FSGC NASA Human Powered Vehicle

Team 509:

Ryan Floyd, Nicolas Picard, Ninett Sanchez, Andrew Schlar

Presenters: Ninett Sanchez, Andrew Schlar

NASA Human Powered Vehicle Team 509

Ryan Floyd Materials Engineer, Webmaster

Nicolas Picard Design Engineer

Ninett Sanchez Design Engineer

Andrew Schlar Team Leader, Design Engineer, and Point of Contact

Andrew Schlar

2

Sponsor and Advisor

Florida Space Grant Consortium

Dr. Shayne McConomy

Special thanks to Dr. Shayne McConomy for advising and mentoring the team

Andrew Schlar

3

Project Background

- Apollo 14 lunar mission complications
- Annual NASA Human Exploration Rover Challenge
 Competition
- © Artemis Moon Program
 - Lunar Mission 2024
 - Sustained Settlement 2028

Apollo 14 Flight Crew [1]

Andrew Schlar

Project Summary

Objective

To design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition

Competition Date(s)

- April 7th virtual competition videos due
- April 16th awards ceremony

Location

• Moved to virtual hosting due to COVID-19

Ryan Floyd

Competition Targets

Competition Award Targets

- Overall Winner
- Project Review
- STEM Engagement

Competition Requirements

- Operational Readiness Review
- Evidence that volume, size, and clearance restraints are met

Optional Demonstrations

- Video of fully completed rover
- Rover traversing a minimum of 3 excursion obstacles
- 3D-printed liquid sample retrieval tool

Ryan Floyd

Project Requirements

Concept Generation

Medium and High Fidelity

Nicolas Picard

8

Concept Selection

Nicolas Picard

9

Ninett Sanchez

Subsystem Development

Tools

Five Tasks

- ☆ Designed specific tools for required tasks
- Concepts made for all tools, however only one will be built
- The liquid sample retrieval tool was redesigned to include a 3D printed aspect
 - Tool built for use in the demonstration video

the competition [3]

Andrew Schlar

Liquid Sample Retrieval Tool

3D Printed

- ☆ 27" long pole (3 sections)
- Friction dovetail connection to attach the 3 sections
- Flat circular scoop
 - 3 scoops in total (1 for each sample)
 - Holds 88.5 mL
- Silicone sealed lid to prevent spilling and contamination

Andrew Schlar

Rover Drivetrain

Andrew Schlar

Rover Drivetrain

Pedal System

- Pedal mount extended 12 in. from frame, 60° from horizontal
- Pedal extensions attached to a steel tube
- Steel tube is mounted to frame with brass bearings
 - Allows pedals to be folded back

Two-Stage Drivetrain

Front Axle Components

- § 5/8" solid steel keyed driveshaft
- 30-tooth free-wheel pinions
- 3 16-tooth solid ANSI size 35 pinion
- \$ 5/8" ball bearing shaft mounts
- % ¼" steel plate mounting brackets

Andrew Schlar

Department of Mechanical Engineering

Two-Stage Drivetrain

Rear Axle Components

- * 1" hollow steel tubing driveshaft
- 35-tooth ANSI size 35 drive gear
- Disk brake mounts and disks
- Priveshaft flexible shaft coupling
- Cast iron ball bearing housings
- Steel plate bearing adapter mounts

Andrew Schlar

Wheel Objective

Design a non-pneumatic wheel that is light, cheap, and strong.

Wheels

Material Selection Process

Set dimensional and performance constraints

Come up with material index to satisfy objectives

Pick a set of materials that score high on the index
Quantitatively compare materials against each other

Ryan Floyd

Fabrication Material: Polyurethane 2-Part Expanding Foam

Cheap

• \$100 for enough material to make 4 wheels

Impressive mechanical properties

- Compressive Strength: 580 psi
- Flexural Strength: 750 psi

Easy Fabrication

- 2 Female molds from MDF and polycarbonate
 - 1 mold for front wheels, 1 mold for back wheels
- Pouring hole at the top of each mold

** We will be using 8lb density

Wheel Fabrication

Fabrication:

- Trial wheel has been molded
- Dimensions will be finished with hot wire and sander
 - Cuts along cross-section with hot wire
 - Diameter shaping with sander
- Lightweight and rigid results

Ryan Floyd

Frame

- Chromoly steel tubing frame
- Short wheelbase
 - 77° breakover angle
 - 44° approach angle
 - No departure angle

Nicolas Picard

Support

Suspension

Front:

- Double wishbone from previous team
- Utilizes mountain bike struts with spring constant
 of 650 lb/in
- Equal length wishbones help maintain large contact patch
 Rear:
- * No rear suspension \rightarrow easy drivetrain implementation

Support

Seating

- Side-by-side bench seat
- Two-point seatbelts for safety
- Mounted using 8020 aluminum
 - Allows for adjustments
- Recumbent style position
 - Seat bottom angled 30° from horizontal
 - Provides riders with optimal leg extension angle of 25°

Steering

Dual Tiller Steering

- Steering input is out of the way
- Synchronize turning of front wheels with rider communication

Important factors

- ☺ No pedal interference
- ☺ 2-person driver
- ☺ Direct steering
- Provides quick response time
- Provides leverage in the form of torque to turn

Steering

Components (15 lbs)

- ☺ Aluminum handlebars
 - Outside of rider's hip
 - L- shaped handle
- ☺ 2 bolted clamps
- ☞ Kingpin axis
 - stems, spacer, headset, and steering knuckle
- ☺ Alloy steel tie rod
 - low carbon content, 70,000-psi yield strength

Ninett Sanchez

Wheel Integration

- Pivot points on the frame
- ☞ Steering knuckle for direct wheel

to steer contact

Ninett Sanchez

Rover Dynamics

Torque & Speed Calculations

- Input torque 40.56 ft-lb per rider
 - 60 rpm input pedaling
- Output torque 110.9 ft-lb combined
- Vehicle top speed 3.5 mph
 - 75 rpm input pedaling

Andrew Schlar

Testing and Validation

Spring constant (650 lbs/in)

- 2" diameter PVC pipe
- 1" diameter PVC pipe
- Measured deform and undeformed spring state

Wheel Torque

- Arduino based Torque Meter
- Utilizes a load sensor in conjunction with signal amplifier
- Testing speed compared to wheels
- Accurate to 0.1 Nm

Spring constant tester

Wheel torque tester

Ryan Floyd

NSBE Outreach

0

National Society of Black Engineers

FAMU-FSU NSBE JR. [6]
Saturday, March 13th

NASA Human Powered Vehicle Competition

View Options ~

You are viewing Andrew Schlar's screen

Ninett Sanchez

Incomplete Work

Machining

Many parts are currently being worked on in the machine shop

Assembly

- We will be working on assembly as we receive back our machined parts
- ⊯ Plan to finish assembly by March 30th

Testing

Rover will be tested over a variety of terrain toensure it is fully functional

Validation

resemble obstacles in the original competition

Our rover will be validated by successfully traversing these obstacles

- * Level of detail required to go from theoretical

ideas to physical prototypes

Sontact machine shop for design verification

Summary

Rover

- Solution Stage drivetrain with rear wheel drive
- Solution State State
- 😹 Steel tubing frame
- Bouble wishbone suspension
- 📽 Recumbent bench seating
- Sector Steering ™

Validation

- Briven through obstacles simulating lunar terrain
- 🕷 Video submitted to NASA Competition

Acknowledgement

- ✓ Florida Space Grant Consortium
- ✓ Special Thanks to Dr. Shayne McConomy
- ✓ Dr. Patrick Hollis
- ✓ Jessica Meeker
- ✓ Dr. Renee Gordon
- ✓ FAMU-FSU NSBE
- ✓ Justin Pogge

Andrew Schlar

Questions?

FSGC NASA Human Powered Vehicle

Our job is to design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition.

Feel free to ask us any questions.

Section Links

Project Background

Competition

Project Requirements

Concept Generation

References

Team 509

35

References

[1] Apollo 14 Crew Portrait. (2016, February 5). NASA. https://www.nasa.gov/image-feature/apollo-14-crew-portrait/

[2] Archive, N. (2019, May 15). NASA Celebrates 25th Anniversary Human Exploration Rover Challenge. Retrieved October 15, 2020, from https://www.flickr.com/photos/nasamarshallphotos/40890053883/in/album-72157705115914232/

[3] Nasa. (2020, January 13). The rover doctor is in: The Anatomy of a NASA human Exploration Rover Challenge Rover. Retrieved February 16, 2021, from https://nasa.tumblr.com/post/190237928704/the-rover-doctor-is-in-the-anatomy-of-a-nasa

[4] Uttley, C. (2009, October 05). How off-roading works. Retrieved February 16, 2021, from https://adventure.howstuffworks.com/outdoor-activities/off-roading/off-roading1.htm

[5] Top 10 most popular RoadBikeReview articles of 2015. (n.d.). Retrieved February 16, 2021, from <u>https://www.roadbikereview.com/threads/top-10-most-popular-roadbikereview-articles-of-2015.380765/</u>

[6] NSBE Logo. <u>https://www.nsbe.org/Downloads/Official-Downloads/NSBE-Logo-Downloads.aspx#.YCyid2hKg2w</u>

[7] TCC Logo. https://www.tcc.fl.edu/academics/academic-divisions/science-and-mathematics/tallahassee-science-festival/gmstem/

[8] Rover Competition Logo. <u>file://HERC%20Feb%20Email%201%20.pdf</u>

Team 509

Backup Slides

Team 509

Validation

- Subsystems and components will be tested individually for their performance prior to competition
- ✓ Design will be fully validated in the field during the competition

Nicolas Picard

Medium Fidelity

Disk Brakes

Fronk Design

3-Point Seatbelt

Ninett Sanchez

Medium Fidelity

Sample Gathering Tool

Tiller Steering Mechanism

Double Wishbone Suspension (Front and Rear)

Ninett Sanchez

Ninett Sanchez

Department of Mechanical Engineering

High Fidelity

Rear Axle Powertrain and Disk Brakes

Rack and Pinion Steering

2-Point Seatbelt

Ninett Sanchez

Binary Comparison

Rinary		
Comparison	Customer Requirements	Importance Weight Factor
Matrix	Maintain Functionality	7
House of	Cost Effective	6
Quality	Maintain Operator Safety	5
	Ease of Production	4
Pugh Chart	Handle Rough Terrain	2
	Rider Size Accommodation	2
Analytical Hierarchy	Ease of Assembly	2
Chart		

Nicolas Picard

Department of Mechanical Engineering

House of Quality

			Engineering Characteristics						
Binary	Improvement Direction	Ŷ	\uparrow	\checkmark	\uparrow	Ϋ́	\uparrow	\uparrow	个
Comparison Matrix	Units		N/A	inches	Number of seats	inches	inches*lbf	in	in ³ N/A
	Customer Requirements	Importance Weight Factor	Stability	Turning Radius	Seating Accommodation	Ground Clearance	Rover Torque	Stopping Distance	Storage
House of Quality	Handle rough terrain	2	8	4	0	8	4	2	0
	Maintain operator safety	5	4	2	8	2	0	2	0
	Maintain functionality	7	2	2	0	2	8	8	4
Pugh Chart	Ease of production	4	0	0	4	4	4	2	2
	Rider size accommodation	2	4	0	8	2	2	2	4
	Cost effective	6	4	2	2	2	4	0	2
Analytical Hierarchy	Ease of assembly	2	2	2	4	2	2	0	0
Chart	Raw Score (552		86	48	92	76	112	82	56
	Relative Weight (%)		15.58	8.70	16.67	13.76	20.29	14.86	10.14
	Rank Order		3	7	2	6	1	4	5

Nicolas Picard

House of Quality

					Engine	eering Characterist	ics		
In		1	1	\checkmark	\uparrow	1	1	\uparrow	↑
Ŭ			N/A	inches	Number of seats	inches	inches*lbf	in	in ³ N/A
		Importance Weight Factor	Stability	Turning Radius	Seating Accommodation	Ground Clearance	Rover Torque	Stopping Distance	Storage
	Handle rough terrain								0
Ν									
1									
R									
R									

House of Quality

	Engineering Characteristics							
Improvement Direction	\uparrow	1	\checkmark	\uparrow	\uparrow	۲	\uparrow	\uparrow
Units		N/A	inches	Number of seats	inches	inches*lbf	in	in ³ N/A
Customer Requirements	Importance Weight Factor	Stability	Turning Radius	Seating Accommodation	Ground Clearance	Rover Torque	Stopping Distance	Storag
Handle rough terrain	2	8	4	0	8	4	2	0
Maintain operator safety	5	4	2	8	2	0	2	0
Maintain functionality	7	2	2	0	2	8	8	4
Ease of production	4	0	0	4	4	4	2	2
Rider size accommodation	2	4	0	8	2	2	2	4
Cost effective	6	4	2	2	2	4	0	2
Ease of assembly	2	2	2	4	2	2	0	0
Raw Score (552	2)	86	48	92	76	112	82	56
Relative Weight (%)		15.58	8.70	16.67	13.76	20.29	14.86	10.1
Rank Order		3	7	2	6	1	4	5

Nicolas Picard

FAMU-FSU Engineering **Steering Pugh Chart**

Steering					
		Con	cepts		
Engineering Characteristics	Rack and pinion Steering from previous year	Tiller Steering Mechanism	Double Wheel Steering	Rear Wheel Steering	
Stability		S	-	-	
Turning Radius		-	-	-	
Seating Accommodation	_	S	S	S	
Ground Clearance	Datum	+	S	S	
Drivetrain Torque		S	S	S	
Stopping Distance		S	S	S	
Storage		S	S	S	
# pluses		1	0	0	
# minuses		1	2	2	

Ninett Sanchez

Suspension Pugh Chart

Suspension						
		Conc	epts			
Engineering Characteristics	Double wishbone suspension (front)	No suspension	Double wishbone suspension (front and rear)	MacPherson Strut (front)		
Stability		-	+	-		
Turning Radius		S	S	S		
Seating Accommodation		S	S	S		
Ground Clearance	Datum	+	-	S		
Rover Torque		-	+	S		
Stopping Distance		-	-	S		
Storage		S	S	S		
# pluses		1	2	0		
# minuses		3	2	1		

Ninett Sanchez

48

Frame Pugh Chart

Ninett Sanchez

Pugh Chart

-

Pugh Chart

Wheels Pugh Chart

	Wheels				
		Con	cepts		
Engineering Characteristics	Cork wheels, solid throughout	High density rigid polymer foam wheels	Wooden wheels	Patterned aluminum wheels	
Stability		+	-	-	
Turning Radius		S	S	S	
Seating Accommodation	_	S	S	S	
Ground Clearance	Datum	+	+	+	
Rover Torque		S	-	-	
Stopping Distance		S	S	S	
Storage		S	S	S	
# pluses		2	1	1	
# minuses		0	1	2	

Ninett Sanchez

Analytical Hierarchy Process

Ninett Sanchez

Final Selection

- Double wishbone front suspension
- Side-by-side forward facing seating
- Rack and pinion steering
- Rear-axle drive train
- Rear-axle disk brakes

Binary Comparison

Binary Comparison Matrix	
House of Quality	
Pugh Chart	
Analytical Hierarchy Chart	

	1	2	3	4	5	6	7	8	Total
1. Handle rough terrain	-	0	0	0	0	0	1	1	2
2. Maintain operator safety	1	-	0	1	1	0	1	1	5
3. Maintain functionality	1	1	-	1	1	1	1	1	7
4. Ease of production	1	0	0	-	1	0	1	1	4
5. Rider size accommodation	1	0	0	0	-	0	0	1	2
6. Cost effective	1	1	0	1	1	-	1	1	6
7. Ease of assembly	0	0	0	0	1	0	-	1	2
Total	5	2	0	3	5	1	5	7	-

Team 509

Driveshaft Calculations

Torsion of Shaft Calculator:

Shaft style	OSolid Shaft eHollow Shaft						
INPUT PARAMETERS							
Parameter	Value	e					
Torque [T]	166	lbf*ft ✔					
Rotation speed [w]	82	rpm					
Shaft outer radius [c ₂]	1						
Shaft inner radius [c ₁]	0.188	inch 🗸					
Shaft length [L]	48						
Modulus of rigidity [G]	11.12	psi*10^6 🗸					
Calculate							

RESULTS					
Parameter	Value	2			
Maximum shear stress $[\tau_{max}]$	1269.733	psi 🗸			
Angle of twist [ə]	0.005	Radian 🗸			
Power requirement [P]	2.592	hp 🗸			
Polar moment of inertia [J]	0	ft^4 🗸			

Source: https://amesweb.info/Torsion/torsion-of-shaftcalculator.aspx

Team 509

Rover Dynamics Calculations

Power train 35 tauth drive geor, 16 touth intermediate Assurd 55 Nm input 65 rpm max rpm input=75 rpm 1st Stage $T_{004} = \frac{20}{27} \left(2 \left(40,5659 \right) \right) = 50.707 + -16$ 2nd Stage Tout = 35 (50,707) Ft-16 = 110,9223828 FJ-16 $\mathcal{T}_{1}\omega_{1} = \mathcal{T}_{2}\omega_{2} \qquad \frac{r_{er}}{10.675}$ 81.1318(65) = 50.707 wz @ 651pm input arre wz = 104.000 rem 1 SSNm 50,707 (104) = 110 W3 5 rear axie CU3 = 47.941 rpm Linear vel = rx RpM x 0.10472 unidensin V= 3.04 mph, @ 65 rpm Aus speed

Powertram continued 35 tocth roor drive, 16 tooth informeorale @75 cpm 55Nm input mex funge → 81.1318(75) = Zz Wz = 50,707 cuz W2 - 1201pm 50,707 (120) = 110.922 (W3) Cu3 = 59.8569 rpm V= 3.48 mph max speed Assumy 99% efficient chain dive

Team 509

55

Rover Dynamics Calculations

CON - Calculations	[Tipping Risk]
n Eval 18 201 Rubric	Senior Design Presentatio
31 10 10 10 10 10 10 10 10 10 10 10 10 10	$\Theta_c = t_{an} \left(\frac{T}{z} \right)$
200	
Oc=ton	-1 (4.74033) Zenoticular3 leublyibri
	$\left(\frac{31}{12}\right)$
Skerys Oc=	47.53888° sideways
woodwa - woodwa	nottaxinagio anoitasun to subawanA
37.356	
	28'' + 31''
31	Fenverd
@ 28" 30"	Tipping Angle
@ 31" 28°	

Team 509

56

Rover Clearance Constraints

Team 509

