Number of seats	inches	inches*lbf	in	in ³ N/A
Customer Requirements	Importance Weight Factor	Stability	Turning Radius	Seating Accommodation	Ground Clearance	Rover Torque	Stopping Distance	Storage
Handle rough terrain	2							0
Maintain operator safety								
Maintain functionality								
Ease of production								
Rider size accommodation								
Cost effective								
Ease of assembly								
Raw Score (552								
Relative Weight (%)								
Rank Order								

Nicolas Picard

House of Quality

		Engineering Characteristics						
Improvement Direction	\uparrow	1	\checkmark	个	\uparrow	۲	Ϋ́	1
Units		N/A	inches	Number of seats	inches	inches*lbf	in	in ³ N/A
Customer Requirements	Importance Weight Factor	Stability	Turning Radius	Seating Accommodation	Ground Clearance	Rover Torque	Stopping Distance	Storag
Handle rough terrain	2	8	4	0	8	4	2	0
Maintain operator safety	5	4	2	8	2	0	2	0
Maintain functionality	7	2	2	0	2	8	8	4
Ease of production	4	0	0	4	4	4	2	2
Rider size accommodation	2	4	0	8	2	2	2	4
Cost effective	б	4	2	2	2	4	0	2
Ease of assembly	2	2	2	4	2	2	0	0
Raw Score (552	2)	86	48	92	76	112	82	56
Relative Weight (%)		15.58	8.70	16.67	13.76	20.29	14.86	10.1
Rank Order		3	7	2	6	1	4	5

Steering Pugh Chart

Steering								
Concepts								
Engineering Characteristics	Rack and pinion Steering from previous year	Tiller Steering Mechanism	Double Wheel Steering	Rear Wheel Steering				
Stability		S	-	-				
Turning Radius		-	-	-				
Seating Accommodation	_	S	S	S				
Ground Clearance	Datum	+	S	S				
Drivetrain Torque		S	S	S				
Stopping Distance		S	S	S				
Storage		S	S	S				
# pluses		1	0	0				
# minuses		1	2	2				

Ninett Sanchez

}-

Suspension Pugh Chart

Suspension								
Concepts								
Engineering Characteristics	Double wishbone suspension (front)	No suspension	Double wishbone suspension (front and rear)	MacPherson Strut (front)				
Stability		-	+	-				
Turning Radius		S	S	S				
Seating Accommodation		S	S	S				
Ground Clearance	Datum	+	-	S				
Rover Torque		-	+	S				
Stopping Distance		-	-	S				
Storage		S	S	S				
# pluses		1	2	0				
# minuses		3	2	1				

Ninett Sanchez

39

Frame Pugh Chart

Ninett Sanchez

-

Pugh Chart

-

Wheels Pugh Chart

Binary Comparison Matrix	Engineering Characteristics
House of Quality	Stability Turning Radius
Pugh	Seating Accommodation
Chart	Ground Clearance
	Rover Torque
Analytical Hierarchy Chart	Stopping Distance
Chart	Storage
	# pluses
	# minuses

Wheels							
Concepts							
ineering Characteristics	Cork wheels, solid throughout	High density rigid polymer foam wheels	Wooden wheels	Patterned aluminum wheels			
Stability		+	-	-			
Turning Radius		S	S	S			
ating Accommodation		S	S	S			
Ground Clearance	Datum	+	+	+			
Rover Torque		S	-	-			
Stopping Distance		S	S	S			
Storage		S	S	S			
# pluses		2	1	1			
# minuses		0	1	2			

Ninett Sanchez

Analytical Hierarchy Process

Ninett Sanchez

Final Selection

- Double wishbone front suspension
- Side-by-side forward facing seating
- Rack and pinion steering
- Rear-axle drive train
- Rear-axle disk brakes

Binary Comparison

Comparison Matrix	
House of Quality	
Pugh Chart	
Analytical Hierarchy Chart	

	1	2	3	4	5	6	7	8	Total
1. Handle rough terrain	-	0	0	0	0	0	1	1	2
2. Maintain operator safety	1	-	0	1	1	0	1	1	5
3. Maintain functionality	1	1	-	1	1	1	1	1	7
4. Ease of production	1	0	0	-	1	0	1	1	4
5. Rider size accommodation	1	0	0	0	-	0	0	1	2
6. Cost effective		1	0	1	1	-	1	1	6
7. Ease of assembly	0	0	0	0	1	0	-	1	2
Total	5	2	0	3	5	1	5	7	-

Team 509

Driveshaft Calculations

Torsion of Shaft Calculator:

Shaft style	OSolid Shaft					
INPUT PARAN	IETERS					
Parameter	Value	e				
Torque [T]	166	lbf*ft ✔				
Rotation speed [w]	82	rpm				
Shaft outer radius [c2]	1					
Shaft inner radius [c ₁]	0.188	inch 🗸				
Shaft length [L]	48					
Modulus of rigidity [G]	11.12	psi*10^6 ₩				
Calculate						

RESULTS						
Parameter	Value	2				
Maximum shear stress $[\tau_{max}]$	1269.733	psi 🗸				
Angle of twist [ə]	0.005	Radian 🗸				
Power requirement [P]	2.592	hp 🗸				
Polar moment of inertia [J]	0	ft^4 🗸				

Source: https://amesweb.info/Torsion/torsion-of-shaftcalculator.aspx

