# <u>EML4551-2</u>

# Team 509: FSGC-NASA Human

# Powered Vehicle

Authors: Ryan Floyd; Nicolas Picard; Ninett Sanchez; Andrew Schlar

FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee, FL. 32310



#### Abstract

During the Apollo 14 Lunar mission, astronauts ran into trouble while trying to explore on foot. Low on oxygen and energy, they had to abort their tasks and return to the lander. This incident led to the creation of the NASA Human Powered Rover Competition. This annual competition allows students to design and build their own human powered rovers. The rovers must be able to hold two people and traverse difficult terrain, similar to that of the moon. Points are awarded for rover weight, finish time, and completed tasks.

Our team is designing a small rover to help solve the astronauts' problem. The rover is being built according to earth conditions since the competition is not actually on the moon. We have taken a systems engineering approach to design and implement five subsystems for the rover. The primary rover systems include a rear drivetrain, dual tiller steering, a steel frame with front suspension, foam wheels, and tools with a rear-end storage compartment. Two riders sitting side-by-side will pedal the rover like a bicycle. The seats are reclined to provide comfort as well as a low center of gravity. Our design includes a 2.0 factor of safety to ensure the rover's robustness and reliability.

The rover has a top speed 4 miles per hour with the riders and tools loaded in. The rover is able to traverse inclines up to 28° due to the high torque powertrain. The rover also has a tipping angle of 40° and a stopping distance of 8-feet. The suspension design uses two wishbones of equal length to ensure constant stability. Wheels made of a solid lightweight foam avoids the need for pneumatic wheels. Overall, the rover is capable of easily conquering rough terrain and will be a crucial tool for the astronauts' next trip to the moon.

Team 509

ii



Disclaimer

Team 509

iii



#### Acknowledgement

These remarks thanks those that helped you complete your senior design project. Especially those who have sponsored the project, provided mentorship advice, and materials. 4

We thank the NASA Florida Space Grant Consortium for providing the funds to the project, for which without would not have been possible. Their gracious funding allowed the team to order all necessary parts and provide all necessary materials for the rover.

Paragraph 1 thank sponsor!We thank the NASA Florida Space Grant Consortium for providing the funds to the project, for which without would not have been possible. Their gracious funding allowed the team to order all necessary parts and provide all necessary materials for the rover.

Special thanks to Dr. Shayne McConomy for having provided mentorship and advice to the team throughout the past two semesters. His great input provided ideas and help to the team in coming up with concepts and ways to assemble the rover. In addition to his idea input, he provided some manufacturing for the rover assembly which allowed the team to progress in the creation of the rover wheels. His expertise and mentoring was critical in the success of the project and the team greatly appreciates his time and effort spent assisting the team.

Additionally, we thank Neil Coker, Jonathan Cloos for their prompt responses when submitting purchase orders and their feedback when parts had arrived.

Special thanks to the FAMU-FSU NSBE Jr. chapter for their participation and help in the community outreach event coordination. They were very friendly and welcoming to our

Team 509

#### Formatted: Indent: First line: 0"

**Formatted:** Heading 1, Space After: 0 pt, Line spacing: single

**Formatted:** Indent: First line: 0.5", Line spacing: Double

iv



approach in reaching out to the community to foster interest in the STEM field for younger audiences.

Special thanks to Justin Pogge and Jeremy Philips for their help in machining parts and providing input when coming to machine the parts for the rover. Justin's input on the parts to be machined allowed for revisions which strengthened the design of parts, made the assembly easier and overall allowed for the implementation of our designed systems onto the rover. The machine shop was also gracious enough to provide steel and aluminum stock for the project which aided in the manufacturing of our components.

<u>Finally, we would like to thank Jessica Meeker of the previous year's human powered</u> <u>vehicle team as she provided input for the competition, rover design and even forwarded the</u> <u>CAD model files for the frame that we utilized. Her input was a great heads up into what to</u> <u>tackle and prioritize during the competition and project.</u>

Paragraph 3 thank those that provided you materials and resources.

Paragraph 4 thank anyone else who helped you.

Team 509

v



| Table of Contents            |                |
|------------------------------|----------------|
| Abstract                     | <u> ii</u>     |
| Disclaimer                   | <u> iv</u>     |
| Acknowledgement              | v              |
| List of Tables               | <u> xvi</u>    |
| List of Figures              | <u> xvii</u>   |
| Notation                     | <u>. xviii</u> |
| Chapter One: EML 4551C       | <u> 1</u>      |
| 1.1 Project Scope            | <u> 1</u>      |
| Key Goals                    | <u> 1</u>      |
| Markets                      | <u> 2</u>      |
| Assumptions                  | <u> 2</u>      |
| Stakeholders                 | <u> 3</u>      |
| 1.2 Customer Needs           | <u> 5</u>      |
| 1.3 Functional Decomposition | 8              |
| 1.4 Target Summary           | <u> 13</u>     |
| Introduction                 | <u> 13</u>     |
| 1.5 Concept Generation       | <u> 19</u>     |
| 1.6 Concept Selection        | <u> 35</u>     |
| Team 509                     | vi             |
|                              | 2021           |



| 1.8 Spring Project Plan                                                     |
|-----------------------------------------------------------------------------|
| Chapter Two: EML 4552C                                                      |
| 2.1 Restated Project Definition and Scope                                   |
| 2.2 Results                                                                 |
| 2.3 Discussion                                                              |
| 2.4 Conclusion                                                              |
| 2.5 Future Work                                                             |
| References                                                                  |
| Appendix A: Code of Conduct                                                 |
| Appendix B: Functional Decomposition                                        |
| Appendix C: Target Catalog                                                  |
| Appendix D: Figures and Tables                                              |
| Appendix E.1: Concept Generation                                            |
| Appendix E.2: Concept Selection Data Tables                                 |
| Appendix F: Human Powered Vehicle Operations Manual                         |
| Appendix G: Engineering Drawings104                                         |
| Appendix H: Calculations                                                    |
| Appendix I: Risk Assessment                                                 |
| Error! Hyperlink reference not valid. Abstract Error! Bookmark not defined. |
| Team 509 vii                                                                |



Error! Hyperlink reference not valid. Acknowledgement ...... Error! Bookmark not defined.iv

Error! Hyperlink reference not valid. List of Tables Error! Bookmark not defined. viii Error! Hyperlink reference not valid. List of Figures\_Error! Bookmark not defined.ix Error! Hyperlink reference not valid. Notation......Error! Bookmark not defined.\* Error! Hyperlink reference not valid. Chapter One: EML 4551CError! Bookmark not defined.1

-Error! Bookmark not Error! Hyperlink reference not valid. 1.1 Project Scope. defined.4

Error! Hyperlink reference not valid.Key Goals......Error! Bookmark not defined.

Error! Hyperlink reference not valid.Markets.....Error! Bookmark not defined.2

Error! Hyperlink reference not valid. Assumptions..... Error! Bookmark not defined.2

Error! Hyperlink reference not valid. Stakeholders ..... Error! Bookmark not defined.3

Error! Hyperlink reference not valid.1.2 Customer Needs ...... Error! Bookmark not defined.5

Error! Hyperlink reference not valid. 1.3 Functional Decomposition ..... --- Error! **Bookmark not defined.**8

Error! Hyperlink reference not valid. 1.4 Target Summary..... Error! Bookmark not defined.13 viii

Team 509



Error! Hyperlink reference not valid.<u>1.5 Concept Generation</u>Error! Bookmark not defined.<del>19</del>

Error! Hyperlink reference not valid.<del>1.6 Concept Selection ...</del>Error! Bookmark not defined.<del>35</del>

Error! Hyperlink reference not valid.<del>1.8 Spring Project Plan.</del>Error! Bookmark not defined.<del>51</del>

Error! Hyperlink reference not valid. <u>Chapter Two: EML 4552C .....</u> Error! Bookmark not defined. <u>52</u>

Error! Hyperlink reference not valid.<u>2.1 Spring Plan.....</u>Error! Bookmark not defined.<u>52</u>

Error! Hyperlink reference not valid.<del>Project Plan......</del>Error! Bookmark not

defined.52

Error! Hyperlink reference not valid.<del>Build Plan.....</del>Error! Bookmark not defined.<del>52</del>

Error! Hyperlink reference not valid.<del>2.2 Future Work ......</del>Error! Bookmark not defined.<del>53</del>

Error! Hyperlink reference not valid.<u>Testing/Validation....</u>Error! Bookmark not defined.<del>53</del>

Error! Hyperlink reference not valid. Appendices..... Error! Bookmark not defined. 53

Team 509

ix



Error! Hyperlink reference not valid. Appendix B: Functional Decomposition ..... Error! Bookmark not defined.60 Error! Hyperlink reference not valid. Appendix C: Target Catalog ... Error! Bookmark not defined.61 Error! Hyperlink reference not valid. Appendix D: Figures and Tables ...... Error! **Bookmark not defined.**63 Error! Hyperlink reference not valid. Appendix E: Concept Generation ...... Error! **Bookmark not defined.**65 Error! Hyperlink reference not valid. Appendix E: Concept Selection Data Tables Error! Bookmark not defined.74 Error! Hyperlink reference not valid. Appendix A: APA Headings (delete)....... Error! **Bookmark not defined.**77 Error! Hyperlink reference not valid.Heading 1 is Centered, Boldface, Uppercase and Lowercase Heading......Error! Bookmark not defined.77 Error! Hyperlink reference not valid.Heading 2 is Flush Left, Boldface, Uppercase and Lowercase Heading.......Error! Bookmark not defined.77 Error! Hyperlink reference not valid. Heading 3 is indented, boldface lowercase paragraph heading ending with a period......Error! Bookmark not defined.77

Team 509

X



| Error! Hyperlink reference not valid. <del>References</del> Error! Bookmark not defined.75   |
|----------------------------------------------------------------------------------------------|
| Error! Hyperlink reference not valid.Error! Hyperlink reference not valid.Abstract           |
| <u>Error! Bookmark not defined.</u> #                                                        |
| Error! Hyperlink reference not valid. <del>Error! Hyperlink reference not</del>              |
| valid. Disclaimer                                                                            |
| Error! Hyperlink reference not valid. <del>Error! Hyperlink reference not</del>              |
| valid. Acknowledgement                                                                       |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. List of          |
| Tables <u>Error! Bookmark not defined.</u> vii                                               |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. List of          |
| Figures <u>Error! Bookmark not defined.</u> ix                                               |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Notation         |
| Error! Bookmark not defined.*                                                                |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Chapter          |
| One: EML 4551CError! Bookmark not defined.4                                                  |
| Error! Hyperlink reference not valid. <mark>Error! Hyperlink reference not valid.</mark> 1.1 |
| Project Scope                                                                                |
| Error! Hyperlink reference not valid. <mark>Error! Hyperlink reference not valid.</mark> Key |
| Goals <u>Error! Bookmark not defined.</u> 4                                                  |
|                                                                                              |

**xi** 2021



| Error! Hyperlink reference not valid. Error! Hyperlink reference not                           |
|------------------------------------------------------------------------------------------------|
| valid.Assumptions                                                                              |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                           |
| valid.Stakeholders                                                                             |
| Error! Hyperlink reference not valid.Error! Hyperlink reference not valid.1.2                  |
| Customer Needs                                                                                 |
| Error! Hyperlink reference not valid.Error! Hyperlink reference not valid.1.3                  |
| Functional Decomposition                                                                       |
| Error! Hyperlink reference not valid.Error! Hyperlink reference not valid.1.4                  |
| Target Summary                                                                                 |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                           |
| walid.Introduction                                                                             |
| Error! Hyperlink reference not valid. <del>Error! Hyperlink reference not valid.</del> Targets |
| and Metrics Table                                                                              |
| Error! Hyperlink reference not valid. <mark>Error! Hyperlink reference not valid.</mark> 1.5   |
| Concept Generation                                                                             |
| Error! Hyperlink reference not valid. <del>Error! Hyperlink reference not</del>                |
| valid.Concept 1                                                                                |

xii



| Error! Hyperlink reference not valid. Error! Hyperlink reference not                       |
|--------------------------------------------------------------------------------------------|
| valid.Concept 3                                                                            |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                       |
| walid.Concept 4                                                                            |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                       |
| valid.Concept n+1                                                                          |
| Error! Hyperlink reference not valid. <del>Error! Hyperlink reference not valid.</del> 1.6 |
| Concept Selection                                                                          |
| Error! Hyperlink reference not valid. <del>Error! Hyperlink reference not valid.</del> 1.8 |
| Spring Project Plan                                                                        |
| Error! Hyperlink reference not valid.Error! Hyperlink reference not valid.Chapter          |
| Two: EML 4552CError! Bookmark not defined. <sup>19</sup>                                   |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. 2.1            |
| Spring Plan <u>Error! Bookmark not defined.</u> 19                                         |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                       |
| valid.Project Plan                                                                         |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                       |
| valid.Build Plan                                                                           |

xiii



| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Appendix     |
|------------------------------------------------------------------------------------------|
| A: Code of Conduct                                                                       |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Appendix     |
| B: Functional Decomposition                                                              |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Appendix     |
| C: Target Catalog                                                                        |
| Error! Hyperlink reference not valid.Error! Hyperlink reference not valid.Appendix       |
| D: Figures and Tables                                                                    |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Appendix     |
| A: APA Headings (delete)                                                                 |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not valid. Heading      |
| 1 is Centered, Boldface, Uppercase and Lowercase Heading Error! Bookmark not defined. 30 |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                     |
| valid.Heading 2 is Flush Left, Boldface, Uppercase and Lowercase Heading                 |
| Bookmark not defined.30                                                                  |
| Error! Hyperlink reference not valid. Error! Hyperlink reference not                     |
| valid.Heading 3 is indented, boldface lowercase paragraph heading ending with a period.  |
| <u>Error! Bookmark not defined.</u> 30                                                   |

xiv



Error!HyperlinkreferencenotvalidError!BookmarknotdefinedError!HyperlinkreferencenotvalidError!Bookmarknotdefined.

Error! Hyperlink reference not valid. Error! Hyperlink reference not

Team 509

XV



## List of Tables

| Table 1: Interpreted Customer Needs from Competition Guidebook                  |
|---------------------------------------------------------------------------------|
| Table 2: Cross Reference Table                                                  |
| Table 3 Critical Targets and Metrics Table                                      |
| Table 4 Total Targets and Metrics Table                                         |
| Table 5: Dr. McConomy Customer Statements and Interpretations                   |
| Table 6 The Word Table and the Table Number are Normal Font and Flush Left. The |
| Caption is Flush Left, Italicized, Uppercase and Lowercase                      |

Team 509

xvi



# List of Figures

| Figure 1: Hierarchical | Chart | 9 |
|------------------------|-------|---|
|------------------------|-------|---|

Team 509

xvii



## Notation

| A17     | Steering Column Angle                         |  |  |
|---------|-----------------------------------------------|--|--|
| A27     | Pan Angle                                     |  |  |
| A40     | Back Angle                                    |  |  |
| A42     | Hip Angle                                     |  |  |
| AAA     | American Automobile Association               |  |  |
| AARP    | American Association of Retired Persons       |  |  |
| AHP     | Accelerator Heel Point                        |  |  |
| ANOVA   | Analysis of Variance                          |  |  |
| AOTA    | American Occupational Therapy Association     |  |  |
| ASA     | American Society on Aging                     |  |  |
| BA      | Back Angle                                    |  |  |
| BOF     | Ball of Foot                                  |  |  |
| BOFRP   | Ball of Foot Reference Point                  |  |  |
| CAD     | Computer Aided Design                         |  |  |
| CDC     | Centers for Disease Control and Prevention    |  |  |
|         | Clemson University - International Center for |  |  |
| CU-ICAR | Automotive Research                           |  |  |
| DDI     | Driver Death per Involvement Ratio            |  |  |
| DIT     | Driver Involvement per Vehicle Mile Traveled  |  |  |

Team 509

xviii



Difference between the calculated and measured

| Difference | BOFRP to H-point                       |
|------------|----------------------------------------|
| DRR        | Death Rate Ratio                       |
| DRS        | Driving Rehabilitation Specialist      |
| EMM        | Estimated Marginal Means               |
| FARS       | Fatality Analysis Reporting System     |
| FMVSS      | Federal Motor Vehicle Safety Standard  |
| GES        | General Estimates System               |
| GHS        | Greenville Health System               |
| H13        | Steering Wheel Thigh Clearance         |
| H17        | Wheel Center to Heel Pont              |
| H30        | H-point to accelerator heel point      |
| HPD        | H-point Design Tool                    |
| HPM        | H-point Machine                        |
| HPM-II     | H-point Machine II                     |
| HT         | H-point Travel                         |
| HX         | H-point to Accelerator Heel Point      |
| HZ         | H-point to Accelerator Heel Point      |
| IIHS       | Insurance Institute for Highway Safety |
| L6         | BFRP to Steering Wheel Center          |

Team 509

xix



#### Chapter One: EML 4551C

#### 1.1 Project Scope

#### **Project Description**

NASA hosts an annual competition for students to design a vehicle that is operated solely on the power generated by its user(s). The objective of the project is to design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition. The vehicle will be designed to safely traverse and tolerate the concentrated forces of asteroid debris, boulders, erosion ruts, and crevices. In competition, the vehicle will be operated by one male and one female participant. The competition awards points for weight classes, time of finish, and completed mini missions. This encourages rover designs to be made lightweight, efficient, and easy to operate.

#### **Key Goals**

The key goal of the project is to deliver a fully functioning human powered vehicle for two riders that can participate in all the available events at the NASA competition. The rover should be capable of traversing challenging exoplanetary terrain. The goal of the competition is to be entered into as many of the challenges as possible and gain the maximum amount of points.

Team 509



#### Markets

#### **Primary Markets**

The primary market for this product would be the NASA Human Exploration Rover Challenge competition as they proceed to find optimal designs for human-powered vehicles for possible future moon landing exploration.

#### **Secondary Markets**

One of the secondary markets would be endurance competitions and races in which similar human-powered vehicles are used by teams to compete with one another. Space-faring organizations and companies would also be part of the possible secondary markets as they may be in search for human-powered vehicles for their own exploration missions. The human powered vehicle could also be used as an alternative mode of transportation for areas that do not allow motorized personal off-road vehicles as it will be built to handle rough terrains and obstacles. The dual-rider design could be used for outdoor recreational activities and leisure use. The human-powered vehicle could also appeal to cyclists and other exercise enthusiasts.

#### Assumptions

The project budget is limited and is only for to be used for the entirety of the parts, manufacturing and travel costs associated. All the CAD, modeling, and simulation software needed to complete the project will be provided by the FAMU-FSU College of Engineering. Access to the on-site engineering machine shop will be available to the team for the manufacturing process of the selected design. Though the vehicle will be designed to traverse in Team 509 2



exoplanetary conditions, all testing and calculations will be done using Earth conditions as that is where the vehicle will primarily be used.

#### Stakeholders

#### Advisor/Sponsor: Dr. Shayne McConomy

Dr. McConomy is our Senior Design professor assigned the project to the team and is our sponsor and advisor for the project. He has stake in the competition as he is providing resources, funding and personal time towards the progress of the project.

#### FAMU-FSU College of Engineering Dean of Engineering

Project funding for the competition will be approved and provided by the Dean of Engineering, Murray J. Gibson. He will have a vested stake in allowing the team to use funding for the project and represent the college and its reputation in the competition.

#### FAMU-FSU College of Engineering

Team 509 is representing the FAMU-FSU College of Engineering for the competition. The performance and presence of Team 509 reflects the college and there is a possibility that additional funding will be requested from the college.

#### National Aeronautics Space Administration (NASA)

The purpose of the competition is to foster an authentic engineering experience to the participants and prepare them for future engineering endeavors while innovating along the way.

Team 509

3



NASA has a stake in the performance the team as they want to see working designs that can accomplish the assigned tasks. They are investing resources into the creation of the courses, the event and the overall competition in order advance the knowledge of young engineers.

Team 509

4



#### **1.2 Customer Needs**

#### **Explanation of Results**

The customer statements were gathered through two methods. The first method was reviewing the competition guidelines, which provided quantitative restrictions and goals. The second method was a question-and-answer survey. The questions were designed to be concise and specific to move forward with the project. Questions were answered by the project advisor/sponsor, Dr. Shayne McConomy. The main takeaway from the competition guidelines is to create a human powered rover that can handle harsh terrain. As the design is meant for a competition, additional standard specifications and criteria that has to be met was specified by the guidebook provided by NASA. Additional requirements made by Dr. Shayne McConomy can be translated into completing the rover well before competition as well as maximizing points in the competition.

#### **Customer Need Analysis and Interpreted Needs**

After reviewing the competition guidelines and interviewing Dr. McConomy, a synthesis was performed on the gathered information. This information was then translated into tangible customer needs for the project.

## Shayne McConomy

After reviewing the competition guidelines and a potential competition strategy, Dr. McConomy outlined additional project requirements for the team. Those requirements were synthesized into the following condensed interpreted needs. Dr. McConomy indicated that the final product will

Team 509

2021



be operational in the competition. A systems integration approach will be taken for the CAD development of the components to ensure seamless integration. Previously neglected components such as steering, and powertrain will be further developed from past iterations. The team will also follow all regulatory guidelines of the competition and the baseline specifications. Tolerances for the design will be kept in mind to allow for additional wiggle room to allow for error in manufacturing process.

## **Competition Guidelines**

Most of the customer needs for this project are derived from the competition guidelines provided by NASA. These specifications are required to be met by every team in order to participate in the competition. Rather than creating a customer needs and questions table, a table of interpreted needs derived from the guidelines was created to further the development of the project.

#### Table 1: Interpreted Customer Needs from Competition Guidebook

| Vehicle will collapse into a volume less than or equal to the specified guidelines. |
|-------------------------------------------------------------------------------------|
| Track width of the vehicle will fit onto the competition course.                    |
| Vehicle will be able to traverse varying and uneven terrain                         |
| Per safety guidelines, sharp edges in the design will be eliminated or guarded      |
| Vehicle will be capable of traversing hills and inclined pathways                   |
| Vehicle will have a small turning radius within competition guidelines              |
| Vehicle wheels will be designed and fabricated by the team                          |

Team 509



Vehicle wheels will be non-pneumatic

Vehicle will be completely human powered

\*Tabulated form of customer needs and interpretations can be found in Appendix B

7



#### **1.3 Functional Decomposition**

### Introduction

Through the project scope it was identified that we will be designing a human powered rover that will traverse rough and uneven terrain. The key goal of producing an operational human-powered vehicle further broken down by customer needs. The customer needs highlighted that sub-systems like the powertrain and steering needed to be fully developed. Moving on, the functions and sub-functions of all of the vehicle's sub-systems were then identified through a functional decomposition. This process performed to breakdown the design's main functions, or systems into smaller, more specific functions. We decided to first breakdown the main functions using a hierarchy chart. This was chosen over a flow chart as it is synonymous with a systems engineering approach. A cross reference table was then created to evaluate the first and second level functions and see where they overlap.

Team 509



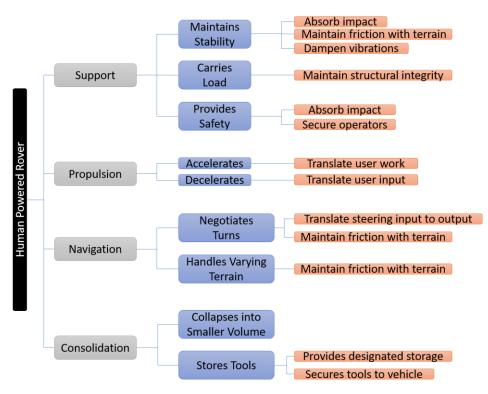



Figure 1: Hierarchical Chart

#### **Explanation of Results**

After evaluating the key goals and customer needs, the primary functions, or systems, for the project were determined to be support, propulsion, navigation, and consolidation. We have identified further subsystems, sub-subsystems, and functions within each primary system. This provides us with more specific functions to focus on, which will ultimately contribute to fulfilling the primary functions. A hierarchical chart was used to show the highest-level systems

Team 509

9



and the connected subsystems that would accomplish the functions. Once the primary functions were broken down into the smallest components, they were then reviewed in a cross-reference table to evaluate the importance and shared utility. Using the cross-reference table, it became evident that some of the systems and subsystems shared functions.

### Table 2: Cross Reference Table

| Cross Reference Table            | Support | Propulsion | Navigation | Consolidation |
|----------------------------------|---------|------------|------------|---------------|
| Maintains Stability              | Х       |            |            |               |
| Carries Load                     | Х       |            |            | Х             |
| Provides Safety                  | Х       |            |            |               |
| Accelerates                      |         | Х          |            |               |
| Decelerates                      |         | Х          |            |               |
| Negotiates Turns                 | Х       |            | Х          |               |
| Handles Varying Terrain          | Х       |            | Х          |               |
| Collapses into Smaller<br>Volume |         |            |            | Х             |
| Stores Tools                     | Х       |            |            | Х             |

#### **Connection to Systems**

The four main functions of the system are support, propulsion, navigation, and consolidation. Analysis of the cross-reference table highlights that support is the most important major function. The table shows that support has six sub-functions that fall within it, meaning it is the most important system to focus on. The vehicle's support is the centerpiece of the design which explains why it has the most functions fall within it. After support is consolidation,

Team 509

10



followed by propulsion and navigation. Implementing consolidation into the rover includes carrying the load without failure, collapsing into a smaller volume, and tool storage. While these sub-functions are not considered essential for the completion of the rover, they are scored for points in the competition. Propulsion and navigation each have two straightforward, important sub-functions. Development of the propulsion subfunctions (acceleration and deceleration) are an absolute necessity for the system. Negotiating turns and handling harsh terrain are the two sub-functions under navigation and will be carried out by a steering system and non-pneumatic wheels.

#### **Smart Integration**

A cross reference table provides a way to link functions of a system that are relatable among several subsystems. The table is used to dictate the shared functions the systems use. Implementing the cross-reference table can identify the functions and systems that are most significant. The functions containing the most checked boxes are the most important. The crossreference table for our focus areas of designing a human powered vehicle shows carries load, negotiates turns, handles varying terrain, and stores tools as the most repeated functions. These functions are related to support, consolidation, and navigation to design a vehicle that can enable turns and can handle various terrains while still providing support. The cross-reference table also displays most functions falling under support.

Team 509



### **Action and Outcome**

The support system will be made from a material with high elastic strength and low density to carry out the sub-functions such as absorbing impact and maintaining structural integrity. This will result in the operators and terrain being tolerated, despite the imposed high stress due to weight and concentrated forces, respectively. A high-functioning and reliable powertrain and steering system are vital for the time in which the rover finishes each "mission". The powertrain will take advantage of gear ratios and make efficient use of the kinetic energy produced by the operator. Wheels with lower friction coefficients are more desirable to make turning easier for the operator. Storage compartments will be incorporated within the frame to minimize overall volume of the rover.

Team 509

12



#### 1.4 Target Summary

#### Introduction

The functions identified in the functional decomposition have now been tabulated with a corresponding target and metric. Competitive benchmarking, engineering intuition, and the competition guidelines were utilized for creating these targets and metrics. For competitive benchmarking, companies that produce tandem bicycles or go-carts were researched, as the function and performance of these "vehicles" are like the human-powered rover. The engineering intuition we applied is the implementation of our technical knowledge and opinion(s). The competition guidelines provided straightforward quantitative targets. The full list of targets and metrics were tabulated and stored in Appendix C of this document.

#### Establishment of Targets/Metrics (Derivation of Targets and Metrics)

The metrics for providing designated storage as well as securing tools to vehicle are *currently* number of tools and number of samples. The number of tools and samples are reasonable metrics because the size of the tools are not established as they are still being developed. The competition requires each team to perform certain tasks with tools created by the team. Since our team is in the process of fabricating the tools, it would be premature to establish a metric such as volume or surface area for this function. Collapsing into a smaller volume with length, width, and height dimensions all less than 5 feet is a requirement of the NASA human-powered rover competition. The competition has this requirement in place to mimic their goal of maximizing space in the landing bay by minimizing the space the rover takes up.

Team 509

13



The steering ratio and maximum steering angle were then determined as a rack and pinion steering system was going to be re-used from the previous competition team. The steering ratio of the system was determined to be a 1:1 according to the manufacturing website and reviews (Maxpeedingrods). The fixed steering ratio was then paired with a maximum turning angle of 20 degrees for the wheels in order to meet the maximum turning radius parameter given by the competition. Using the turning radius limit of 15 feet is a requirement of the competition due to the challenging courses and the size of the track. The turning radius was then determined to be approximately 13.75 feet with the following equation:

$$Tan(Turning Angle) = \frac{Wheelbase}{Turning Radius}$$

This formula shows the relationship between turning angle, wheelbase, and turning radius (Menon, 2017).

Translating the user work was determined to have two targets and metrics, that of the powertrain gear ratio, and the combined average torque supplied by the riders. Since the powertrain was still in the development phase, the exact gear ratio had not been chosen but was given in the ranges of 16-24 pinion gear teeth, and 32-42 cassette gear teeth. This range of gear ratios was determined by researching bicycle hill climbing for endurance competitions (Ellington, 1995). This would allow for the team to decide the kind of torque vs speed tradeoff needed for the competition. The torque provided by the average rider was then researched and found to be approximately 50 Nm of torque per rider on a casual ride (Gardner, Martin, Martin, Barras, & Jenkins, 2007) . Since the human powered vehicle will have two riders, the target of 100 Nm base input torque was determined for the vehicle (Bike Forums, 2006). This will then be

Team 509

14



translated to further lower end torque with the gearing ratio for the powertrain anywhere between 1.333, to 2.625 times the base torque. This is needed as most of the competition events will have some sort of hill or climb for the rover to overcome.

For maintaining friction with the terrain, the tire friction coefficient and rolling resistance coefficient were determined by researching mountain bike tires (Xbits, 2020). This is because the terrain that the rover will have to traverse is most comparable to that of a mountain bike trail. The higher the friction coefficient, the more grip that the wheels can have with the terrain, this can also however make it harder to move, which is why the rolling resistance coefficient is lower. This could then be used to determine the amount of torque that can be applied under a no slip condition with the riders and vehicle weight.

For absorbing impact, compression of the suspension will be made to compress no more than 7 inches. This is considering another target dimension: 12 inches of ground clearance. A minimum of 12 inches of ground clearance for a static rover is a requirement of the competition. While the riders are traversing the terrain and the suspension is being compressed, there needs to be room between the rover and the ground. A maximum suspension compression of 7 inches leaves 5 inches of ground clearance, which should be plenty of room to pass over small debris.

Dampening vibrations and securing operators are targets that are established through rider approval. Quantifying the exact number of vibrations dampened and the operator's security is not an efficient use of time. Adjustments will be made for that function until 100% rider approval is met. Meaning, both riders must be completely satisfied with the number of vibrations they feel as well as how secure they feel.

Team 509



A factor of safety of 2.0 is being implemented to maintain structural integrity. Typically, a factor of safety of 3.0 is used for automobiles; however, a higher factor of safety comes with higher costs and/or higher weight (Mint, 2019). A factor of safety of 2.0 was decided on given the limited budget and weight requirements for the competition.

Track width and wheelbase targets of being less than 5 feet are tied back to the volumetric requirements that were previously stated. These targets are made with the assumption that the wheels are detached.

#### **Critical Targets and Metrics**

After reviewing the targets and metrics derived from the functional decomposition, some were noted to be critical for operation and competing in the NASA Human Exploration Rover Challenge. These targets and metrics play a major role in designing the vehicle and completing obstacle courses of the challenge. These targets and metrics will be used in the concept generation and selection portion of our project. Below is the table displaying the critical targets and metrics.

Team 509



| Function                      | Target                             | Metric                         |
|-------------------------------|------------------------------------|--------------------------------|
| Collapses into Smaller Volume | 5 ft, 5 ft, 5 ft                   | Length, Width, Height          |
|                               | 125 ft <sup>3</sup>                | Volume                         |
| Ground Clearance              | 12 in                              | Height                         |
| (with riders onboard)         | 30-degree departure/approach/      | Degrees                        |
|                               | breakover angles                   |                                |
| Secure Operators              | 100% Rider Approval                | Rider Approval                 |
| Translate Steering Input to   | 1:1                                | Steering Gear Ratio            |
| Output                        | 20 degrees                         | Max Turning Angle              |
| Maintain Friction with        | $FC \ge 0.75$                      | Friction Coefficient (FC)      |
| Terrain                       | $(RRC) \le 0.005$                  | Rolling Resistance Coefficient |
|                               |                                    | (RRC)                          |
| Track Width                   | $\leq$ 5 ft                        | Length                         |
| Wheelbase                     | $\leq$ 5 ft                        | Length                         |
| Translate User Work           | 100 N-m                            | Torque                         |
|                               | (Gear Ratio Range)                 | Gear Ratio                     |
|                               | Pinion 14-24 teeth                 |                                |
|                               | Cassette 32-44 teeth               |                                |
| Turning Radius                | $\leq$ 15 ft                       | Radius Length                  |
| Translate User Input          | Stopping Distance $\leq$ 2.5 m (10 | Distance                       |
|                               | mph to stop)                       |                                |

# **Table 3 Critical Targets and Metrics Table**

Team 509



#### **Method of Validation**

Different methods involving various tools will be used in order to measure and validate the established metrics. A tape measure will be used to measure multiple metrics including length, width, and height, ground clearance, track width, and wheelbase. For ground clearance, the approach, departure, and breakover angles will be determined by measuring the angles between the front tire and the frontmost point of the frame, between the rear tire and the rearmost point on the frame, and between the tires and the longitudinal center of the frame respectively. Securing operators will be validated through an open discussion between the operators where they will decide if they feel properly secured to the vehicle. Comparing the gear teeth between the pinion and the cassette will yield a gear ratio to validate the translation of user work.

For translating steering input to output, the steering ratio has been determined from the manufacturer as we already have the rack and pinion steering leftover from the previous team. The second metric for this function, maximum turning angle, will be found by turning the steering wheel to its furthest position (clockwise or counterclockwise) where the angle between the heading of the straight wheel and the heading of the turned wheel will be measured using a protractor. The turning radius can then be determined from the maximum steering angle and the wheelbase using the equation mentioned above.

For maintaining friction with the terrain, the friction coefficient will be found by locking the wheel, so it is unable to rotate then applying a measured normal and horizontal force. The horizontal force will be increased until it slips. The friction coefficient is then found by dividing the normal force by the horizontal force. The rolling resistance coefficient is found in a similar

Team 509



way however the wheel can rotate. The horizontal force is then increased until the wheel begins to roll. The rolling resistance coefficient is equal to that horizontal force divided by the normal force.

#### **1.5 Concept Generation**

#### **Concept Generation Methods**

After determining the critical targets and metrics that need to be met to compete in the NASA Human Exploration Rover Challenge, concepts to meet the targets and metrics were then generated using a variety of methods. The primary method for the generation of concepts was the morphological chart as this method combines many useful ideas into single concepts. Using the chart, a mix and match of components could be generated by combining horizontal components from the provided vertical columns. The other primary form of concept generation was using the brainstorming method to allow the team members to openly discuss and generate possible options for concepts for the design or components of the rover. A third form of concept generation was the "crapshoot" method which involved using wild, or unconventional ideas to see what works. This often-yielded innovative ideas that then allowed concept generation to flow and led to further discussions of ideas. Ultimately the goal of concept generation is to gather the best concepts for the project and then iterate through them to determine medium and high-fidelity concepts. The medium and high-fidelity concepts will later be quantitatively analyzed and ranked.

Team 509



#### **Morphological Chart**

The morphological chart was crucial in our concept generation as we are taking a systems integration approach. The chart allowed us to generate multiple ideas for the major subsystems of our design and consider different combinations of them. This will help us to consider the merits of different subsystem concepts and how they might work together, rather than evaluating each subsystem separately. The morphological chart was developed with five columns for the main subsystems that encompass the critical targets and metrics. The five selected subsystems for the morphology chart were selected to be the steering, suspension, drivetrain, support, and wheels. Possible types of mechanisms under those selected components were then selected and added to the columns. This allows for combinations to be created with a mix and match approach to concept generation. As depicted with the colored arrows, two possible combination sets are down in the table shown below. The blue and orange line selections depict a possible set of combinations for the overall rover design. Using the total combinations yields a total of 7,776 possible permutations of the presented options.

Team 509



# Table 4 Morphology Chart

| Leaf spring   |                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loar spring   | Chain and sprocket                                                                                                            | Side by side                                                                                                                                                                                                                            | High density rigid                                                                                                                                                                                                                                                                                                            |
|               | (single gear)                                                                                                                 | seating                                                                                                                                                                                                                                 | polymer foam                                                                                                                                                                                                                                                                                                                  |
| Double        | Belt driven pulley                                                                                                            | Opposed                                                                                                                                                                                                                                 | Cork                                                                                                                                                                                                                                                                                                                          |
| wishbone      | drivetrain                                                                                                                    | seating                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |
| (front only)  |                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |
| Fully         | Chain and sprocket                                                                                                            | 3-point                                                                                                                                                                                                                                 | Parallel grained                                                                                                                                                                                                                                                                                                              |
| independent   | (multi gear)                                                                                                                  | seatbelts                                                                                                                                                                                                                               | wood                                                                                                                                                                                                                                                                                                                          |
| double        |                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |
| wishbone      |                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |
| No suspension | Direct drive                                                                                                                  | 2-point                                                                                                                                                                                                                                 | 3 wheels                                                                                                                                                                                                                                                                                                                      |
|               | mechanism                                                                                                                     | seatbelts                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |
| MacPherson    | Chain-free                                                                                                                    | 5-point                                                                                                                                                                                                                                 | 4 wheels                                                                                                                                                                                                                                                                                                                      |
| struts        | driveshaft,                                                                                                                   | harness                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |
|               | multi gear ratio                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |
| Rear pivot    | Chain drive, single                                                                                                           | Back to back                                                                                                                                                                                                                            | Bicycle wheel                                                                                                                                                                                                                                                                                                                 |
| suspension    | gear ratio, dual<br>clutch                                                                                                    | seating                                                                                                                                                                                                                                 | (non-pneumatic)                                                                                                                                                                                                                                                                                                               |
|               | wishbone<br>(front only)<br>Fully<br>independent<br>double<br>wishbone<br>No suspension<br>MacPherson<br>struts<br>Rear pivot | DoubleBelt driven pulleywishbonedrivetrain(front only)FullyChain and sprocketindependent(multi gear)doublewishboneNo suspensionDirect driveMacPhersonChain-freestrutsdriveshaft,multi gear ratioRear pivotChain drive, singlesuspension | DoubleBelt driven pulleyOpposedwishbonedrivetrainseating(front only)FullyChain and sprocket3-pointindependent(multi gear)seatbeltsdoublewishboneNo suspensionDirect drive2-pointMacPhersonChain-free5-pointstrutsdriveshaft,harnessmulti gear ratioRear pivotChain drive, singleBack to backsuspensiongear ratio, dualseating |

Team 509

21



#### Brainstorming

Another form of concept generation implemented was the brainstorming method which involved the group openly discussing possible designs and combinations. Each of these ideas would then be written down and discussed again later in conjunction with the S.C.A.M.P.E.R. (Substitute, Combine, Adapt, Modify, Put to another use, Eliminate, and Reverse) method. This eventually yielded some of the medium and high-fidelity concepts for the rover design. This method was the one we utilized most.

#### Crapshoot

The third concept generation technique used was the crapshoot method which involved throwing out wild ideas that could possibly be useful in some applications. This allowed us to cast out wild ideas and then reel them back in and find more reasonable suggestions that could be applied to the critical systems.

#### **Medium Fidelity Concepts**

Medium fidelity concepts were identified as concepts that had potential to meet some of the specified critical targets and metrics selected for the project but not all the criteria. Some of these ideas could be combinations of several generated concepts from all the tools used. A total of six medium fidelity concepts were generated. These concepts for each of the critical systems of the project were then determined to be as shown below.

Team 509



## 1. Disk Brakes

Disk brakes could be implemented and attached to the axle of the powertrain. This type of brake system is used on 4-wheeled go-carts that are built similarly to the rover and can handle high speed braking. They are a fairly simple design and can be easily implemented with almost any wheels. In addition to being easy to implement, they are also user serviceable in the field which can be useful if there are any issues with it during the competition. The image below depicts the current set of disk brakes that are remnants of the previous team's rover construction.



Figure 1.5.1 Disk brake and caliper trigger system.

#### 2. <u>3-Point Seatbelt</u>

A 3-point seatbelt could be used to secure each operator to the vehicle. The NASA competition guidebook states that the users This provides a high level of safety and Team 509

23



security to the operator. They restrict movement both vertically and laterally and restrict both the upper and lower body. Most 4-wheeled automobiles use this type of seatbelt to maximize user comfort and safety.





## 3. Fronk (front trunk) Design

A front tool storage trunk would help offset the rear-heavy rover. Storing the tools in the front of the vehicle allows the users to easily reach for tools they may need for their tasks.

Team 509

24



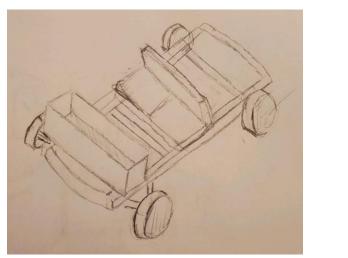
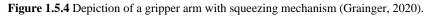



Figure 1.5.3 Fronk design on four wheeled base rover.


## 4. Sample Gathering Tool

The handheld device with a grip and squeeze mechanism helps with picking up multiple samples. The grip helps with grabbing slippery and smaller samples. The handheld device reduces hand fatigue and helps with reaching to further distances. The grabbers can hold a cup to pick up liquid samples. This tool also keeps riders from bending over and stepping out of the vehicle.

Team 509







#### 5. Tiller Steering Mechanism

A steering system in the middle of two riders will give access for either or rider to steer. The steering system provides leverage in the form of torque like sailboat steering. Tiller system in the front will give a rider the control of front wheel turns. Like a sailboat, when a rider turns the tiller left, both front wheels will turn right together. When a rider turns right, the wheels will turn left. In addition to being a robust steering mechanism, it is also simple and can be designed to be lightweight.

Team 509



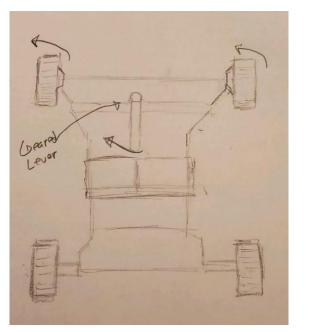



Figure 1.5.5 Tiller steering mechanism location and reaction motion on a mock rover.

## 6. Double Wishbone Suspension in Front and Rear

Double wishbone suspension in the front and rear would allow for independent movement of every wheel. This would be very helpful absorbing all the impact from bumps, allowing the vehicle to maintain stability and traction. It could be difficult to implement a drivetrain with this suspension.

Team 509



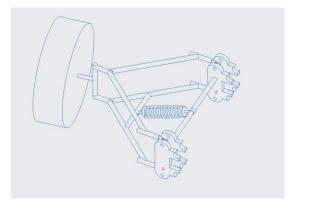



Figure 1.5.6 Schematic of double wishbone suspension that will be used for front and rear axles.

#### **High Fidelity Concepts**

High fidelity concepts were identified as concepts that best fit the critical targets and metrics and had little to no downsides. The high-fidelity concepts consisted of many smaller combined concepts which created a more robust and promising concept revision. A total of seven high fidelity concepts were generated. We feel that these concepts detailed below will be the best options going forward with the design.

#### 1. High Density Rigid Polymer Foam Wheels

The material for the interior of the wheels could be made from high density rigid polymer foam. The wheels will be solid all the way through. All four wheels will be made from this material and they will have the same dimensions. It is vital that these wheels do not fail while under load of the cart, riders, and traversing terrain. This material is optimal for

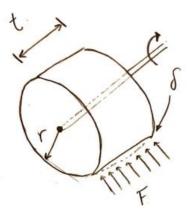
Team 509

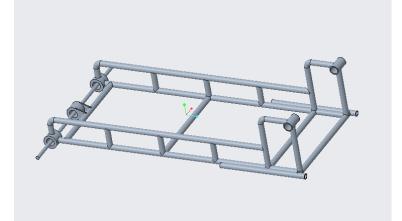
28



minimizing mass and cost. It is important to minimize mass, as the competition awards

more points to lighter rovers.





Figure 1.5.7 High Density Rigid Polymer Foam Wheels with relevant dimensions that are to be determined.

## 2. Frame from Previous Year

This frame is relatively small and made of steel tubing. While it could pose some issues, reusing the frame from last year's team would enable our team to save time and money on developing this subsystem.

Team 509





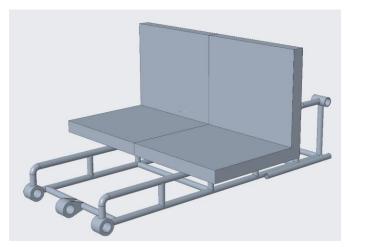
### Figure 1.5.8 Steel frame from 2019 team 514.

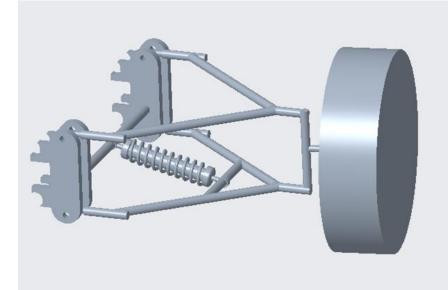
## 3. Side-by-Side Forward Faced Seating

This type of seating arrangement would allow for both operators to see where the rover is moving and would simplifies the powertrain configuration. The rover will only be able to traverse forward and brake, so having both operators face in the direction of movement is important. Also, the side-by-side seating enables the powertrain to have only one axis of rotation. This further simplifies the design, which is time effective.

Team 509







Figure 1.5.9 Side by side rover seating for the operators.

## 4. Front Wheel Double Wishbone Suspension with Solid Rear Axle

Reusing the double wishbone suspension from last year's team would enable our team to save time and money on developing this subsystem. This kind of suspension setup allows for a more rigid rear end of the vehicle while allowing some suspension motion in the front end for stability and rough terrain. This will reduce the complexity of the suspension and drivetrain so that it can remain robust, yet versatile.

Team 509





**Figure 1.5.10** Front Wheel Double Wishbone Suspension. Modified version from the previous team's design.

### 5. Solid Rear Axle Powertrain with Dual Disk Brakes

A solid rear mounted axle with dual disk brakes would allow for a versatile drivetrain and braking system. Utilizing the rear mounted axle, the driving gear could be directly attached, or welded to the driveshaft and allow for direct power transmission from the bike chain and pedals. The bolt on design would allow for ease of attachment and repair should damage occur to the shaft. The dual disk brakes also allow for faster braking, and a single brake handle can be given to each of the riders so that they can have individual control over deceleration. The torque input from the user will be transmitted via two intermediate chain linkages and from the dual clutch pedal system at the front of the vehicle as depicted in the following images.

Team 509

32



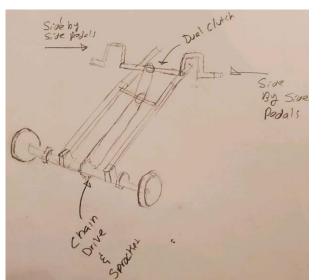



Figure 1.5.11 Chain drive and solid rear axle with dual caliper brake system.



Figure 1.5.12 Dual disk brake, solid rear axle driveshaft.

# 6. Rack and Pinion Steering from Previous Year

Rack and pinion steering are one of the most commonly us steering systems in vehicles. It is easy to use and simple to implement as it allows the driver to proportionally move

Team 509

33



the steering system in real time. In addition to this, the steering mechanism has been handed down from the previous design team and is readily modifiable for the updated rover.

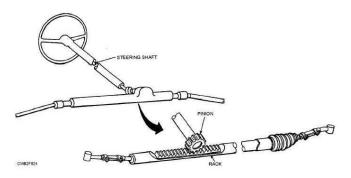



Figure 1.5.13 Rack and pinion steering diagram (Integrated Publishing).

# 7. 2-Point Seatbelt

2-point seatbelts consist of a lap belt which connects on both sides of a person's waist. They help prevent any vertical body movement and limit lower body lateral movement. They are commonly used in low speed or low risk situations where a person's upper body would not be subjected to large forces.



Figure 1.5.14 Two-point seatbelt restraint (Quadratec, 2020) Team 509

34



#### **1.6 Concept Selection**

Using the generated concepts that were derived by the mission critical customer requirements from the NASA Human Exploration Rover Challenge 2021, the team analyzed each of the medium and high-fidelity concepts using a binary comparison table as shown in Table 1.6.1. The purpose of this is to compare the criteria determined for the rover project and their relative importance. Using the binary comparison table, a weight factor is then determined which is used for the numerical analysis of the generated concepts.

Table 1.6.1 Binary Comparison Table

|                             | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total |
|-----------------------------|---|---|---|---|---|---|---|---|-------|
| 1. Handle rough terrain     | - | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2     |
| 2. Maintain operator safety | 1 | - | 0 | 1 | 1 | 0 | 1 | 1 | 5     |
| 3. Maintain functionality   | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 7     |
| 4. Ease of production       | 1 | 0 | 0 | - | 1 | 0 | 1 | 1 | 4     |
| 5. Rider size accommodation | 1 | 0 | 0 | 0 | - | 0 | 0 | 1 | 2     |
| 6. Cost effective           | 1 | 1 | 0 | 1 | 1 | - | 1 | 1 | 6     |
| 7. Ease of assembly         | 0 | 0 | 0 | 0 | 1 | 0 | - | 1 | 2     |
| Total                       | 5 | 2 | 0 | 3 | 5 | 1 | 5 | 7 | -     |

### House of Quality

The House of Quality (HoQ) chart helps to translate the customer needs into engineering

characteristics. Relative ranking and weighting are then determined from of the HoQ which then Team 509 35



can be used to compare concepts against one another. The goal of this analysis is to mathematically determine the concepts that satisfy the customer's needs.

Table 1.6.2House of Quality Table

|                             |                                |           | Engineering Characteristics |                          |                     |                 |                      |                        |
|-----------------------------|--------------------------------|-----------|-----------------------------|--------------------------|---------------------|-----------------|----------------------|------------------------|
| Improvement<br>Direction    | 1                              | 1         | $\downarrow$                | 1                        | 1                   | 1               | 1                    | 1                      |
| Units                       |                                | N/A       | inches                      | Number of seats          | inches              | inches*lbf      | in                   | in <sup>3</sup><br>N/A |
| Customer<br>Requirements    | Importance<br>Weight<br>Factor | Stability | Turning<br>Radius           | Seating<br>Accommodation | Ground<br>Clearance | Rover<br>Torque | Stopping<br>Distance | Storage                |
| Handle rough<br>terrain     | 2                              | 8         | 4                           | 0                        | 8                   | 4               | 2                    | 0                      |
| Maintain operator<br>safety | 5                              | 4         | 2                           | 8                        | 2                   | 0               | 2                    | 0                      |
| Maintain<br>functionality   | 7                              | 2         | 2                           | 0                        | 2                   | 8               | 8                    | 4                      |
| Ease of production          | 4                              | 0         | 0                           | 4                        | 4                   | 4               | 2                    | 2                      |
| Rider size accommodation    | 2                              | 4         | 0                           | 8                        | 2                   | 2               | 2                    | 4                      |
| Cost effective              | 6                              | 4         | 2                           | 2                        | 2                   | 4               | 0                    | 2                      |
| Ease of assembly            | 2                              | 2         | 2                           | 4                        | 2                   | 2               | 0                    | 0                      |
| Raw Score                   | (552)                          | 86        | 48                          | 92                       | 76                  | 112             | 82                   | 56                     |
| Relative Weight (%          | )                              | 15.58     | 8.70                        | 16.67                    | 13.76               | 20.29           | 14.86                | 10.14                  |
| Rank Order                  |                                | 3         | 7                           | 2                        | 6                   | 1               | 4                    | 5                      |

Team 509



#### **Pugh Charts**

Pugh charts were developed to analyze concepts of similar systems. A total of five systems were analyzed: steering, suspension, frame, wheels, and powertrain. These systems each started with four concepts and were compared to a datum. A second iteration was conducted on each system to narrow down its concept designs that most matched the engineering characteristics. The final concepts will be used in the development portion of the human powered vehicle project.

In the Pugh Charts below, each concept consists of plus (+), minuses (-), or satisfactory (S). Concepts were given a (-) if they were determined to be worse than the datum in the specific engineering characteristic. Concepts were given a (+) if they were determined to be better than the datum in the specific engineering characteristic. Concepts were given a (S) if they were determined to be equivalent to the datum in the specific engineering characteristic. In each Pugh Charts comparison, the (+) and (-) are totaled for each concept. In iteration process, the concept with the most (+) became the new datum and the previous datum was eliminated. This process was done until the concepts were narrowed down.

Team 509



# Table 1.6.3 Steering Pugh Chart 1

| Steering                       |             |                                                            |                              |                          |                           |  |  |  |
|--------------------------------|-------------|------------------------------------------------------------|------------------------------|--------------------------|---------------------------|--|--|--|
|                                | Concepts    |                                                            |                              |                          |                           |  |  |  |
| Engineering<br>Characteristics | Datum       | Rack and<br>pinion<br>steering<br>from<br>previous<br>year | Tiller steering<br>mechanism | Double<br>wheel steering | Rear<br>wheel<br>steering |  |  |  |
| Stability                      | Front wheel | S                                                          | S                            | -                        | -                         |  |  |  |
| Turning Radius                 | steering    | +                                                          | -                            | -                        | -                         |  |  |  |
| Seating<br>Accommodation       |             | S                                                          | S                            | S                        | S                         |  |  |  |
| Ground<br>Clearance            |             | +                                                          | +                            | S                        | S                         |  |  |  |
| Rover Torque                   |             | S                                                          | S                            | S                        | S                         |  |  |  |
| Stopping<br>Distance           |             | S                                                          | S                            | S                        | S                         |  |  |  |
| Storage                        |             | S                                                          | S                            | S                        | S                         |  |  |  |
| # plu                          | ses         | 2                                                          | 1                            | 0                        | 0                         |  |  |  |
| # min                          | uses        | 0                                                          | 1                            | 2                        | 2                         |  |  |  |

Team 509

38



## Table 1.6.4 Steering Pugh Chart 2

| Steering                       |                       |                                 |                             |                        |  |  |  |  |  |
|--------------------------------|-----------------------|---------------------------------|-----------------------------|------------------------|--|--|--|--|--|
|                                |                       | Concepts                        |                             |                        |  |  |  |  |  |
| Engineering<br>Characteristics | Datum                 | Tiller<br>steering<br>mechanism | Double<br>wheel<br>steering | Rear<br>wheel steering |  |  |  |  |  |
| Stability                      | Rack and              | S                               | -                           | -                      |  |  |  |  |  |
| Turning Radius                 | pinion steering       | -                               | -                           | -                      |  |  |  |  |  |
| Seating<br>Accommodation       | from previous<br>year | S                               | S                           | S                      |  |  |  |  |  |
| Ground<br>Clearance            |                       | +                               | S                           | S                      |  |  |  |  |  |
| Drivetrain<br>Torque           |                       | S                               | S                           | S                      |  |  |  |  |  |
| Stopping<br>Distance           |                       | S                               | S                           | S                      |  |  |  |  |  |
| Storage                        |                       | S                               | S                           | S                      |  |  |  |  |  |
| # plu                          | ses                   | 1                               | 0                           | 0                      |  |  |  |  |  |
| # min                          | uses                  | 1                               | 2                           | 2                      |  |  |  |  |  |

Multiple steering concepts were compared against each other in the Pugh Charts above, Table 1.6.3 and Table 1.6.4. The rack and pinion steering was the best concept in the first analysis, so it was then used as the datum in the next Pugh Chart. After the second analysis the rack and pinion steering was identified as the best steering concept. This supports what the team expected as rack and pinion steering is simple and easy to integrate. The parts necessary for a rack and pinion steering system are also already available to us from last year's team.

Team 509



# Table 1.6.5Suspension Pugh Chart 1

| Suspension      |                  |            |            |               |            |  |  |  |
|-----------------|------------------|------------|------------|---------------|------------|--|--|--|
|                 | Concepts         |            |            |               |            |  |  |  |
| Engineering     | Datum            | Double     | Double     | MacPherson    | No         |  |  |  |
| Characteristics |                  | wishbone   | wishbone   | Strut (front) | suspension |  |  |  |
|                 |                  | suspension | suspension |               |            |  |  |  |
|                 |                  | (front)    | (front and |               |            |  |  |  |
|                 |                  |            | rear)      |               |            |  |  |  |
| Stability       | Leaf spring      | +          | -          | +             | -          |  |  |  |
| Turning Radius  | suspension       | S          | S          | S             | S          |  |  |  |
| Seating         | (front and rear) | S          | S          | S             | S          |  |  |  |
| Accommodation   |                  | 3          | د          | 3             | ن<br>د     |  |  |  |
| Ground          |                  | +          | _          | +             | +          |  |  |  |
| Clearance       |                  | Ŧ          | -          | т             | T.         |  |  |  |
| Rover           |                  | S          | +          | S             |            |  |  |  |
| Torque          |                  | 2          | Ŧ          | 5             | _          |  |  |  |
| Stopping        |                  |            | +          | +             |            |  |  |  |
| Distance        |                  | +          | +          | +             | -          |  |  |  |
| Storage         |                  | S          | S          | S             | S          |  |  |  |
| # p             | luses            | 3          | 2          | 3             | 1          |  |  |  |
| # m             | inuses           | 0          | 2          | 0             | 3          |  |  |  |

Team 509

40



## Table 1.6.6 Suspension Pugh Chart 2

| Suspension                     |                 |                  |                                                |                             |  |  |  |  |
|--------------------------------|-----------------|------------------|------------------------------------------------|-----------------------------|--|--|--|--|
|                                | Concepts        |                  |                                                |                             |  |  |  |  |
| Engineering<br>Characteristics | Datum           | No<br>suspension | Double<br>wishbone<br>suspension<br>(front and | MacPherson<br>Strut (front) |  |  |  |  |
|                                |                 |                  | rear)                                          |                             |  |  |  |  |
| Stability                      | Double wishbone | -                | +                                              | -                           |  |  |  |  |
| Turning Radius                 | suspension      | S                | S                                              | S                           |  |  |  |  |
| Seating<br>Accommodation       | (front)         | S                | S                                              | S                           |  |  |  |  |
| Ground<br>Clearance            |                 | +                | -                                              | S                           |  |  |  |  |
| Rover Torque                   |                 | -                | +                                              | S                           |  |  |  |  |
| Stopping<br>Distance           |                 | -                | -                                              | S                           |  |  |  |  |
| Storage                        |                 | S                | S                                              | S                           |  |  |  |  |
| # p                            | luses           | 1                | 2                                              | 0                           |  |  |  |  |
| # m                            | inuses          | 3                | 2                                              | 1                           |  |  |  |  |

Different suspension concepts were compared using Pugh Charts above in Table 1.6.5 and Table 1.6.6. The double wishbone suspension in the front only was found to be the best concept in the first chart and was subsequently made the datum in the second chart. In the second Pugh Chart two concepts were tied for the best, the double wishbone in the front only and the double wishbone in the front and rear. The double wishbone suspension is relatively easy to design and very effective for off-road terrain, so these concepts being the best came as no surprise.

Team 509



# Table 1.6.7 Frame Pugh Chart 1

|                                | Frame           |                                |                                       |                                              |                                                                 |  |  |  |
|--------------------------------|-----------------|--------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------------------------|--|--|--|
|                                | Concepts        |                                |                                       |                                              |                                                                 |  |  |  |
| Engineering<br>Characteristics | Datum           | Frame from<br>previous<br>year | Single<br>beam,<br>segmented<br>frame | Wooden<br>frame with<br>center fold<br>joint | Elongated<br>and<br>segmented<br>frame from<br>previous<br>year |  |  |  |
| Stability                      | Short wheelbase | +                              | -                                     | -                                            | -                                                               |  |  |  |
| Turning Radius                 | wooden frame    | S                              | -                                     | -                                            | -                                                               |  |  |  |
| Seating<br>Accommodation       |                 | S                              | S                                     | S                                            | S                                                               |  |  |  |
| Ground<br>Clearance            |                 | S                              | S                                     | S                                            | S                                                               |  |  |  |
| Rover Torque                   |                 | S                              | S                                     | S                                            | S                                                               |  |  |  |
| Stopping<br>Distance           |                 | S                              | S                                     | S                                            | S                                                               |  |  |  |
| Storage                        |                 | S                              | +                                     | -                                            | +                                                               |  |  |  |
| # p                            | # pluses        |                                | 1                                     | 0                                            | 1                                                               |  |  |  |
| # m                            | inuses          | 0                              | 2                                     | 3                                            | 2                                                               |  |  |  |

Team 509

42



# Table 1.6.8 Frame Pugh Chart 2

| Frame                 |                                |                 |           |            |  |  |  |  |  |
|-----------------------|--------------------------------|-----------------|-----------|------------|--|--|--|--|--|
|                       | Concepts                       |                 |           |            |  |  |  |  |  |
| Engineering           | Datum Elongated and Single Woo |                 |           |            |  |  |  |  |  |
| Characteristics       |                                | segmented frame | beam,     | frame      |  |  |  |  |  |
|                       |                                | from previous   | segmented | with       |  |  |  |  |  |
|                       |                                | year            | frame     | center     |  |  |  |  |  |
|                       |                                |                 |           | fold joint |  |  |  |  |  |
| Stability             | Frame from                     | -               | -         | -          |  |  |  |  |  |
| Turning Radius        | previous year                  | -               | -         | -          |  |  |  |  |  |
| Seating Accommodation |                                | S               | S         | S          |  |  |  |  |  |
| Ground Clearance      |                                | S               | S         | S          |  |  |  |  |  |
| Rover Torque          |                                | S               | S         | S          |  |  |  |  |  |
| Stopping Distance     |                                | S               | S         | S          |  |  |  |  |  |
| Storage               |                                | +               | +         | -          |  |  |  |  |  |
| # pluse               | # pluses                       |                 |           | 0          |  |  |  |  |  |
| # minus               | 2                              | 2               | 3         |            |  |  |  |  |  |
|                       |                                |                 |           |            |  |  |  |  |  |

Comparing multiple frame concepts, the frame from the previous year was identified as the best concept in the first Pugh Chart, Table 1.6.7. After making this concept the datum in the second Pugh Chart, Table 1.6.8, it was still shown to be the best option. The frame from last year is an excellent overall concept as it is relatively small and will provide stability and a small turning radius.

Team 509



# Table 1.6.9 Wheels Pugh Chart 1

| Wheels                         |                   |                                                 |                                     |                  |                                 |  |  |  |
|--------------------------------|-------------------|-------------------------------------------------|-------------------------------------|------------------|---------------------------------|--|--|--|
|                                |                   |                                                 | Concepts                            |                  |                                 |  |  |  |
| Engineering<br>Characteristics | Datum             | High density<br>rigid<br>polymer<br>foam wheels | Cork wheels,<br>solid<br>throughout | Wooden<br>wheels | Patterned<br>aluminum<br>wheels |  |  |  |
| Stability                      | Classic bike      | +                                               | +                                   | -                | S                               |  |  |  |
| Turning Radius                 | wheel with        | S                                               | S                                   | S                | S                               |  |  |  |
| Seating<br>Accommodation       | rim and<br>spokes | S                                               | S                                   | S                | S                               |  |  |  |
| Ground<br>Clearance            |                   | -                                               | -                                   | S                | S                               |  |  |  |
| Rover Torque                   |                   | +                                               | +                                   | -                | S                               |  |  |  |
| Stopping<br>Distance           |                   | S                                               | S                                   | S                | S                               |  |  |  |
| Storage                        |                   | S                                               | S                                   | S                | S                               |  |  |  |
| # plus                         | # pluses          |                                                 | 2                                   | 0                | 0                               |  |  |  |
| # minu                         | ises              | 1                                               | 1                                   | 2                | 0                               |  |  |  |

Team 509

44



## Table 1.6.10 Wheels Pugh Chart 2

|                                | Wheels       |                                        |               |                              |  |  |  |  |  |  |
|--------------------------------|--------------|----------------------------------------|---------------|------------------------------|--|--|--|--|--|--|
|                                |              | Concepts                               |               |                              |  |  |  |  |  |  |
| Engineering<br>Characteristics | Datum        | High density rigid polymer foam wheels | Wooden wheels | Patterned aluminum<br>wheels |  |  |  |  |  |  |
| Stability                      | Cork wheels, | +                                      | -             | -                            |  |  |  |  |  |  |
| Turning Radius                 | solid        | S                                      | S             | S                            |  |  |  |  |  |  |
| Seating<br>Accommodation       | throughout   | S                                      | S             | S                            |  |  |  |  |  |  |
| Ground<br>Clearance            |              | +                                      | +             | +                            |  |  |  |  |  |  |
| Rover Torque                   |              | S                                      | -             | -                            |  |  |  |  |  |  |
| Stopping<br>Distance           |              | S                                      | S             | S                            |  |  |  |  |  |  |
| Storage                        |              | S                                      | S             | S                            |  |  |  |  |  |  |
| # plus                         | ses          | 2                                      | 1             | 1                            |  |  |  |  |  |  |
| # minu                         | ises         | 0                                      | 1             | 2                            |  |  |  |  |  |  |

The wheel concepts were also compared using Pugh Charts above. From the first chart, Table 1.6.9, the high density rigid polymer foam wheels and the solid cork wheels were both found to be the equally top options. The solid cork wheels were then used as the datum in the second chart, Table 1.6.10, from which the high density rigid polymer foam wheels were identified as the preferred concept. This is exactly what the team expected as the high-density rigid polymer foam has an extremely high strength to density ratio.

Team 509

45



# Table 1.6.11Powertrain Pugh Chart 1

| Powertrain                     |               |                                                       |                                                     |                                                      |  |  |  |  |
|--------------------------------|---------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--|--|--|--|
|                                | Concepts      |                                                       |                                                     |                                                      |  |  |  |  |
| Engineering<br>Characteristics | Datum         | Chain drive,<br>single gear,<br>single<br>clutch, RWD | Chain drive,<br>single gear,<br>dual clutch,<br>RWD | Chain drive,<br>multi gear,<br>single<br>clutch, FWD |  |  |  |  |
| Stability                      | Direct drive, | S                                                     | S                                                   | S                                                    |  |  |  |  |
| Turning Radius                 | FWD           | +                                                     | +                                                   | S                                                    |  |  |  |  |
| Seating<br>Accommodation       |               | S                                                     | S                                                   | S                                                    |  |  |  |  |
| Ground<br>Clearance            |               | S                                                     | S                                                   | S                                                    |  |  |  |  |
| Rover Torque                   |               | +                                                     | +                                                   | +                                                    |  |  |  |  |
| Stopping<br>Distance           |               | S                                                     | S                                                   | S                                                    |  |  |  |  |
| Storage                        |               | S                                                     | S                                                   | S                                                    |  |  |  |  |
| # plus                         | ses           | 2                                                     | 2                                                   | 1                                                    |  |  |  |  |
| # minu                         | ises          | 0                                                     | 0                                                   | 0                                                    |  |  |  |  |

Team 509

46



## Table 1.6.12 Powertrain Pugh Chart 2

| Powertrain                     |                     |                                                       |                                                      |  |
|--------------------------------|---------------------|-------------------------------------------------------|------------------------------------------------------|--|
|                                | Concepts            |                                                       |                                                      |  |
| Engineering<br>Characteristics | Datum               | Chain drive,<br>single gear,<br>single clutch,<br>RWD | Chain drive,<br>multi gear,<br>single<br>clutch, FWD |  |
| Stability                      | Chain drive,        | S                                                     | S                                                    |  |
| Turning Radius                 | single gear,        | S                                                     | -                                                    |  |
| Seating<br>Accommodation       | dual clutch,<br>RWD | S                                                     | S                                                    |  |
| Ground<br>Clearance            |                     | S                                                     | S                                                    |  |
| Rover Torque                   |                     | -                                                     | -                                                    |  |
| Stopping<br>Distance           |                     | S                                                     | S                                                    |  |
| Storage                        |                     | S                                                     | S                                                    |  |
| # pluses                       |                     | 0                                                     | 0                                                    |  |
| # minuses                      |                     | 1                                                     | 2                                                    |  |

Finally, the powertrain concepts were compared using Pugh Charts. The first chart, Table 1.6.11 revealed two tops options: Chain drive, single gear, single clutch, RWD and Chain drive, single gear, dual clutch, RWD. Using the dual clutch top option as the new datum, the second chart analysis was performed. From this chart, Table 1.6.12, we found that the chain drive, single gear, dual clutch, RWD option was the best for the powertrain. This option will provide good power transfer and allow for high torque through the use of the dual clutch.

Team 509



# **Analytic Hierarchy Process**

The Analytical Hierarchy process (AHP) was conducted to compare similar concepts for each of the systems to determine the concepts that best satisfy the customer needs. The criteria were compared against one another and their numerical analysis relationship is normalized to determine which concepts best suits the customer needs.

| Table 1.6.13    |
|-----------------|
| Pairwise Matrix |

|                    | 1. Material<br>Cost | 2. MFG<br>Cost | 3.<br>Repairability | 4.<br>Reliability | 5.<br>Durability | 6. Time<br>Production |
|--------------------|---------------------|----------------|---------------------|-------------------|------------------|-----------------------|
| 1. Material Cost   | 1                   | 0.2            | 0.33                | 1                 | 1                | 3                     |
| 2. MFG Cost        | 5                   | 1              | 0.33                | 5                 | 0.2              | 1                     |
| 3. Repairability   | 3                   | 3              | 1                   | 3                 | 3                | 5                     |
| 4. Reliability     | 1                   | 0.2            | 0.33                | 1                 | 5                | 0.2                   |
| 5. Durability      | 1                   | 0.33           | 0.33                | 0.2               | 1                | 0.2                   |
| 6. Time Production | 0.33                | 1              | 0.2                 | 5                 | 5                | 1                     |
| Sum                | 11.33               | 5.73           | 2.53                | 15.2              | 15.2             | 10.4                  |

## Table 1.6.14 Normalized Pairwise Matrix

|                  | 1. Material<br>Cost | 2. MFG<br>Cost | 3.<br>Repairability | 4.<br>Reliability | 5. Durability | 6. Time<br>Production |
|------------------|---------------------|----------------|---------------------|-------------------|---------------|-----------------------|
| 1. Material      |                     |                |                     | -                 |               |                       |
| Cost             | 0.088               | 0.035          | 0.132               | 0.066             | 0.066         | 0.291                 |
| 2. MFG Cost      | 0.441               | 0.175          | 0.132               | 0.329             | 0.013         | 0.096                 |
| 3. Repairability | 0.265               | 0.524          | 0.396               | 0.197             | 0.197         | 0.479                 |
| 4. Reliability   | 0.088               | 0.035          | 0.131               | 0.066             | 0.329         | 0.019                 |
| 5. Durability    | 0.088               | 0.058          | 0.131               | 0.013             | 0.066         | 0.019                 |
| 6. Time          |                     |                |                     |                   |               |                       |
| Production       | 0.029               | 0.175          | 0.079               | 0.329             | 0.329         | 0.096                 |
| Sum              | 1                   | 1              | 1                   | 1                 | 1             | 1                     |

Team 509



| Weighted and Crite Weighted Sum | ria Weights<br>Criteria<br>Weights<br>{W} |  |
|---------------------------------|-------------------------------------------|--|
| 8.54                            | 0.113                                     |  |
| 8.19                            | 0.198                                     |  |
| 7.75                            | 0.343                                     |  |
| 6.50                            | 0.111                                     |  |
| 6.58                            | 0.062                                     |  |
| 7.78                            | 0.173                                     |  |

Table 1.6.15Weighted and Criteria Weights

In order to determine if any bias was found to be in the calculations, the consistency check was conducted. It was noted that the consistency ratio was calculated to be 0.249 which was nearly 2.5 times as high as the 0.10 value that is to be expected for an unbiased numerical analysis of the criteria. This is notable as there was an emphasis on durability, reliability and material cost as can be seen in the pairwise matrix table.

#### **Final Selection**

After thoroughly analyzing all the major concepts with the binary comparison chart, House of Quality and the Analytical Hierarchy Chart, the best concepts were identified in each major subsystem. Not only did these concepts receive high rankings during analysis, but they were also evaluated by the team using considerations on the timeline, construction, and cost of components. The combination of these systems will give us a base concept for the entire rover. The final overall combined concept consists of rack and pinion steering, the frame from the previous year, a double wishbone suspension construction in the front and no rear suspension. The wheels will be made of a high-density rigid polymer foam. The powertrain will be chain

Team 509

49



driven with a single fixed gear on the rear driveshaft. It will utilize a dual clutch at the pedals and will be rear wheel drive only. This design concept is depicted in the figures below.

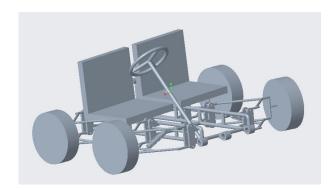



Figure 1.6.1 Concept Selection Rover



Figure 1.6.2 Dual disk brake, solid rear axle driveshaft.

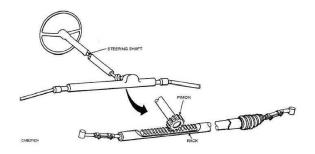



Figure 1.6.3 Rack and Pinion Steering Diagram (Integrated Publishing) Team 509

50



# 1.8 Spring Project Plan

- 1/31/21 Begin sending purchase orders for parts
- 1/31/21 Begin sending purchase orders for parts
- 1/31/21 Begin sending purchase orders for parts
- 2/11/21 Submit media release forms, student data information and team photos
- 3/01/21 Finalize CAD prototype
- 3/10/21 Submit Operational Readiness Report (ORR)
- 3/13/21- Youth Outreach Engagement
- 3/25/21 Machine and assemble parts as they come in
- 4/01/21 Begin testing and validation of assembled subsystems
- 4/04/21 Finalize all obstacles for use in final video
- 4/05/21 Begin filming of final videos
- 4/07/21 Complete and submit final videos

## Project Plan.

Build Plan.

Formatted: Indent: Left: 0"

- Formatted: Indent: First line: 0"
- Formatted: Indent: Left: 0"
- Formatted: Indent: First line: 0"

51



#### Chapter Two: EML 4552C

## 2.1 Restated Project Definition and Scope

NASA hosts an annual competition for students to design a vehicle that is operated solely on the power generated by its user(s). The objective of the project is to design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition. The vehicle will be designed to safely traverse and tolerate the concentrated forces of asteroid debris, boulders, erosion ruts, and crevices. In competition, the vehicle will be operated by one male and one female participant. The competition awards points for weight classes, time of finish, and completed mini missions. This encourages rover designs to be made lightweight, efficient, and easy to operate,

#### 2.2 Results

The rover ended up being fully assembled with all five subsystems being developed. The frame had a lower ground clearance than expected due to the suspension not being as stiff as calculated. The imposed angle of the suspension struts (~26° to the horizontal) resulted in them not supporting the distributed weight effectively, resulting in a ground clearance of 13.5" rather than 16".

The wheels ended up being more expensive to fabricated due to the volumetric expansion ratio being smaller than advertised. This could have been due to many factors such as weather conditions, age of liquid foam, etc. The resultant price of fabricating four wheels ended up being \$256.58 instead of \$51.10.

Team 509

Formatted: Font: Font color: Text 1

52



Design modifications to the steering and drivetrain had to be made last-minute due to small dimensioning errors in the CAD model. These dimensioning errors along with practicality led to cable steering instead of dual-tiller steering.

#### 2.3 Discussion

Many of our teams' problems could have been avoided with more research. Specifically referring to the wheel fabrication and steering implementation. The foam for the wheels failing to expand to the expected volume was heavily influenced by the conditions in which the foam is poured. Research should have been done for maximizing the expansion of the foam, as well as ideal conditions for pouring the foam.

In regards to the steering, the originally selected dual-tiller steering could not function with our current rover frame and axle setup. Justin Pogge in the machine shop gave guidance for this, as he is very experienced in human powered vehicles. A cable steering with two tie-rods attached to each wheel was used instead.

#### 2.4 Conclusion

This senior design project was considered a success by every group member. The valuable lessons we learned about subject research, team dynamics/communication, and precise CAD dimensioning will all be applicable in our future endeavors. We are all proud of the entire finished product, as well as our individual subsystems. We hoped to have finished the assembly and validation at an earlier date, but we are looking forward and have learned from our mistakes.

Team 509



## **2.5 Future Work**

Further testing and validation would be required for the rover to safely compete in a NASA hosted competition. While the rover is currently assembled and can be driven over flat ground safely, it has not been field tested. Inclines, declines, and low-friction terrain would have to be traversed over safely before deeming the rover fit for competition. Also, the fasteners and welds would be double-checked. Many of the fasteners differ in size and threading. The team would further ensure that all of the fasteners are uniform and the tac-welds are strong.

## **References**

Bike Forums. (2006, July 11). Maximum Human Torque. BikeForums.net. Retrieved from https://www.bikeforums.net/general-cycling-discussion/210283-maximum-humantorque.html#:~:text=Torque%20is%20force%20times%20radius,much%20lower%2C%2 Osomething%20about%2050NM

Ellington, S. (1995, February 14). Bicycle Gearing for Wisconsin Hills. Retrieved from http://sdellington.us/gearing/gearing.html

Gardner, A. S., Martin, J. C., Martin, D. T., Barras, M., & Jenkins, D. G. (2007, October 10). Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. PubMed.gov. doi:10.1007/s00421-007-0498-4

Grainger. (2020). Trash Pickers & Grabbers. W.W. Grainger. Retrieved November 4, 2020, from https://www.grainger.com/category/cleaning-and-janitorial/waste-recycling-trashsupplies/trash-pickers-grabbers

Team 509



Integrated Publishing. (n.d.). Rack-and-pinion steering gear. Construction Mechanics Basic

Volume 2. Retrieved November 5, 2020, from

http://constructionmanuals.tpub.com/14273/css/Rack-and-Pinion-312.htm

Late Model Restoration. (2020). 3-POINT RETRACTABLE SEAT BELT - UNIVERSAL. Late

Model Restoration. Retrieved November 5, 2020, from https://lmr.com/item/LRS-

B4051000/3-point-retractable-seat-belt

 $\underline{Maxpeedingrods.} \ (n.d.). \ For \ 110cc \ Go \ Kart \ Steering \ Wheel \ Quad \ Parts \ W/ \ Steel \ Gear \ Rack$ 

Pinion. Retrieved from https://www.maxpeedingrods.com/product/fit-110cc-go-kartsteering-wheel-quad-parts-w-steel-gear-rack-pinion.html

McConomy, S. (2020, September 16). Senior Design Professor; Project Sponsor; Project Advisor;. (A. Schlar, R. Floyd, N. Sanchez, & N. Picard, Interviewers)

McConomy, S. (2020, September 22). Senior Design Professor; Project Sponsor; Project

Advisor;. (R. Floyd, & A. Schlar, Interviewers)

Menon, A. (2017, July 4). What is the method to calculate turning radius if only the steering ratio

and vehicle's basic dimensions are known? Retrieved October 29, 2020, from

https://www.quora.com/What-is-the-method-to-calculate-turning-radius-if-only-the-

steering-ratio-and-vehicles-basic-dimensions-are-

known#:~:text=Tan%20(a)%20%3Dwheelbase%2Fturning%20radius.&text=Steering%2 ORatio%20is%20just%20a,steering%20ration%20is%2030%

National Aeronautics and Space Administration (NASA). (2020, August). National Aeronautics and Space Administration Human Exploration Rover Challenge 2021 Guidebook. 1, 48.

Team 509



National Aeronautics and Space Administration. Retrieved September 19, 2020, from

https://www.nasa.gov/stem/roverchallenge/guidebook/index.html

Quadratec. (2020). Seatbelt Solutions 2 Point Non-Retractable Lap Belt with Push-Button

Buckle. Quadratec. Retrieved November 5, 2020, from

https://www.quadratec.com/products/24247\_20X\_PG.htm

Tire Friction and Rolling Resistance Coefficients Calculator. (n.d.). HPWizard.com. Retrieved

from http://hpwizard.com/tire-friction-coefficient.html

Xbits. (2020). MTB Tire Comparison. BicycleRollingResistance.com.

doi:https://www.bicyclerollingresistance.com/mtb-reviews/compare

2.1 Spring Plan

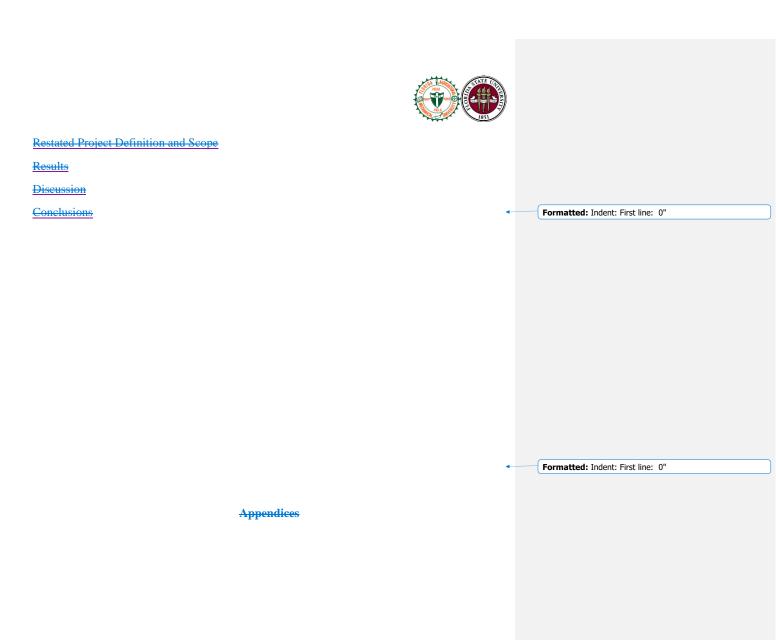
Team 509

56



## Restated Project Definition and Scope

<del>parts</del>


Project Plan.

Build Plan.

- Formatted: No Spacing, Line spacing: Double, Tab stops: 4.43", Left
- Formatted: Indent: Left: 0"
- Formatted: Indent: First line: 0"
- Formatted: Indent: Left: 0"

Team 509

57



Team 509





## Appendix A: Code of Conduct

#### **Mission statement**

Team 509 is committed to being thorough with every idea and action implemented to deliver products of the highest practicality and functionality.

#### **Team Roles**

Ryan Floyd - Project Engineer/Materials Engineer/Webmaster

• Responsible for overall project progress, submitting all documents, project logistics, material selection, wheel fabrication, website production.

### Nicolas Picard - Design Engineer

• Responsible for CAD modeling of competition tools, assisting other teammates in designing their respective subsystem, static & dynamic force calculations.

Ninett Sanchez - Design Engineer/Point of Contact

• Responsible for communication between the team, advisor and sponsor, CAD modeling, static & dynamic force calculations for steering system, presentation logistics

Andrew Schlar - Project/Design Engineer/Team Leader

• Responsible for drivetrain CAD modeling, model video rendering, assisting with website development and static & dynamic force calculations.

Team 509



 Responsible for assigning additional duties to teammates, keeping attendance, and establishing contact with Dr. McConomy and NASA Human Exploration Rover Challenge (HERC) staff.

#### **Methods of Communication**

GroupMe will be primary form of communication for logistics between team members. School emails will be used for sending and receiving formal documents. Additionally, school emails will be used to communicate between the team, the project advisor and sponsor. Basecamp will be used for task assignment, record keeping and finalized file storage. Response time for emails, texts, and group chat messages must be within 12 hours or less during weekdays, and 24 hours or less on weekends. Weekly mandatory meetings will be conducted via scheduled Zoom sessions on Fridays at 9:00 A.M. – 10:00 A.M.

#### **Dress Code**

A dress code will be applied for all events and gatherings. Group members must always be dressed presentable and color coordinated. Group members are expected to be dressed accordingly:

- Team Meetings Casual attire
- Meetings with Sponsor/Advisor Business casual incorporating dark colors
- Presentations Business professional attire (suit and tie) incorporating NASA colors

Team 509



#### **Attendance Policy**

All team members must attend the mandatory virtual meetings every Friday at 9:00 A.M. to 10:00 AM. Weekly meetings with the group advisor, Shayne McConomy, will be held at a time to be determined. Participation on project work and submissions will also be recorded, this is to ensure that assignments are completed timely. Attendance will be kept in an Excel spreadsheet and updated immediately after meetings by the team lead. Absences from meetings will be recorded with explanations as to why the team member was not present. If a team member cannot make a meeting due to a scheduled conference, doctor's appointment, or general event, they must notify the team so that it may be recorded and accounted for. Should a teammate not attend meetings with repeating frequency and no explanation is given, Dr. McConomy will be notified to seek remediation.

#### **Submission Policy**

All work will be submitted by the designated project engineer, Ryan Floyd, and a verification email will be sent to the rest of the team. All assignments will be reviewed by the assignment submitter to ensure all the assignment criteria has been met. Should the designated project engineer not be able to submit the work files, this will immediately be relayed to the team to ensure the assignment is turned in on time. The assigned backup for submissions is the team lead, who will email to all team members that the assignment has been turned in. All team assignments will be submitted 36 hours before the deadline to avoid possible technical problems close to the final deadline.

Team 509



## **Conflict Resolution**

Should conflict arise during the project, a formal write-up will be made to allow the parties to express their concern and to allow for this to be documented. The conflict resolution policy will apply to all conflicts, including, but not limited to attendance, submissions, project disputes and errors in design. An attempt to de-escalate conflict within the team will first be attempted, all group members will then present their grievances and discuss openly what problems they have encountered. If de-escalation does not solve the disagreement between members, mediation will be sought after via project advisor Shayne McConomy. In cases of disagreement on project decisions where there is not a majority vote, mediation will occur via project advisor.

#### **Ethics Policy**

All team members agree to comply with local and state laws, rules, and regulations in relation to any aspect of the project. Work must be conducted honestly and by the team, if outside help is used, they must be credited properly for their contribution to the project.

#### Workload Policy

All members of the team are responsible for their assigned portion of the workload, should there be any issues with completing an assignment or part of a task, other members must be notified immediately to ensure that the assignment is completed. If a team member is not contributing to the project, the team may refer to the conflict resolution guidelines to correct the workload imbalance.

Team 509

63



## **Code of Conduct Amendments**

The Code of Conduct rules are to be applied to all members of Senior Design Team 509, however, should some extenuating circumstances occur, the rules may be modified to reflect the new state of the situation. The ratification of any further amendments to the Code of Conduct must be passed by a majority of the vote. All team members must be present to cast their vote and present their arguments for, or against the addition or change. If a deadlock tie is reached during the amendment of the Code of Conduct, resolution may be sought through the appropriate mediation channels. Code of Conduct rules is in effect during the duration of the project, starting in September of 2020 to May of 2021. All amendments made will be in effect as of the ratification date passed by the team members. A section of the amendments will be created and labeled as such on any further revisions of the Code of Conduct document. All changes must be documented, and original versions of documents will be kept for comparison and verification.

#### **Statement of Understanding:**

By your signature below, you agree to comply with the team's Code of Conduct guidelines:

| Print Name: | Andrew Schlar  |    |
|-------------|----------------|----|
| Signature:  | Andrew Schlar  |    |
| Print Name: | Ninett Sanchez |    |
| Signature:  | nint           |    |
| Print Name: | Ryan Floyd     |    |
| Signature:  | Bank           |    |
| Print Name: | Nicolas Picard | _  |
| Signature:  | Nico Vicand    |    |
| Team        | 509            | 64 |



## **Appendix B: Functional Decomposition**

Team 509

65



## **Appendix C: Target Catalog**

# Table 5 Total Targets and Metrics Table

| Function                      | Target                         | Metric                    |
|-------------------------------|--------------------------------|---------------------------|
| Provides Designated Storage*  | 6 tools, 1 core sample, 3      | Number of tools           |
|                               | images, 1 liquid sample, 1     | Number of samples         |
|                               | dry sample                     |                           |
| Secures Tools to Vehicle      | 6 tools                        | Number of tools           |
|                               |                                |                           |
| Collapses into Smaller Volume | 5 ft, 5 ft, 5ft                | Length, Width, Height     |
|                               | 125 ft <sup>3</sup>            | Volume                    |
|                               |                                |                           |
| Translate Steering Input to   | 1:1                            | Steering Gear Ratio       |
| Output                        | 20 degrees                     | Max Turning Angle         |
|                               |                                |                           |
| Maintain Friction with        | (RRC) ≤ 0.005                  | Friction Coefficient (FC) |
| Terrain                       |                                | Rolling Resistance        |
|                               | $FC \ge 0.75$                  | Coefficient (RRC)         |
| Translate User Input          | Stopping Distance $\leq 2.5$ m | Distance                  |
|                               | (10 mph to stop)               |                           |
| Translate User Work           | 100 N-m                        | Torque                    |
|                               | (Gear Ratio Range)             |                           |

Team 509



| 1                             |                           |                        |
|-------------------------------|---------------------------|------------------------|
|                               | Pinion 16-24 teeth        | Gear Ratio             |
|                               | Cassette 32-42 teeth      |                        |
|                               | Casselle 52-42 leeth      |                        |
| Absorb Impact                 | $\leq$ 7 inches           | Suspension compression |
| -                             |                           | * *                    |
| Dampen Vibrations             | 100% approval             | Rider approval         |
|                               |                           |                        |
|                               |                           |                        |
| Maintain Structural Integrity | 2.0                       | Factor of safety       |
|                               |                           |                        |
| Secure Operators              | 100% approval             | Rider approval         |
|                               |                           |                        |
| Ground Clearance              | 12 inches                 | Height                 |
| (with riders onboard)         | 30-degrees                | Degrees                |
| (with fluers onboard)         | 50-degrees                | Degrees                |
|                               | departure/approach angles |                        |
|                               |                           |                        |
| Track Width                   | $\leq$ 5 ft               | Length                 |
| Wheelbase                     | < 5 ft                    | Length                 |
| wheelbase                     | $\geq 5 \text{ ft}$       | Length                 |
| Turning Radius                | ≤ 15 ft                   | Radius Length          |
|                               |                           |                        |
| Top Speed                     | 15 mph                    | Velocity               |
|                               |                           |                        |

\*The tools have not been made yet; the exact amount of storage space cannot be

known right now.



## **Appendix D: Figures and Tables**

Dr. McConomy Customer Statements and Interpretations

# Table 6: Dr. McConomy Customer Statements and Interpretations

| Question                       | Customer Statement             | Interpreted Customer Need       |
|--------------------------------|--------------------------------|---------------------------------|
| What are your expectations     | "Would like to see the project | The project will be fully       |
| for the project aside from the | finished, actively             | completed to ensure the         |
| competition's expectations?    | participating in the           | team's participation in the     |
|                                | competition. Ideally the team  | competition.                    |
|                                | would have the design finish   |                                 |
|                                | in the events we compete in."  |                                 |
| Would you like us to focus on  | "Would like to see placement   | Systems integration will be     |
| specific design areas with an  | within CAD for the design      | utilized in the design process. |
| emphasis on funds correlated   | and everything must be         |                                 |
| to them?                       | designed simultaneously."      |                                 |
| What areas of the past design  | "Steering and powertrain are   | A high priority will be placed  |
| do you think need the most     | always the part that gets      | on designing the steering and   |
| improvement?                   | overlooked, build always gets  | the powertrain of the vehicle.  |
|                                | main focus, DO the             |                                 |
|                                | engineering first."            |                                 |
|                                |                                |                                 |
|                                |                                |                                 |

Team 509



| Are there any safety, or   | "None outside the rules, just | The competition guidelines    |
|----------------------------|-------------------------------|-------------------------------|
| security concerns that you | general rules for             | will be followed. The vehicle |
| have for the               | manufacturing and build. Do   | will be designed according to |
| project/competition?       | not dimension for exact       | specification requirements.   |
|                            | guidelines."                  |                               |
|                            |                               |                               |
|                            |                               |                               |



# Appendix E.1: Concept Generation

# Table 7 Generated Concepts

| Concept Generation  | Concept Number & Description                                          |  |
|---------------------|-----------------------------------------------------------------------|--|
| Tool                |                                                                       |  |
|                     | Drivetrain Components                                                 |  |
| Brainstorming       | 1. Direct drive – Drive pedals are directly attached to the solid     |  |
|                     | driveshaft and no mechanical advantage is applied.                    |  |
| Morphological Chart | 2. Chain drive, single gear ratio, single clutch – Single gear speed  |  |
|                     | on the drivetrain, the pedals can drive in both directions and both   |  |
|                     | pedal sets move in unison.                                            |  |
| Morphological Chart | 3. Chain drive, multi gear ratio single clutch – Multi gear speeds on |  |
|                     | the drivetrain, the pedals can drive in both directions and both      |  |
|                     | pedal sets move in unison.                                            |  |
| Morphological Chart | 4. Disk brakes (Medium Fidelity) – A combination of disk brakes       |  |
|                     | mounted either on the drive axle or on the wheels directly to         |  |
|                     | allow for faster braking speeds.                                      |  |
| Morphological Chart | 5. Caliper brakes – A mounted set of caliper brakes on either the     |  |
|                     | drive axle or on the wheels directly, this allows for self-           |  |
|                     | adjustment when braking.                                              |  |
| Morphological Chart | 6. Cantilever brakes – Mounted set of brakes that allows the wheels   |  |
|                     | to be clamped from either end, uses friction with the rim for         |  |
|                     | braking.                                                              |  |
| Morphological Chart | 7. Chain-free driveshaft, single gear ratio, single clutch – Using    |  |
|                     | solid gears, and combination shafts to transfer power directly to     |  |
|                     | the wheels. The system would use a rear wheel drive, solid axle       |  |
|                     | combination to transfer power to the wheels.                          |  |

Team 509



| i                   |                                                                      |
|---------------------|----------------------------------------------------------------------|
| Morphological Chart | 8. V-brakes (all wheels) – Braking system applied to all the wheels, |
|                     | used with a combination of standard rimmed, non-pneumatic            |
|                     | bike wheels.                                                         |
| Morphological Chart | 9. Coaster brakes – Braking system that is used with a single gear   |
|                     | drive, allows for forward pedaling of the gearing, does not allow    |
|                     | for reversing of the vehicle. When the pedal is reversed, the        |
|                     | vehicle locks into position, allows for the rider to leave the       |
|                     | vehicle stationary.                                                  |
| Morphological Chart | 10. Chain-free driveshaft, multi gear ratio, single clutch - Using   |
|                     | solid gears, and combination shafts to transfer power directly to    |
|                     | the wheels. The system would use a rear wheel drive, solid axle      |
|                     | combination to transfer power to the wheels. This system would       |
|                     | allow the operators to change the mechanical advantage on the        |
|                     | fly                                                                  |
| Morphological Chart | 11. Chain drive, single gear ratio, dual clutch - System used in     |
|                     | conjunction with a solid rear axle, rear wheel drive system.         |
|                     | Allows one user to pedal while the other can rest, has additive      |
|                     | input. Does not allow for back pedaling from either user.            |
| Morphological Chart | 12. Front wheel brakes only - Brakes positioned only on the front    |
|                     | wheels of the vehicle, can be used in conjunction with all four      |
|                     | wheeled combinations and three wheeled combinations.                 |
| Morphological Chart | 13. Rear wheel brakes only – Brakes positioned on the rear wheels    |
|                     | or axle, can be used in conjunction with all four wheeled and        |
|                     | three wheeled combinations.                                          |
| Morphological Chart | 14. Split single front-rear brake system – Brake set positioned one  |
|                     | on the front end and one on the rear end of the vehicle, can work    |
|                     | well in conjunction with a split front axle and solid rear axle.     |



| Morphological Chart | 15. All wheel braking system – Brake set positioned on all wheels,      |
|---------------------|-------------------------------------------------------------------------|
|                     | can be a combination of disk brakes, caliper brakes, and set on         |
|                     | solid or split axles, front, rear and all-wheel drive combinations.     |
| Morphological Chart | 16. Dual disk brakes on solid rear axle (High Fidelity) – Used in       |
|                     | combination with a solid rear axle, disk brakes placed on both          |
|                     | sides of the single speed gear. Mechanism is similar to the             |
|                     | braking system used on high speed and off-road go-karts.                |
| Morphological Chart | 17. Rear axle differential – System incorporates a differential gear to |
|                     | allow power distribution to the rear wheels to be split. Used in        |
|                     | conjunction with individual brakes on each of the drive wheels          |
|                     | in case one of the wheels is slipping.                                  |
| Morphological Chart | 18. Front wheel drivetrain – Drivetrain composed of the front wheel     |
|                     | system driving the rover, to be used in conjunction with                |
|                     | independent front-end suspension systems.                               |
| Morphological Chart | 19. Rear wheel drivetrain – Drivetrain composed of the rear wheel       |
|                     | system driving the rover, can use differential, solid rear axle,        |
|                     | split axle, and independent suspension.                                 |
| Morphological Chart | 20. All wheel drivetrain – Drivetrain composes of all the wheels        |
|                     | driving the vehicle, highly complex system but allows for even          |
|                     | distribution of power.                                                  |
|                     | Frame/Wheels/Suspension/Seating Components                              |
| Morphological Chart | 21. Side-by-side forward faced seating (High Fidelity) – Riders will    |
|                     | sit side by side with the pedaling system positioned in front of        |
|                     | them. The seating arrangement can accommodate front wheel               |
|                     | drive, rear wheel drive and all-wheel drive arrangements.               |
| Morphological Chart | 22. Side-by-side seating with one front facing and one rear facing $-$  |
|                     | Riders would sit back to back in the rover, allowing for more leg       |
|                     | motion in the pedaling for the drivetrain.                              |
| L                   |                                                                         |



| Image: Constraint of the second state of the secon |                     |                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|
| steering of the vehicle while the rear rider has access to<br>additional controls and tools.Crapshoot24. Diagonal seating arrangementBrainstorming25. Wooden wheelsBrainstorming26. High density rigid polymer foam wheels (High Fidelity)Brainstorming27. Solid cork wheelsBrainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Morphological Chart | 23. Forward facing inline seating – Riders would sit forward facing |
| additional controls and tools.Crapshoot24. Diagonal seating arrangementBrainstorming25. Wooden wheelsBrainstorming26. High density rigid polymer foam wheels (High Fidelity)Brainstorming27. Solid cork wheelsBrainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | and have a more compact footprint. Front rider would control the    |
| Crapshoot24. Diagonal seating arrangementBrainstorming25. Wooden wheelsBrainstorming26. High density rigid polymer foam wheels (High Fidelity)Brainstorming27. Solid cork wheelsBrainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | steering of the vehicle while the rear rider has access to          |
| Brainstorming25. Wooden wheelsBrainstorming26. High density rigid polymer foam wheels (High Fidelity)Brainstorming27. Solid cork wheelsBrainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | additional controls and tools.                                      |
| Brainstorming26. High density rigid polymer foam wheels (High Fidelity)Brainstorming27. Solid cork wheelsBrainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Crapshoot           | 24. Diagonal seating arrangement                                    |
| Brainstorming27. Solid cork wheelsBrainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brainstorming       | 25. Wooden wheels                                                   |
| Brainstorming28. Continuous fiber reinforced thermoplastic (CFRP) wheelsBrainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Brainstorming       | 26. High density rigid polymer foam wheels (High Fidelity)          |
| Brainstorming29. Re-use tubing frame from previous semester's team – Recycling<br>the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brainstorming       | 27. Solid cork wheels                                               |
| &the previous team's frame for the sake of time, money, effort,<br>and resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Brainstorming       | 28. Continuous fiber reinforced thermoplastic (CFRP) wheels         |
| Morphological Chartand resources. Modifications will have to be made for it to work<br>as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Brainstorming       | 29. Re-use tubing frame from previous semester's team – Recycling   |
| as it is based off a double wishbone front steering system.Brainstorming30. Frame with folding joint at center – Frame system will have a<br>split joint to allow the length of the frame to be shortened to<br>meet competition criteria.Brainstorming31. Segmented frame – Frame system would implement separate<br>components in the frame to allow them to detach and store in a<br>smaller volume.Crapshoot32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | &                   | the previous team's frame for the sake of time, money, effort,      |
| Brainstorming       30. Frame with folding joint at center – Frame system will have a split joint to allow the length of the frame to be shortened to meet competition criteria.         Brainstorming       31. Segmented frame – Frame system would implement separate components in the frame to allow them to detach and store in a smaller volume.         Crapshoot       32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Morphological Chart | and resources. Modifications will have to be made for it to work    |
| split joint to allow the length of the frame to be shortened to meet competition criteria.         Brainstorming       31. Segmented frame – Frame system would implement separate components in the frame to allow them to detach and store in a smaller volume.         Crapshoot       32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | as it is based off a double wishbone front steering system.         |
| meet competition criteria.         Brainstorming       31. Segmented frame – Frame system would implement separate components in the frame to allow them to detach and store in a smaller volume.         Crapshoot       32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brainstorming       | 30. Frame with folding joint at center – Frame system will have a   |
| Brainstorming       31. Segmented frame – Frame system would implement separate components in the frame to allow them to detach and store in a smaller volume.         Crapshoot       32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | split joint to allow the length of the frame to be shortened to     |
| Crapshoot     32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | meet competition criteria.                                          |
| Smaller volume.       Crapshoot       32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brainstorming       | 31. Segmented frame – Frame system would implement separate         |
| Crapshoot 32. Triangle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | components in the frame to allow them to detach and store in a      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | smaller volume.                                                     |
| Crapshoot 33. Diamond frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Crapshoot           | 32. Triangle frame.                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crapshoot           | 33. Diamond frame.                                                  |
| <b>Brainstorming</b> 34. Composite materials frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Brainstorming       | 34. Composite materials frame.                                      |
| Crapshoot 35. Wooden construction frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crapshoot           | 35. Wooden construction frame.                                      |
| Crapshoot         36. Dovetail construction wooden frame connections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Crapshoot           | 36. Dovetail construction wooden frame connections.                 |
| <b>Brainstorming</b> 37. Tri-wheel design; one front wheel and two in the rear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brainstorming       | 37. Tri-wheel design; one front wheel and two in the rear.          |
| <b>Brainstorming</b> 38. Tri-wheel design; two front wheels and one rear wheel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brainstorming       | 38. Tri-wheel design; two front wheels and one rear wheel.          |
| <b>Brainstorming</b> 39. Four wheeled design; wheel at each corner of the vehicle frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Brainstorming       | 39. Four wheeled design; wheel at each corner of the vehicle frame. |



| ·                   |                                                                      |
|---------------------|----------------------------------------------------------------------|
| Brainstorming       | 40. Ellipse shaped wheel construction – Unique wheel design using    |
|                     | an elliptical offset shape, could be useful for uneven terrain.      |
| Morphological Chart | 41. Suspension built into wheel hubs - Combining the suspension      |
|                     | into the wheel hub of the vehicle, could allow for multiple          |
|                     | suspension systems to be used in conjunction.                        |
| Brainstorming       | 42. Individual bike seats for riders.                                |
| Brainstorming       | 43. Single dual rider detachable bench seat - One bench seat         |
|                     | positioned on the frame so that it can detach for storage and        |
|                     | transportation.                                                      |
| Brainstorming       | 44. Laterally adjustable seating                                     |
| Brainstorming       | 45. Vertically adjustable seating                                    |
| Brainstorming       | 46. Long wheelbase steel tubing frame – Lengthened wheelbase         |
|                     | within the competition limits, allows for more room within for       |
|                     | the riders to sit in.                                                |
| Brainstorming       | 47. Short wheelbase steel tubing frame – Shortened wheelbase,        |
|                     | some of the materials may hang out over the frame, would stay        |
|                     | well within competition length restriction.                          |
| Morphological Chart | 48. Front double wishbone suspension with solid rear axle (High      |
|                     | Fidelity) - Suspension system would have independent                 |
|                     | suspension on the front end, no suspension on the rear but a stiff   |
|                     | rear axle.                                                           |
| Brainstorming       | 49. Single beam frame.                                               |
| Brainstorming       | 50. Bike pedals in front of and level with operators.                |
| Brainstorming       | 51. Bike pedals in front of and below operators.                     |
| Brainstorming       | 52. Clip in bike pedals – Pedals lock into position with the rider's |
|                     | shoes so they do not slip.                                           |
| Brainstorming       | 53. Standard bike pedals.                                            |
| Brainstorming       | 54. Upright seating positioning for riders.                          |
| Team 509            | 74                                                                   |



| Brainstorming       | 55. Reclined seating position for riders.                           |
|---------------------|---------------------------------------------------------------------|
| Brainstorming       | 56. Bottom only seats (no backrest).                                |
| Brainstorming       | 57. Swivel bolted seats.                                            |
| Brainstorming       | 58. Five-point harness with racing seat.                            |
| Brainstorming       | 59. Three-point harness seatbelt (Medium Fidelity) – Using a three- |
|                     | point seatbelt in conjunction with a type of seating that includes  |
|                     | a backrest.                                                         |
| Brainstorming       | 60. Lap only seatbelt restraint.                                    |
| Brainstorming       | 61. Go-kart plastic bucket seats.                                   |
| Brainstorming       | 62. Leading arm front suspension.                                   |
| Brainstorming       | 63. Trailing arm rear suspension.                                   |
| Brainstorming       | 64. Swing axle front suspension.                                    |
| Morphological Chart | 65. Double wishbone front suspension (High Fidelity) – Suspension   |
|                     | system using a double wishbone setup for the front end. This is     |
|                     | currently on last year's frame and incorporates a rack and pinion   |
|                     | steering component.                                                 |
| Brainstorming       | 66. Double wishbone all wheel independent suspension.               |
| Brainstorming       | 67. MacPherson strut front end suspension.                          |
| Brainstorming       | 68. No suspension rigid frame.                                      |
| Morphological Chart | 69. Leaf spring all wheel suspension, solid rear axle - Conjunction |
|                     | of leaf springs akin to Amish wagons, using a solid rear axle for   |
|                     | the drivetrain.                                                     |
| Brainstorming       | 70. Connected leading and trailing arms suspension                  |
|                     | Steering                                                            |
| Brainstorming       | 71. Dual tiller steering                                            |
|                     |                                                                     |



| Morphological Chart            | 72. Single rack and pinion steering with steering wheel mechanism                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | (Medium Fidelity) – A combination of rack and pinion steering                                                                                      |
|                                | implementing the single tiller steering design for the users.                                                                                      |
| Brainstorming                  | 73. Handlebar direct steering mechanism.                                                                                                           |
| Brainstorming                  | 74. Pedal steering mechanism.                                                                                                                      |
| Brainstorming                  | 75. Dual rack and pinion steering with dual steering wheels.                                                                                       |
| Brainstorming                  | 76. Front wheel steering                                                                                                                           |
| Brainstorming                  | 77. Rear wheel steering.                                                                                                                           |
| Morphological Chart            | 78. All wheel crab walk steering – Front and rear steering                                                                                         |
|                                | mechanism to allow one driver to drive the front end and the                                                                                       |
|                                | other to drive the rear end. Used in conjunction with the all-                                                                                     |
|                                | wheel drive system.                                                                                                                                |
|                                |                                                                                                                                                    |
|                                | Storage and Tools                                                                                                                                  |
| Brainstorming                  | 79. Store tools underneath the rover seats in specialized toolbox                                                                                  |
| Brainstorming                  | 80. Store tools in designated toolbox between riders                                                                                               |
| Brainstorming                  | 81. Store tools in a rear mounted toolbox behind the seating                                                                                       |
|                                | arrangement                                                                                                                                        |
| Brainstorming                  | 82. Attach pegboard toolholder behind each rider seat                                                                                              |
| Brainstorming                  | 83. Design trunk storage in rear end of rover                                                                                                      |
| Brainstorming                  | 84. Design fronk (front trunk) to store tools directly in front of the                                                                             |
|                                | riders (Medium Fidelity)                                                                                                                           |
| Brainstorming                  | 85. Analog camera with light filter attachments                                                                                                    |
| Brainstorming                  | 86. Polaroid camera with mechanical filters                                                                                                        |
|                                |                                                                                                                                                    |
| Brainstorming                  | 87. Solar powered light indicator with on and off switch                                                                                           |
| Brainstorming<br>Brainstorming | <ul><li>87. Solar powered light indicator with on and off switch</li><li>88. Solar powered compass light with power indicator and on/off</li></ul> |



| Brainstorming | 89. Digital camera with mechanical light filters, uses mini film     |
|---------------|----------------------------------------------------------------------|
|               | printer for images                                                   |
| Brainstorming | 90. Handheld core sample retrieval tool, plunges into sample and     |
|               | clamps down around it                                                |
| Brainstorming | 91. Handheld core sample retrieval tool, plungers into sample and    |
|               | consists of an inner hollow tube for collection using sample         |
|               | friction                                                             |
| Brainstorming | 92. Solid soil sample scooping arm, shelf grabber design,            |
|               | compresses and closes a scoop arm, paired with sample storage        |
|               | container                                                            |
| Brainstorming | 93. Solid soil sample collection arm, individual containers attached |
|               | with quick release mechanism                                         |
| Brainstorming | 94. Liquid sample collection arm, individual pre-loaded containers   |
|               | attached at the end of an extendable pole                            |
| Brainstorming | 95. Liquid sample scooping arm to pour samples into individualized   |
|               | containers                                                           |
| Brainstorming | 96. 100% 3D printed detachable scooping arms to allow for multiple   |
|               | samples and prevent cross-contamination. Multiple sized scoops       |
|               | available, scoops function as storage devices for samples when       |
|               | detached.                                                            |
| Brainstorming | 97. Combination liquid and solid sample retrieval arm, multiple      |
|               | detachable sample containers to allow for varied sample sizes        |
|               | and ease of transportation                                           |
| Brainstorming | 98. Reusable 3D printed liquid sample retrieval arm                  |
| Brainstorming | 99. Single use 3D printed solid sample retrieval arm; end collector  |
|               | detaches for the storage of sample                                   |
| Brainstorming | 100.3D printed, solar powered LED light with on and off              |
|               | switch, compact shell design                                         |
|               |                                                                      |



| Brainstorming | 101. Handheld vacuum to system to pick up particles            |  |
|---------------|----------------------------------------------------------------|--|
| Brainstorming | 102. "Sticky" gloves that will collect particles by having     |  |
|               | everything stick to them                                       |  |
| Brainstorming | 103.Siphon to suck out liquid core samples                     |  |
| Brainstorming | 104. Adjustable nozzle diameter to extract liquid core samples |  |



# Appendix E.2: Concept Selection Data Tables

# Table 1.6.16Powertrain Material Cost Pairwise Matrix

|                                                   | 1. Direct<br>drive, FWD | 2. Chain<br>drive, single<br>gear, dual<br>clutch, RWD | 3. Chain drive,<br>single gear,<br>dual clutch,<br>RWD | 4. Chain<br>drive, multi<br>gear, single<br>clutch,<br>RWD |
|---------------------------------------------------|-------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| 1. Direct drive, FWD                              | 1                       | 0.33                                                   | 0.33                                                   | 0.2                                                        |
| 2. Chain drive, single gear, single clutch, RWD   | 3                       | 1                                                      | 0.33                                                   | 0.2                                                        |
| 3. Chain drive, single gear, dual clutch, RWD     | 3                       | 3                                                      | 1                                                      | 0.33                                                       |
| 4. Chain drive, multi<br>gear, single clutch, RWD | 5                       | 5                                                      | 3                                                      | 1                                                          |
| Sum                                               | 12                      | 9.33                                                   | 4.67                                                   | 1.73                                                       |

## Table 1.6.17

Powertrain Material Cost Normalized Pairwise Matrix

|                                                       | 1. Direct<br>drive, FWD | 2. Chain<br>drive,<br>single<br>gear, dual<br>clutch,<br>RWD | 3. Chain drive,<br>single gear, dual<br>clutch, RWD | 4. Chain<br>drive, multi<br>gear, single<br>clutch, RWD |
|-------------------------------------------------------|-------------------------|--------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| 1. Direct drive,<br>FWD                               | 0.083                   | 0.036                                                        | 0.071                                               | 0.115                                                   |
| 2. Chain drive,<br>single gear, single<br>clutch, RWD | 0.250                   | 0.107                                                        | 0.071                                               | 0.115                                                   |
| 3. Chain drive,<br>single gear, dual<br>clutch, RWD   | 0.250                   | 0.321                                                        | 0.214                                               | 0.192                                                   |
| 4. Chain drive,<br>multi gear, single<br>clutch, RWD  | 0.417                   | 0.536                                                        | 0.643                                               | 0.577                                                   |
| Sum                                                   | 1                       | 1                                                            | 1                                                   | 1                                                       |

Team 509



# Table 1.6.18

Powertrain Material Cost Weighted and Criteria Weights

| Consistency<br>Vector | Criteria<br>Weights {W} | Consistency<br>Ratio |
|-----------------------|-------------------------|----------------------|
| 4.08                  | 0.076                   | 0.076                |
| 4.08                  | 0.136                   |                      |
| 4.35                  | 0.245                   |                      |
| 4.31                  | 0.543                   |                      |

# Table 1.6.19

Powertrain Manufacturing Cost Pairwise Matrix

|                                                   | 1. Direct<br>drive, FWD | 2. Chain<br>drive, single<br>gear, dual<br>clutch, RWD | 3. Chain drive,<br>single gear,<br>dual clutch,<br>RWD | 4. Chain<br>drive, multi<br>gear, single<br>clutch,<br>RWD |
|---------------------------------------------------|-------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| 1. Direct drive, FWD                              | 1                       | 0.33                                                   | 0.33                                                   | 0.2                                                        |
| 2. Chain drive, single gear, single clutch, RWD   | 3                       | 1                                                      | 0.33                                                   | 0.2                                                        |
| 3. Chain drive, single gear, dual clutch, RWD     | 3                       | 3                                                      | 1                                                      | 0.33                                                       |
| 4. Chain drive, multi<br>gear, single clutch, RWD | 5                       | 5                                                      | 3                                                      | 1                                                          |
| Sum                                               | 12                      | 9.33                                                   | 4.67                                                   | 1.73                                                       |

## Table 1.6.20

Powertrain Manufacturing Cost Normalized Pairwise Matrix

|                  | 1. Direct<br>drive, FWD | 2. Chain<br>drive,<br>single<br>gear, dual<br>clutch,<br>RWD | 3. Chain drive,<br>single gear, dual<br>clutch, RWD | 4. Chain<br>drive, multi<br>gear, single<br>clutch, RWD |
|------------------|-------------------------|--------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| 1. Direct drive, |                         |                                                              |                                                     |                                                         |
| FWD              | 0.083                   | 0.036                                                        | 0.071                                               | 0.115                                                   |

Team 509



| 2. Chain drive,<br>single gear, single<br>clutch, RWD | 0.250 | 0.107 | 0.071 | 0.115 |
|-------------------------------------------------------|-------|-------|-------|-------|
| 3. Chain drive,<br>single gear, dual<br>clutch, RWD   | 0.250 | 0.321 | 0.214 | 0.192 |
| 4. Chain drive,<br>multi gear, single<br>clutch, RWD  | 0.417 | 0.536 | 0.643 | 0.577 |
| Sum                                                   | 1     | 1     | 1     | 1     |

Table 1.6.21

Powertrain Manufacturing Cost Weighted and Criteria Weights

| Consistency<br>Vector | Criteria<br>Weights {W} | Consistency<br>Ratio |
|-----------------------|-------------------------|----------------------|
| 4.08                  | 0.076                   | 0.068                |
| 4.08                  | 0.136                   |                      |
| 4.35                  | 0.245                   |                      |
| 4.31                  | 0.543                   |                      |

Team 509

81



Formatted: Indent: First line: 0"

## Appendix A: APA Headings (delete)

Heading 1 is Centered, Boldface, Uppercase and Lowercase Heading

Heading 2 is Flush Left, Boldface, Uppercase and Lowercase Heading

Heading 3 is indented, boldface lowercase paragraph heading ending with a period.

Heading 4 is indented, boldface, italicized, lowercase paragraph heading ending with a

period.

Heading 5 is indented, italicized, lowercase paragraph heading ending with a period.

See publication manual of the American Psychological Association page 62

Team 509

82



| Table 8                                                                            | 4 | Formatted: Heading 1 | j. |
|------------------------------------------------------------------------------------|---|----------------------|----|
|                                                                                    |   |                      |    |
| The Word Table and the Table Number are Normal Font and Flush Left. The Caption is |   |                      |    |
|                                                                                    |   |                      |    |
| Flush Left, Italicized, Uppercase and Lowercase                                    |   |                      |    |

| Level of | Format                                                                    | - |               | Formatted: Heading 1       |
|----------|---------------------------------------------------------------------------|---|---------------|----------------------------|
| heading  |                                                                           |   |               |                            |
| 4        | Centered, Boldface, Uppercase and Lowercase Heading                       | - |               | Formatted: Heading 1       |
|          |                                                                           |   |               | Formatted: Heading 1, Left |
| 2        | Flush Left, Boldface, Uppercase and Lowercase                             | 4 |               | Formatted: Heading 1       |
|          |                                                                           |   |               | Formatted: Heading 1, None |
| 3        | Indented, boldface lowercase paragraph heading ending with a period       | - |               | Formatted: Heading 1       |
| 4        | Indented heldfore italicized lowercose nervous heading anding with a      |   |               | Formatted: Heading 1, None |
| 4        | Indented, boldface, italicized, lowercase paragraph heading ending with a | - | $\overline{}$ | Formatted: Heading 1       |
|          | <del>period.</del>                                                        |   |               | Formatted: Heading 1, None |
|          | berrow                                                                    |   |               |                            |
| 5        | Indented, italicized, lowercase paragraph heading ending with a period.   | • |               | Formatted: Heading 1       |
|          |                                                                           |   |               | Formatted: Heading 1, None |
|          | Appendix F: Human Powered Vehicle Operations Manual                       |   |               |                            |
| Team 50  | 09 8                                                                      | 3 |               |                            |



The objective of this manual is to detail the primary systems developed for the Senior Design Team 509 Nasa Human Powered Vehicle project for the fall 2020 to spring 2021 class. The objective of the project is to design and manufacture a human powered vehicle to traverse exoplanetary terrain in a NASA hosted competition.

Formatted: Font: (Default) Times New Roman, 12 pt

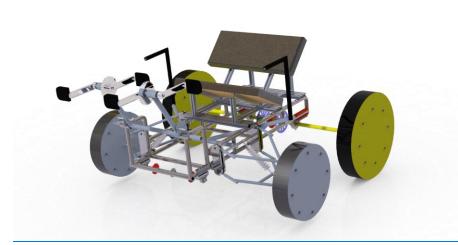



Figure 1: Overall view of Team 509 Human Powered Vehicle

**Component Overview** 

Discuss the primary systems and then the components that make up their systems.

Steering.

Team 509

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

2021



The dual tiller steering design incorporates a lever arm on each outer side of the rover, with a linkage arm connecting both to each of the wheels. The dual tiller style provides quick response time and low complexity. The estimated weight for the steering system is 15 lbs. The aluminum handlebars were recycled from a bike purchased a few years ago. Each handle has an L-shape which was machined from a BMX bike handlebar. The handlebars are directly attached to the kingpin axis by a stem via a bolted clamp. To provide elevation to the handles, spacers were placed.

85



Formatted: Font: (Default) Times New Roman, 12 pt



Figure 2: Steering system components.

Handlebar Component

For the right and left handlebars, aluminum recycled pieces from a previous

bike purchased were welded together to give it an L-shape. The L-shaped handlebars are

identical to one another allowing either or rider to easily provide a force in the left or right

Team 509

Formatted: Font: (Default) Times New Roman, 12 pt

86



| direction when turning. The handlebars are positioned on the outside of the rider's hips providing |                                                   |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| reachability for the riders. The arm of handlebar is 8.25" long with a diameter of 1.042". The     |                                                   |
| handle has a length of 15" with a diameter of 0.76".                                               | Formatted: Font: (Default) Times New Roman, 12 pt |
| Kingpin Axis Component                                                                             | Formatted: Font: (Default) Times New Roman, 12 pt |
| The kingpin axis houses the steering knuckle, headset, spacer, and stem together. The              |                                                   |
| kingpin axis connects the handlebars to wheels providing a rotational axis. The headset assembly   |                                                   |
| is shown in a figure below.                                                                        | Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 3: Kingpin axis diagram.                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt |
| Bolted Clamp Component                                                                             | Formatted: Font: (Default) Times New Roman, 12 pt |
| The bolted clamps are attached at one end of each handlebar to hold the stem and handle            |                                                   |
| end together. The clamp is shown in as the green component in the CAD figure below.                |                                                   |
|                                                                                                    |                                                   |



Formatted: Font: (Default) Times New Roman, 12 pt

Figure 4: Steering mechanism assembly view.

| Tie Rod Placement                                                                                   | <br>Formatted: Font: (Default) Times New Roman, 12 pt |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| •                                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt     |
| The original tie rod coupler given by a previous senior design team had the length                  |                                                       |
| of 31" Since our rover is for a two-person seater, a new rod was purchased to extend the tie        |                                                       |
| rod. The purchased rod is an alloy steel hollow rod with a length of 3'', a wall thickness 0.188'', |                                                       |
| and a 70,000-psi yield strength. This material is easy to weld due it its low carbon content.       | <br>Formatted: Font: (Default) Times New Roman, 12 pt |
| •                                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt     |
| Figure 5: Tie rod extender component.                                                               | <br>Formatted: Font: (Default) Times New Roman, 12 pt |
| Steering Maintenance                                                                                | Formatted: Font: (Default) Times New Roman, 12 pt     |

Team 509

88



The headset and tie rod may wear out over time depending on its use. If these components wear out, they should be replaced. If riders are changed, the stem and handlebar can be adjusted to fit the rider as well. Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Wheels. Formatted: Font: (Default) Times New Roman, 12 pt The wheel subsystem has four essential components that go into fabricating the wheels. Foam core, exterior tread, inner axle, and a mold to shape the core. The following sections will go into detail about why these components are used, as well as a guide on how to replicate them. Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Foam Core, Formatted: Font: (Default) Times New Roman, 12 pt A polyurethane 2-part expanding foam is the material used for the four rover wheels. The foam starts out in two separate containers in the liquid form. The two parts should be mixed in a 1:1 ratio and stirred for 15 seconds to yield maximum volumetric expansion. The product is a strong, tough, and light foam. Formatted: Font: (Default) Times New Roman, 12 pt The major constraint for the wheels was the thickness being less than or equal to 3.75 inches. This constraint was imposed by the competition's dimensional constraints and the decision to use the frame from the previous year's NASA rover team. The optimized radius

was found to be 17 inches for the front wheels and 21.4 inches for the back wheels. The cost to

<u>make four wheels out of polyurethane expanding foam is \$137.60.</u> <u>Minimizing mass and cost were the objectives for the material selection. This is due to</u> the NASA competition awarding points to lighter rovers, and the wheels being built on a limited

Team 509



| budget. The function of each wheel is to not fail while under a maximum load of 950 Newtons               |                                                   |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| and experience a deformation of 3.0x10 <sup>-2</sup> inches or less when traversing objects. These values | Formatted: Font: 12 pt                            |
| were calculated using a factor of safety of 2.0 and using the weight of the rover and riders.             | Formatted: Font: (Default) Times New Roman, 12 pt |
| *                                                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                           | Formatted: Font: (Default) Times New Roman, 12 pt |
| <u>Figure 6: Polyurethane expanding foam, 8lb density.</u>                                                |                                                   |
| •                                                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| Exterior Tread                                                                                            | Formatted: Font: (Default) Times New Roman, 12 pt |
| The foam core does not supply sufficient friction to traverse the                                         |                                                   |
| competition's obstacles, so an exterior tread is implemented. The exterior tread is wrapped               |                                                   |
| around the entire curved section of the wheel, fastened with adhesive and set screws. The                 |                                                   |
| competition does not permit the use of tire tread, so a material similar to tire tread                    |                                                   |
| was repurposed to fit this objective. Cleated belting for roller-bed conveyors is utilized, as it is      |                                                   |
| made from rubber and has tread on the top layer.                                                          | Formatted: Font: (Default) Times New Roman, 12 pt |
| *                                                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 7: Repurposed cleated belting.                                                                     | Formatted: Font: (Default) Times New Roman, 12 pt |
| <u>r igure //: kepurposea cieatea betting.</u>                                                            |                                                   |
| •                                                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| Inner Axle                                                                                                | Formatted: Font: (Default) Times New Roman, 12 pt |
| The inner axle for the wheels is designed to allow for easy assembly, disassembly,                        |                                                   |
| and peak performance. The outer diameter of the axle is just smaller than the inner diameter of           |                                                   |
| the foam core hole. The wheel axle is designed this way so that the wheel fits snugly but can still       |                                                   |
| be taken off with ease.                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt |
| Team 509 90                                                                                               |                                                   |



| The front and rear inner axles have the same dimensions and are made from the same                 |                                                                                                     |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| material. The only difference is that the front inner axles freely rotate around an embedded steel |                                                                                                     |
| rod with bearings. The rear inner axles are solid throughout, rigidly coupled to the rear          |                                                                                                     |
| driveshaft.                                                                                        | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
|                                                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 8: Front inner wheel axle (freewheel).                                                      |                                                                                                     |
|                                                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
| Figure 9: Rear inner wheel axle (rigid).                                                           |                                                                                                     |
| ٠                                                                                                  | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
| Wheel Mold                                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
| To yield the desired shape for our polyurethane wheels, female molds were created and              |                                                                                                     |
| used. MDF board was used for the cross-sections of the mold and polycarbonate film was used to     |                                                                                                     |
| wrap around the rim. The polycarbonate film is fastened to the MDF with set screws. Since the      |                                                                                                     |
| expanding foam has an associated pressure while expanding, two layers of polycarbonate are         |                                                                                                     |
| used to ensure structural integrity.                                                               |                                                                                                     |
| *                                                                                                  | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
|                                                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
| Figure 10: CAD rendering of mold.                                                                  |                                                                                                     |
| -                                                                                                  | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
|                                                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt                                                   |
| Figure 11: Wheel mold with expanding foam.                                                         |                                                                                                     |
| Team 509 91                                                                                        |                                                                                                     |
| 2021                                                                                               |                                                                                                     |



Figure 12: Bottom of wheel mold.

#### Wheel Maintenance

Grease should be applied to the front inner axle bearings periodically. The wheel tread should be replaced when user sees fit.

#### Wheel Assembly

The inner axle should be machined and welded first. This is done so that the inner axle can be placed inside the wheel mold. MDF board is cut into circular cross-sections with a router and polycarbonate film is fastened around the MDF with set screws. The height of the polycarbonate film corresponds to the thickness of the wheels. Once the axle is placed inside the mold, spray the inside of the mold with mold release. After the entirety of the mold is covered in mold release, the liquid polyurethane mixture can be poured inside. Wait 1 hour to let foam expand and dry. Once the foam is completely dry, unscrew the set screws and separate the foam from the mold. Use gorilla glue adhesive on the curved portion of the wheel and wrap the tread around the wheel. Secure the tread by screwing into the foam. Slide the inner axle into the center hole of the foam wheel. Put second flange onto the axle.,

Formatted: Font: (Default) Times New Roman, 12 pt

Drivetrain

The drivetrain subsystem of the rover consists of three primary components: the pedal system,
the intermediate drivetrain axle, and the rear drivetrain axle. The pedals are the initial point of

contact with the riders to transfer the input torque, the intermediate shaft is used to then increase Team 509 92 Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt



| the output torque by lowering the gear ratio, and the rear axle then drives the wheels and contains |                                                   |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| the braking system. The following sections will delve deeper into the components that make up       |                                                   |
| each of the primary components.                                                                     | Formatted: Font: (Default) Times New Roman, 12 pt |
| *                                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                     | Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 13: Side view profile of frame and powertrain.                                               |                                                   |
| *                                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                     | Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 14: Quarter view profile of the frame and powertrain.                                        |                                                   |
| •                                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt |
| Pedal System Components                                                                             | Formatted: Font: (Default) Times New Roman, 12 pt |
| The pedal system for the vehicle consists of 152 mm pedal cranks paired with 32 tooth               |                                                   |
| standard single speed cassettes to drive the intermediate axle via the two 20 tooth free-wheel      |                                                   |
| pinions. The pedals themselves have integrated shoe clips on them to ensure that when pedaling,     |                                                   |
| the rider does not have their foot slip off the pedal. The system is mounted on a swivel and lock   |                                                   |
| mechanism that allows the pedals to be moved in close to the vehicle to reduce its overall length.  |                                                   |
| This locks the pedals in the frame via a pin and steel plates, additionally, when extended out, the |                                                   |
| pedals sit at 12 inches away from the frame at 60 degrees from the horizontal. The chain size       |                                                   |
| used for the pedals and free-wheel pinions are 3/32-inch chains.                                    | Formatted: Font: (Default) Times New Roman, 12 pt |
| Pedal System Maintenance                                                                            | Formatted: Font: (Default) Times New Roman, 12 pt |
| To keep the pedals in working condition, the chain must be kept free of obstructions and            |                                                   |
| any misalignment. The chain must be lubricated with bike chain lubricant to ensure that the links   |                                                   |
| do not seize up. The pedals must be cleaned off when they get mud and dirt on them and the          |                                                   |



bearings on the pedals will need to be lubricated periodically, or when the movement becomes restricted or slowed down. The press fit bearings only require lubrication when they begin to make noises or seize up.

#### Intermediate Axle Components

The intermediate axle for the vehicle consists of a 20-inch long, 5/8-inch diameter solid keyed driveshaft, two Shimano SF-1200 20 tooth one-way free-wheel pinions with 5/8-inch inserts, a single 16-tooth ANSI size 35 pinion with a shaft collar attachment welded on, two 5/8-inch low profile mounted sealed ball bearing mounts and four ½ inch steel plate mounting brackets welded to the frame. The gears and pinions utilize the keyed shaft to mount their positions on the axle to allow for disassembly and maintenance of the system. The free-wheel pinions utilize the 3/32-inch chains to the chainrings on the pedals; however, the solid 16-tooth pinion uses ANSI size 35 steel roller chains to drive the rear axle drive gear.

## Figure 15: Intermediate driveshaft components system view.

## Intermediate Axle Maintenance

The intermediate axle for the vehicle must be kept clean and free of debris after each ride. The free-wheel pinions will need lubrication periodically as they begin to seize up or make louder clicks. The sealed bearings will need inspection periodically to ensure they do not become unseated from their positions or become loose on the shaft setscrews. Alignment of the solid drive pinion at the center of the driveshaft is important to drive the rear axle gear. The gear may be shifted along the axis of the axle to ensure that the chain alignment is correct. Bike Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Team 509

2021



| chain lubricant will be used periodically on the chains to ensure smooth operations, and chain       |                                                   |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| will be cleaned off after each ride to prevent seizing and rusting.                                  | Formatted: Font: (Default) Times New Roman, 12 pt |
| Rear Axle Components                                                                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
| The rear axle for the vehicle contains the main drive gear, dual disk brake                          |                                                   |
| system and wheel couplers to transfer the torque to the wheels. The rear axle is made of a 47-       |                                                   |
| inch-long hollow steel driveshaft with an outer diameter size of 1-inch and inner diameter           |                                                   |
| of 0.624-inches. The drive gear consists of an ANSI size 35, 35-tooth solid steel gear that is       |                                                   |
| coupled to the driveshaft via a six-bolt flange-collar shaft mount. The rear drive chain consists of |                                                   |
| an ANSI size 35 steel roller chain. The attached disk brakes are 160 mm in diameter                  |                                                   |
| utilizing caliper brake mounts received from the previous team's drivetrain. These brakes are        |                                                   |
| operated using a steel cable line that is in combination with standard brake handles. The disk       |                                                   |
| brakes are coupled to the driveshaft using ½ inch steel flange collars with a 6-bolt pattern. Two    |                                                   |
| mounted cast iron housing steel ball bearing axle mounts are used with set screws for the rear       |                                                   |
| axle. A half inch steel plate adapter is used for coupling the bearings to the existing mounts on    |                                                   |
| the frame. The ends of the axle are then coupled together utilizing four high-torque flexible shaft  |                                                   |
| couplings in conjunction with rugged roller chain locks. One hub is attached to the end of each      |                                                   |
| driveshaft end while the other two are added one each to the shaft on the wheels. The locking        |                                                   |
| chain then allows the shafts to be coupled together while allowing for disassembly if needed.        |                                                   |
| These hubs are kept in place with setscrews and driveshaft keys to allow for alignment               |                                                   |
| corrections.                                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| *                                                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                      | Formatted: Font: (Default) Times New Roman, 12 pt |

Figure 16: Rear axle components system view.

Team 509

2021



# Rear Axle Maintenance Formatted: Font: (Default) Times New Roman, 12 pt The rear axle must be kept clean after use, all debris and obstructions must be removed from the shaft and drivetrain parts. Lubrication will be needed periodically on the rear chain and a check for any loosening or slack on the chain is necessary before each ride. The disk brakes will have to be checked to ensure that the calipers clasp onto the disks. The handlebars for braking on the vehicle are mounted near the edge of the seats on the rover. Alignment of the rear drive gear and bearings needs to be checked by checking the alignment to the intermediate pinion and the setscrew tightness. Lastly, the couplers for the wheel shafts will need to be checked to ensure it is tight and aligned. Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Support. Formatted: Font: (Default) Times New Roman, 12 pt The support subsystem consists of the frame, suspension, and seating. Formatted: Font: (Default) Times New Roman, 12 pt Frame Formatted: Font: (Default) Times New Roman, 12 pt The frame is made of 1 in. chromoly steel tubing. The tubing is welded together at various points. The frame also has multiple mounts welded onto the steel tubing. This includes mounting for the front and rear axles, brackets for the suspension, and mounts for the seating. Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt Suspension, The suspension is made of steel tubing and consists of an upper and lower wishbone, a strut, and a wheel mount. The suspension is the same on the left and right sides of the rover. The upper and lower wishbones connect to the upper and lower parts of the suspension bracket via bolts. The lower wishbones can be identified by the extra piece of tubing connecting the two sides. The lower part of the strut is mounted to this cross tubing using a bolt and the upper part is Team 509 96



| connected to the middle piece of the suspension bracket, again using a bolt. There are multiple    |                                                   |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| holes in the top strut mount which can allow for a different mounting angle of the strut.          | Formatted: Font: (Default) Times New Roman, 12 pt |
| Seating.                                                                                           | Formatted: Font: (Default) Times New Roman, 12 pt |
| The rover bench seat is mounted to the frame using multiple 10 series 8020 aluminum                |                                                   |
| pieces and connectors. There are two 1x3 in. 8020 pieces, one is 20.5 in. in length and the other  |                                                   |
| is 25 in. in length. The 20.5 in. piece is placed horizontally and centered in the front mounts on |                                                   |
| the frame. Two 1/4-20 Double Slide-in Economy T-nuts are used to attach the 8020 piece onto the    |                                                   |
| sides of the mount, both on the left and right. Two 1/4-20 Slide-in Economy T-nuts are used to     |                                                   |
| attach to 8020 piece to the bottom of the mount, again being the same on both sides. The other     |                                                   |
| 1x3 in. 8020 piece is placed onto the rearmost frame mount. This is secured to each mount using    |                                                   |
| two ¼-20 Double Slide-in Economy T-nuts. Two 1x1 in. 8020 pieces, both 25 in. in length, are       |                                                   |
| then secured to the middle frame mounts using the same securing method as the 25 in. 1x3           |                                                   |
| in. 8020 piece. Each Economy T-nut, single and double, is held into place using 1/4-20 x 0.75 in.  |                                                   |
| bolts. 24 of these bolts are needed to mount the 8020 pieces to the frame.                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| From this point on, the same assembly of 8020 pieces needs to be completed twice. These            |                                                   |
| assemblies must each be placed 10 in. from the longitudinal centerline of the frame.               | Formatted: Font: (Default) Times New Roman, 12 pt |
| Next, a 1x1 in. piece of 8020, 23 in. long, is placed perpendicular to the already                 |                                                   |
| placed pieces. It should be 1 in. from the side of the frontmost and rearmost 1x3 in. 8020         |                                                   |
| pieces. This is attached using a 10 Series 9 Hole – Wide Slotted Inside Corner Bracket. Two of     |                                                   |
| these brackets are used, one at the frontmost and one at the rearmost connection. The bracket is   |                                                   |
| attached using <sup>1</sup> /4-20 x 5.00 in. Black BHSCS and Slide-in Economy T-nuts.              | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                    |                                                   |



| From this point on, every plate is held into place using 1/4-20 x 5.00 in. Black FBHSCS                                  |                                                   |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| and Slide-in Economy T-nuts. There is then a 1x1 in. 8020-piece 5 in. long, placed vertically                            |                                                   |
| onto the frontmost 1x3 in. 8020 piece. It should be lined up with the previously placed 23 in.                           |                                                   |
| long 1x1 in. piece. The 5 in. piece is attached to the 23 in. pieces using 10 Series 5 Hole – 90                         |                                                   |
| Degree Angled Flat Plates. Two of these plates are used on either side of each 5 in. piece, with                         |                                                   |
| four being used in total.                                                                                                | Formatted: Font: (Default) Times New Roman, 12 pt |
| Next, a 1x1 in. 8020 piece that is 10.25 in. long is mounted to the top of the 5 in. long                                |                                                   |
| piece just mounted. This is mounted using two 10 Series 5 Hole – 60 Degree Angled Flat Plates,                           |                                                   |
| one on either side of the connection. The other end of the 10.25 in. long piece is mounted to the                        |                                                   |
| base 23 in. long piece using two 10 Series 5 Hole – 30 Degree Angled Flat Plates.                                        | Formatted: Font: (Default) Times New Roman, 12 pt |
| We then have a 1x1 in. 8020-piece 12.73 in. long, placed vertically onto the rearmost 1x3                                |                                                   |
| in. 8020 piece. It should be lined up with the previously placed 23 in. long 1x1 in. piece.                              |                                                   |
| The 12.73 in. piece is attached to the 23 in. pieces using 10 Series 5 Hole – 90 Degree Angled                           |                                                   |
| Flat Plates. Two of these plates are used on either side of each 5 in. piece, with four being used                       |                                                   |
| in total.                                                                                                                | Formatted: Font: (Default) Times New Roman, 12 pt |
| Next, a 1x1 in. 8020 piece that is 18.25 in. long is mounted to the top of the 12.73 in.                                 |                                                   |
| long piece just mounted. This is mounted using two 10 Series 5 Hole – 45 Degree Angled Flat                              |                                                   |
| Plates, one on either side of the connection. The other end of the 18.25 in. long piece is mounted                       |                                                   |
| to the base 23 in. long piece using two 10 Series 5 Hole – 45 Degree Angled Flat Plates.                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
| Now that the entire seat mount is put together, the seat just needs to be attached. The                                  |                                                   |
| bench seat attaches to the two 10.25 in. pieces using four <sup>1</sup> / <sub>4</sub> -20 x 3 in. bolts. The bench back |                                                   |
|                                                                                                                          |                                                   |



| attaches to the two 18.25 in. pieces, also using four 1/2-20 x 3 in. bolts. The entire seating setup  |                                                   |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| and mount can be seen in the image below.                                                             | Formatted: Font: (Default) Times New Roman, 12 pt |
| •                                                                                                     | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                       | Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 17: Seat with Seat Mounts                                                                      |                                                   |
| [Text Wrapping Break]                                                                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
| Integration Overview                                                                                  | Formatted: Font: (Default) Times New Roman, 12 pt |
| The following section will discuss the vehicle's assembly and integration with all four               |                                                   |
| primary rover systems.                                                                                | Formatted: Font: (Default) Times New Roman, 12 pt |
| <u>Support</u>                                                                                        | Formatted: Font: (Default) Times New Roman, 12 pt |
| The support section includes the frame, suspension, and seating. The method of bringing these         |                                                   |
| parts together was already discussed above in detail. The suspension should be attached to the        |                                                   |
| frame first, followed by the drivetrain and the wheels. The seating, along with the seating mount,    |                                                   |
| should be assembled last to allow for easy access while bringing together the other subsystems.       | Formatted: Font: (Default) Times New Roman, 12 pt |
| Steering                                                                                              | Formatted: Font: (Default) Times New Roman, 12 pt |
| After the frame is completed, the dual tiller steering system is integrated into the vehicle design   |                                                   |
| right before integrating the seating. The steering tie rod is directly connected to the               |                                                   |
| front wheels through the headset components and steering knuckle. A further explanation of the        |                                                   |
| headset can be found in the steering section.                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| Drivetrain,                                                                                           | Formatted: Font: (Default) Times New Roman, 12 pt |
| The drivetrain components for the rover are placed on the rover shortly after the frame assembly      |                                                   |
| and suspension assembly is completed. This is done to avoid interference with the seating,            |                                                   |
| steering and wheel components. After initial assembly, none of the parts should be entirelyTeam 50999 |                                                   |



removed or uninstalled to prevent damage or misalignment. The first step in the assembly is to
put the pedals in place. ,
To mount the pedals the bottom bracket must first be mounted into the bottom bracket
shell. After this, one pedal with the gear is attached on one side of the bottom bracket, and one

shell. After this, one pedal with the gear is attached on one side of the bottom bracket, and one pedal without the gear is attached on the other side. This is done for both sets of pedals. Once they are setup, the necessary chain is placed around the pedal gears to the intermediate axle.

To begin the intermediate axle assembly, the first step is to mount the solid steel pinion with its shaft key to the shaft at the centerline of the shaft, then tighten the set screw. Next, the free-wheel pinions are mounted 4.24 inches from the ends of the driveshaft and set in place with setscrews and the provided shaft keys. The following step is to mount the bearings for the intermediate axle are onto the intermediate driveshaft with 0.64 inches sticking out from either side of the outer bearing housing. Once the bearings are on the shaft and the primary components are mounted onto the shaft, the assembly can be bolted onto the frame. Once the intermediate axle is integrated onto the frame, the rear axle can be mounted and secured. A detailed schematic is provided in the image below.

*Figure* 18: *Intermediate axle assembly positioning, units listed in inches.* 

 To begin the rear axle assembly, the drive gear and flange will need to be mounted first,

 followed by the dual disk brakes and their couplers, ensure that the setscrews are

 tightened down. Next, the bearing mounts will be attached to the shaft via the set screws and

 then tightened down for mounting. Once these are attached, the rear axle can be mounted onto

 Team 509
 100

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt



| the frame by utilizing the mount adapter provided for each mounting bracket. The shaft couplers   |                                                   |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------|
| will then be added to the ends of the axle and secured by the shaft keys. The corresponding shaft |                                                   |
| couplers must then be attached onto the individual wheel axles before attaching to the rear axle  |                                                   |
| via the provided chain coupler. A detailed schematic is provided in the image below.              | Formatted: Font: (Default) Times New Roman, 12 pt |
| *                                                                                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
|                                                                                                   | Formatted: Font: (Default) Times New Roman, 12 pt |
| Figure 19: Rear axle assembly positioning, units in inches.                                       |                                                   |
| <u>System</u>                                                                                     | Formatted: Font: (Default) Times New Roman, 12 pt |
| Discuss the systems integration approach that was used and the general guidelines for putting the |                                                   |
| vehicle together.                                                                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
| <b>Operation Overview</b>                                                                         | Formatted: Font: (Default) Times New Roman, 12 pt |
| The following section will detail the vehicle preparation and operation steps to guarantee        |                                                   |
| safe and proper vehicle operations. The personal protective equipment must be self-provided and   |                                                   |
| includes gloves, closed toe shoes, a bike helmet, safety goggles and knee/elbow pads.             | Formatted: Font: (Default) Times New Roman, 12 pt |
| Vehicle Preparation                                                                               | Formatted: Font: (Default) Times New Roman, 12 pt |
| The human powered vehicle must first be inspected on an individual system maintenance check       |                                                   |
| as explained in the component overview section of this document. The main points of interest are  |                                                   |
| the drivetrain gear alignments, wheel couplers, chain slack and seating position. Once all the    |                                                   |
| components have been verified to be in working condition, the rover is then ready to embark on    |                                                   |
| an expedition.                                                                                    | Formatted: Font: (Default) Times New Roman, 12 pt |
| Vehicle Operation                                                                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
| To operate the vehicle safely, the riders must wear their personal protective equipment, secure   |                                                   |
| their feet into the pedals, and strap their seatbelts on. The pedaling mechanism allows for       |                                                   |
| Team 509 101                                                                                      |                                                   |
| 2021                                                                                              |                                                   |



| assistive torque input into the rover but also allows the riders to pedal one at a time to take     |                                                   |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
| breaks on an excursion. Optimal pedaling consists of synchronizing the pedaling cadence for         |                                                   |
| both riders. The vehicle does not utilize a reverse pedaling mechanism, to back-up, the riders      |                                                   |
| must remove their seatbelts and move the vehicle back. The steering of the vehicle is done with a   |                                                   |
| dual tiller steering mechanism which requires both riders to verbally communicate with one          |                                                   |
| another for optimal turning and maneuverability. Each rider can steer the vehicle by themselves     |                                                   |
| by utilizing their individual steering arm, however it is encouraged to have both riders            |                                                   |
| simultaneously steering for effortless operation. Braking of the vehicle is done via two individual |                                                   |
| bike handle brakes coupled to the dual disk brakes on the rear axle. To decrease the                |                                                   |
| braking distance, both riders must press down their brake handles simultaneously to assist one      |                                                   |
| another in braking.                                                                                 | Formatted: Font: (Default) Times New Roman, 12 pt |
| Troubleshooting Overview                                                                            | Formatted: Font: (Default) Times New Roman, 12 pt |
| Should the users encounter trouble with the rover, or components within the rover, the              |                                                   |
| following bullet points have insights into some of the possible troubleshooting methods.            | Formatted: Font: (Default) Times New Roman, 12 pt |
| • If steering becomes more difficult spray lubricant inside the tie rod joints.                     | Formatted: Font: 12 pt                            |
| • If pedaling becomes more difficult grease all sprockets and bearings.                             | Formatted: Font: 12 pt                            |
| • Should the rear drivetrain chain become loose, slack can be tightened by moving                   |                                                   |
| the intermediate and rear axle bearing housings back/forward some.                                  | Formatted: Font: 12 pt                            |
| • If any of the intermediate axle pinions become misaligned, the pinions can be                     |                                                   |
| moved along the shaft key to correct for misalignment.                                              | Formatted: Font: 12 pt                            |
| • Seating mounts can be tightened to maintain rigidity and can slide back some if                   |                                                   |
| needed for larger riders.                                                                           | Formatted: Font: 12 pt                            |
| Team 509 102                                                                                        |                                                   |
| 2021                                                                                                |                                                   |



| Important Resources                                                                              |   | Formatted: Font: (Default) Times New Roman, 12 pt |
|--------------------------------------------------------------------------------------------------|---|---------------------------------------------------|
| Over the course of the project, important resources and knowledge has been gathered and          |   |                                                   |
| shared with the team, the following section contains this information.                           | _ | Formatted: Font: (Default) Times New Roman, 12 pt |
| The Human Exploration Rover Challenge competition requires constant upkeep with                  |   |                                                   |
| deadlines, it is highly recommended that a shared calendar be created to keep track              |   |                                                   |
| of deliverables. Dual purpose manuals, reports and presentations are also highly recommended as  |   |                                                   |
| they may coincide with Senior Design reviews. If further information is needed from NASA,        |   |                                                   |
| their contact email is as follows: MSFC-roverchallenge@mail.nasa.gov.                            |   |                                                   |
| This project is heavily dependent on machinability so speaking to the machine shop is            |   |                                                   |
| important. Justin Pogge in the machine shop has been a valuable resource for                     |   |                                                   |
| information and feasibility of designs. Justin has made numerous recommendations for the rover   |   |                                                   |
| that have been implemented. Justin is also experienced with bike design and manufacturing and    |   |                                                   |
| will have input regarding using off the shelf components.                                        |   |                                                   |
| Ordering parts for the design is also critical to get right and done in a timely manner,         |   |                                                   |
| vendors such as McMaster-Carr, Summit Racing, and 8020 have been very useful. In this            |   |                                                   |
| project, McMaster Carr has been the main source for part orders and generally delivers within 1- |   |                                                   |
| 2 days. McMaster-Carr also allows the STEP file download which allows for easy CAD               |   |                                                   |
| implementation into PTC Creo, SolidWorks, or Autodesk applications.                              |   |                                                   |
| An additional resource that was utilized was our advisor Shayne McConomy. Dr.                    |   |                                                   |
| McConomy has been a resource for information and wheel mold construction, he has input           |   |                                                   |
| regarding previous teams' parts and additional materials that can be utilized in design. Dr.     |   |                                                   |

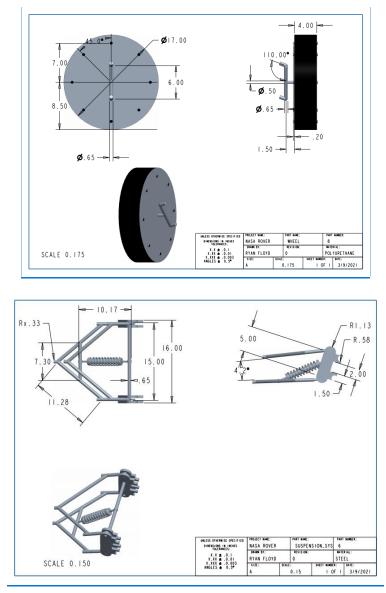


McConomy has access to the files found on Basecamp and all the previous websites for Senior Design.

Access to all of Team 509's files, CAD, presentations and deliverables can be found on the following site:

https://adminmyfsu.sharepoint.com/sites/seniordesignnasahumanpoweredvehicleteam

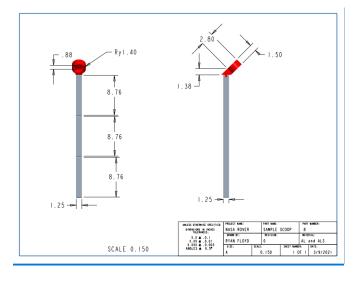
Admin access to this website can be requested by contacting

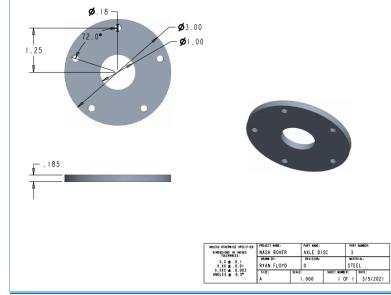

2

Andrew Schlar at as18fy@my.fsu.edu or andrew.s28@hotmail.com. If additional information is needed, he can reach out to all former members of Team 509. An Instagram for the project was created and is called "famufsuhumanpoweredroverteam" and ownership and email information can be transferred over to the new Senior Design team by contacting Andrew Schlar.

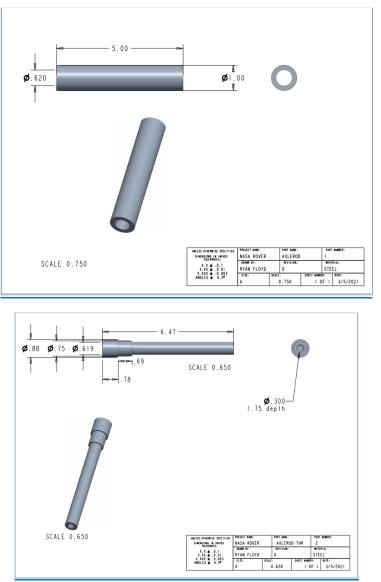
Team 509

104

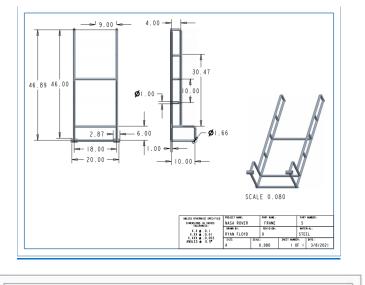


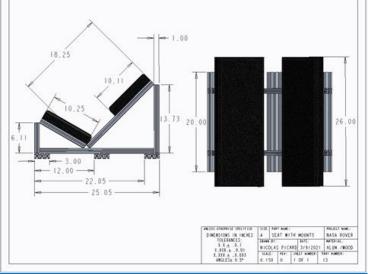




## Appendix G: Engineering Drawings


Team 509

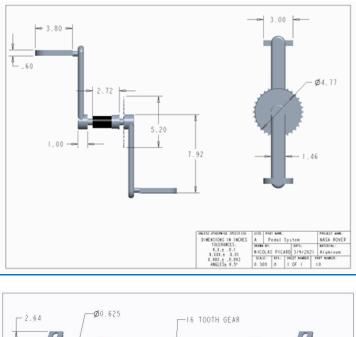


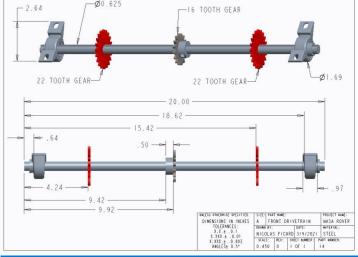


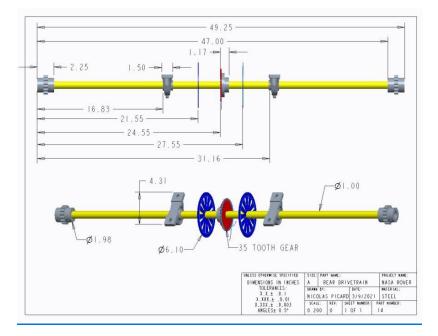




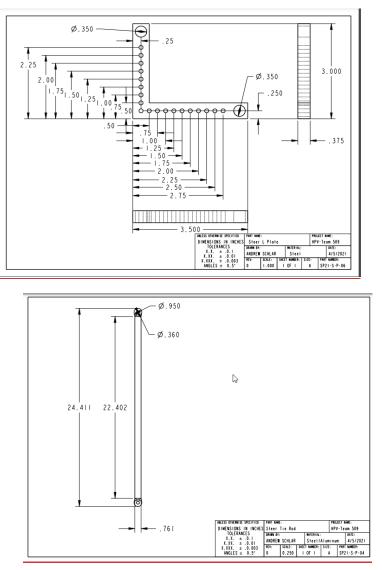



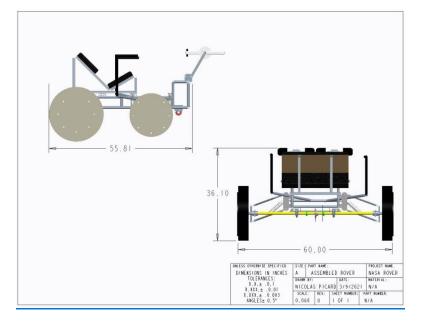


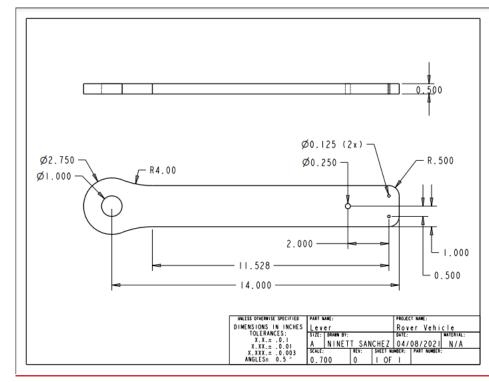


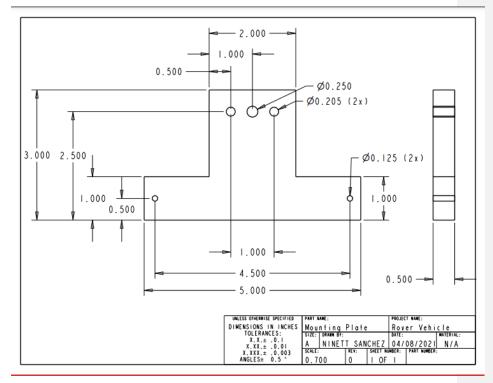


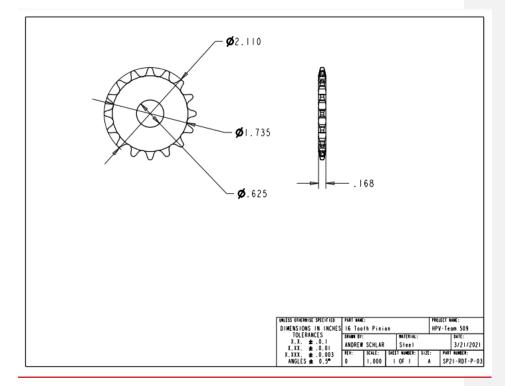


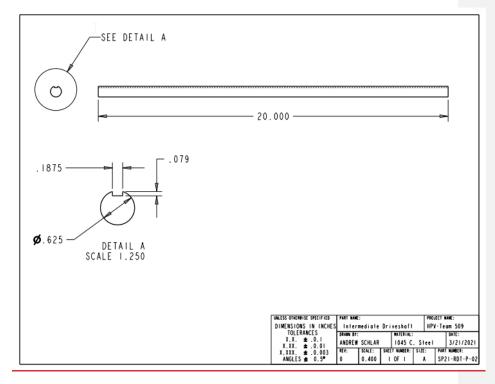


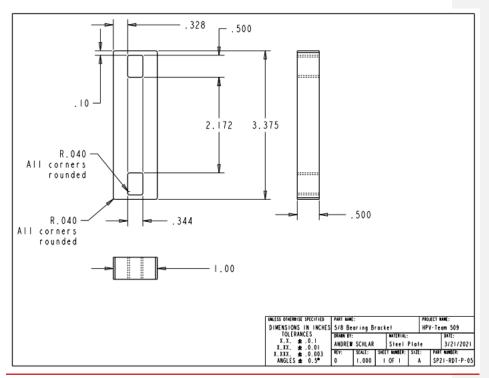




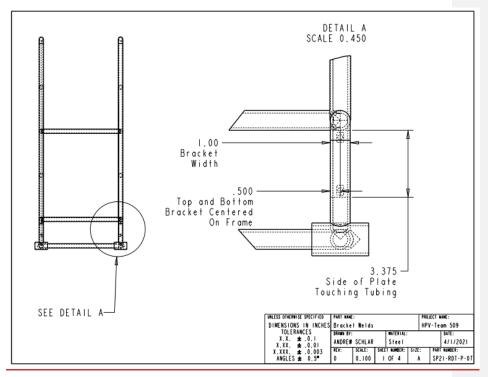





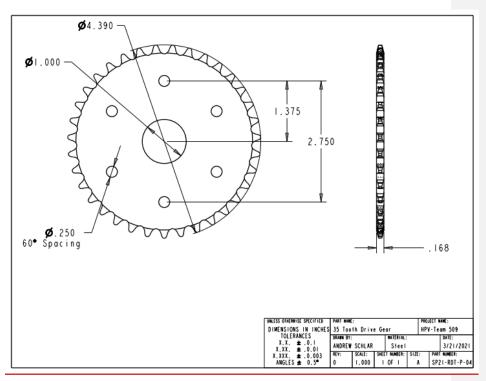







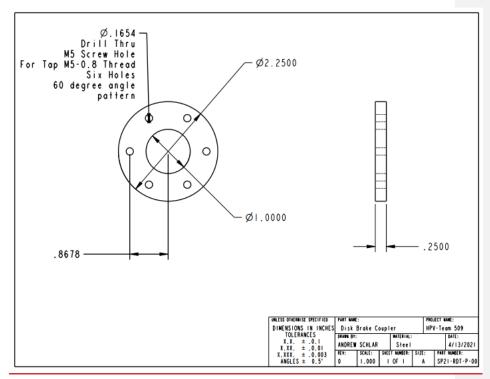





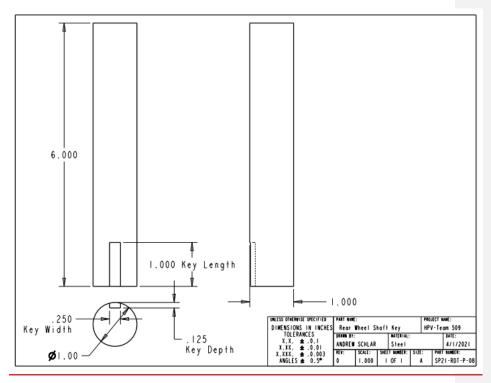

Team 509



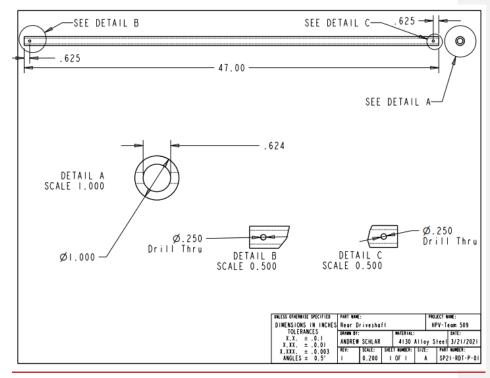




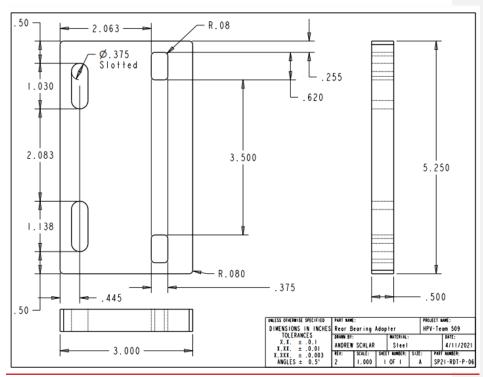




Team 509






Team 509
















### **Appendix H: Calculations**

Pawer train 35 tooth drive gear, 16 tooth intermediate toth drive getty for the form input Stase  $T_{out = \frac{20}{32}} \left( 2 \left( \frac{40,5659}{5659} \right) = 50.707 \text{ ft-lb} \right)$ 1st Stase 2nd Stage  $T_{00+5} = \frac{35}{16} \left( 50,707 \right) \text{st-lb} = 110,9273828 \text{ ft-lb}$   $T_{100} = 7_2 \text{ cu}_2$   $T_{100} = 7_2 \text{ cu}_2$   $T_{100} = 7_2 \text{ cu}_2$ 50,707 (104) = 110 W3 5 rear axle W3 = 47.941 rpm Linear vel = r x RpM x 0.10472 V= 3.04 mph, @ 65 rpm Aus spoed

Team 509

124



Powertran continued 35 tocth roor dive, 16 tooth @75 rpm intermediele 55Nm  $\frac{input}{forge} \rightarrow \mathcal{B}[.1318(75) = \mathcal{T}_2 \, \omega_2 = 50,707 \, \omega_2$ WZ= 120rpm 50,707 (120) = 110.922 (w3) Cu3 = 59.8569 rpm V = 3.48 mph max speed Assung 94% efficient chain

125



G [ARTA Griggit] 2 notalon S Model AND) Oc=tan' ZH 200 4.740833 Zenoite Octen 31 Oc=47.53888 Sideway S Sherys Tipping Angle 56 Com 28"+31 Ferward 200 Tipping Angle 0 28 30 ° 280

126



Turny radius: Oursell SS IN Will SS IN CON 31 inch 54= 2.713 A Q' = 12° 15-420° X2 = 8.8777  $R = \left(\frac{L}{\tan(2\sigma)}\right) + \frac{1}{2} \tan(2\sigma) = \frac{L}{R + \frac{1}{2}} = \frac{1}{10 + 1}$ 



## Appendix I: Risk Assessment

|                   |           |                 | Project Haz             | ard Assessme   | <u>nt Workshe</u> | <u>et</u>   |                  |                 |   |                                            |
|-------------------|-----------|-----------------|-------------------------|----------------|-------------------|-------------|------------------|-----------------|---|--------------------------------------------|
| PI/instructo      | or: Shayn | ie <u>Pł</u>    | hone #: 850-            | ept.: Mech     | Start Date: 9     | /3/2021     | Revision number: | 1               |   | Formatted: Line spacing: 1.5 lines         |
| McConomy          | 1         | 41              | 10-6624 Er              | <u>ng.</u>     |                   |             |                  |                 |   |                                            |
| Project: NA       | SA Hum    | an Powered      | 1 Vehicle               |                | Location(s):      |             |                  |                 | • | Formatted: Line spacing: 1.5 lines         |
|                   |           |                 |                         |                | FAMU-FSU          | College of  | f Engineering    |                 |   |                                            |
|                   |           |                 |                         |                | Marshall Spa      | ace Flight  | Center in Huntsy | ville, AL       |   |                                            |
| Team memb         | ber(s):   |                 |                         |                | Phone #:          | E           | Email:           |                 | • | Formatted: Line spacing: 1.5 lines         |
| Ryan Floyd        | L         |                 |                         |                | 305-542-754       | 2           | Rmf17@my.fsu.e   | du_             |   | Field Code Changed                         |
| Nicolas Pica      | ard       |                 |                         |                | 407-714-861       | 0           | Np16b@my.fsu.e   | <u>du_</u>      |   | Field Code Changed                         |
| Ninett Sanc       | hez       |                 |                         |                | 508-405-628       | <u>1 1</u>  | Nos16@my.fsu.ee  | <u>du</u>       |   | Field Code Changed                         |
| Andrew Sch        | hlar_     |                 |                         |                | 850-812-917       | 3           | As18fy@my.fsu.e  | edu             |   | Field Code Changed                         |
| Å                 |           |                 |                         |                |                   |             |                  |                 | - | Formatted: Line spacing: 1.5 lines         |
| <b>Experiment</b> | Location  | Person          | <b>Identify hazards</b> | <u>Control</u> | PPE               | List prop   | e Residual Risk  | Specific        |   | Formatted: Font: (Default) Times New Roman |
| Steps             | -         | assigned        | <u>or</u>               | method         |                   | r method    |                  | <u>rules</u>    |   | Formatted: Font: (Default) Times New Romar |
| -                 |           |                 | potential failure       | _              |                   | of hazard   | <u>o</u>         | based on        |   |                                            |
|                   |           |                 | points_                 |                |                   | us waste    |                  | <u>the</u>      |   |                                            |
|                   |           |                 |                         |                |                   | disposal, i | i <u>f</u>       | <u>residual</u> |   |                                            |
|                   |           |                 |                         |                |                   | any.        |                  | <u>risk</u>     |   |                                            |
|                   | Home      | All group       | None                    | N/A            | None              | N/A         | HAZARD: 1        | <u>N/A</u>      | • | Formatted: Line spacing: 1.5 lines         |
| Prototype         |           | members         |                         |                |                   |             | CONSEQ: Neg      |                 |   |                                            |
| rover             |           |                 |                         |                |                   |             | ligible          |                 |   |                                            |
| F                 |           |                 |                         |                |                   |             | Residual: Low    |                 |   |                                            |
|                   |           |                 |                         |                |                   |             |                  |                 |   |                                            |
|                   |           |                 |                         |                |                   |             |                  |                 |   |                                            |
|                   | FAMU-     | Andrew          | Ergonomic               | Carefully      | Protective        | N/A         | HAZARD: 1        | Use             |   | Formatted: Line spacing: 1.5 lines         |
| -<br>Inventory/c  |           | Schlar, Ry      |                         | handle parts   | gloves.           | / 2 .       | CONSEO:          | multiple p      |   | Ene opteng. To mes                         |
| ollect            |           | an Floyd        | mishandling par         |                | safety            |             | <u>Minor</u>     | eople to        |   |                                            |
|                   |           | an <u>Fioyu</u> |                         | <u> </u>       |                   |             |                  |                 |   |                                            |
| leftover          | <u>of</u> |                 | <u>s,</u><br>           | appropriate    | <u>glasses,</u>   |             | Residual: Low    | lift heavy      |   |                                            |
| parts from        |           | 1               | misusing tools.         |                | <u>masks,</u>     |             |                  |                 |   |                                            |

Team 509

128

| 11 .            | L                     | 1                    | 1                             |               | L .                   | 1              |                                |                    | ) |                                    |
|-----------------|-----------------------|----------------------|-------------------------------|---------------|-----------------------|----------------|--------------------------------|--------------------|---|------------------------------------|
| <u>previous</u> | Enginee               |                      |                               | tools for     | hand                  |                |                                | parts, lift        |   |                                    |
| teams           | ring_                 |                      |                               | disassembly.  | sanitizer             |                |                                | with legs.<br>Wear |   |                                    |
| -               |                       |                      |                               |               |                       |                |                                | gloves             |   |                                    |
|                 |                       |                      |                               |               |                       |                |                                | when               |   |                                    |
|                 |                       |                      |                               |               |                       |                |                                | dealing            |   |                                    |
|                 |                       |                      |                               |               |                       |                |                                | with sharp         |   |                                    |
|                 |                       |                      |                               |               |                       |                |                                | objects.           |   |                                    |
|                 | FAMU-                 | All group            | COVID-                        | Social distan | <u>Masks,</u>         | N/A_           | HAZARD: 2                      | Wear               | - | Formatted: Line spacing: 1.5 lines |
| <u>In-</u>      | FSU                   | members              | 19 Exposure                   | <u>cing</u>   | hand                  |                | CONSEQ: Mo                     | <u>masks at</u>    |   |                                    |
| person tea      | <u>College</u>        |                      |                               |               | sanitizer_            |                | derate_                        | <u>all</u>         |   |                                    |
| <u>m</u>        | <u>of</u>             |                      |                               |               |                       |                | Residual:                      | times, mai         |   |                                    |
| meetings_       | Enginee               |                      |                               |               |                       |                | Low Medium                     | <u>ntain</u>       |   |                                    |
|                 | ring_                 |                      |                               |               |                       |                |                                | social             |   |                                    |
| -               |                       |                      |                               |               |                       |                |                                | distancing         |   |                                    |
| _               | TT                    | A 11                 | A ( . 1 11                    | D' 1          | Destaution            | Development    |                                | —<br>T 1 ( .       |   |                                    |
| Assemble        | <u>Home</u><br>and FA | All group<br>members | <u>Mishandling par</u><br>ts, | appropriate   | Protective<br>gloves, | must be        | <u>HAZARD: 2</u><br>CONSEQ: Mo | Tend to            |   | Formatted: Line spacing: 1.5 lines |
| rover           | MU-                   | <u>incinocis</u>     | nisusing power                |               | safet <u>y</u>        | treated as     |                                | wounds,            |   |                                    |
|                 | FSU                   |                      | tools, spilling of            |               | -                     | a              | Residual:                      | maintain           |   |                                    |
|                 | College               |                      | oil and non-                  | keep oil      | masks,                | =<br>biohazard | Low Medium                     | social             |   |                                    |
|                 | of                    |                      | organic                       | cleanup tools |                       | in case        |                                | distancing         |   |                                    |
|                 | Enginee               |                      | lubricants,                   | accessible,   | sanitizer_            | of cuts or     |                                | -                  |   |                                    |
|                 | ring                  |                      | COVID-19                      | wear masks.   |                       | scrapes.       |                                |                    |   |                                    |
|                 |                       |                      | exposure_                     |               |                       | They will      |                                |                    |   |                                    |
|                 |                       |                      |                               |               |                       | be sealed      |                                |                    |   |                                    |
|                 |                       |                      |                               |               |                       | in a red       |                                |                    |   |                                    |
|                 |                       |                      |                               |               |                       | bag labele     |                                |                    |   |                                    |
|                 |                       |                      |                               |               |                       | <u>d</u>       |                                |                    |   |                                    |
|                 |                       |                      |                               |               |                       | biohazard.     |                                |                    |   |                                    |
|                 |                       |                      |                               |               |                       | -              |                                |                    |   |                                    |



| Testing            | FAMU-            | All group              | Mishandling equ     | Wear all        | Helmet,             | Bandages             | HAZARD: 3         | Maintain      | Formatted: Line spacing: 1.5 lines         |
|--------------------|------------------|------------------------|---------------------|-----------------|---------------------|----------------------|-------------------|---------------|--------------------------------------------|
| rover              | FSU              | members                | ipment,             | protective      | knee pads,          | must be              | CONSEQ:           | social        |                                            |
| F                  | College          | 1                      | improper riding     | equipment, c    | elbow               | treated as           | Moderate          | distancing    |                                            |
|                    | of               | 1                      | procedure,          | onduct pre-     | pads, prote         | <u>a</u>             | Residual:         |               |                                            |
|                    | Enginee          | 1                      | crashing            | ride vehicle    | ctive               | biohazard            | Low Medium        |               |                                            |
| l                  | ring             | 1                      | vehicle, COVID      | inspection      | <u>gloves,</u>      | in case of           |                   |               |                                            |
| I                  |                  | 1                      | -19 exposure        | for             | seatbelts           | cuts or              |                   |               |                                            |
| I                  |                  | 1                      |                     | loose/broken    | 1                   | scrapes.             |                   |               |                                            |
| I                  |                  | 1                      |                     | parts. Ensure   | 1                   | They will            |                   |               |                                            |
| I                  |                  | 1                      |                     | riders are      | 1                   | be sealed            |                   |               |                                            |
| I                  |                  | 1                      |                     | fastened to     | 1                   | in a red             |                   |               |                                            |
| I                  |                  | 1                      |                     | the vehicle.    | 1                   | bag                  |                   |               |                                            |
| I                  |                  | 1                      |                     | '               | 1                   | labeled              |                   |               |                                            |
| I                  |                  | 1                      |                     | '               | 1                   | biohazard.           | _                 |               |                                            |
| I                  |                  | 1                      |                     | '               | 1                   |                      |                   |               |                                            |
| Visiting bik       | <u>kTallahas</u> | All                    | COVID-19            | Wear            | Masks,              | N/A_                 | HAZARD: 1         | Maintain      | Formatted: Line spacing: 1.5 lines         |
| e shops            | see              | group me               | Exposure            | masks, social   | hand                |                      | CONSEQ:           | social        |                                            |
| I                  |                  | mbers                  |                     | distancing_     | sanitizer           |                      | Minor_            | distancing    |                                            |
| I                  |                  | 1                      |                     | '               | 1                   |                      | Residual:         |               |                                            |
| I                  |                  | 1                      |                     | '               | 1                   |                      | Low               |               |                                            |
| <b>.</b>           |                  | ·                      |                     |                 | ·                   | ·······              |                   |               | Formatted: Font: (Default) Times New Roman |
| Principal i        | .nvestigate      | or(s)/ instruc         | ctor PHA: I have re | eviewed and ap  | proved the PI       | <u>HA workshe</u>    | et.               |               | Formatted: Line spacing: 1.5 lines         |
| <u>Name</u>        |                  | Sig                    | <u>gnature</u> Dat  | nte <u>Name</u> | <u>±</u>            | t.                   | <u>Signature</u>  | Date_         | Formatted: Font: (Default) Times New Roman |
|                    |                  |                        |                     |                 |                     |                      |                   | •             | Formatted: Line spacing: 1.5 lines         |
| T <u>eam mem</u> l | bers: I cer      | ti <u>fy that I ha</u> | we reviewed the PH  | HA worksheet, : | a <u>m aware of</u> | th <u>e hazards,</u> | and will ensure t | he control me | easures Formatted: Line spacing: 1.5 lines |
| followed.          |                  |                        |                     |                 |                     |                      |                   |               | Formatted: Font: (Default) Times New Roman |
|                    |                  | gnature                |                     |                 |                     |                      | ture              | Date          |                                            |

| <u>Ryan Floyd</u>   | Andrew                           | 12/1/2020            | Ninett Sanchez        | Mint                     | <u>12/1/2020</u>          | Formatted: Line spacing: 1.5 lines         |
|---------------------|----------------------------------|----------------------|-----------------------|--------------------------|---------------------------|--------------------------------------------|
|                     | Andrew<br>Schlar                 |                      | -                     |                          |                           |                                            |
|                     | Adbr                             |                      |                       | Nico<br>Vicard           |                           |                                            |
|                     | Stor Wi                          |                      |                       | Viral                    |                           |                                            |
|                     | Batt                             | Ē                    |                       | · 20000                  |                           |                                            |
|                     | . 70000 000                      |                      |                       |                          |                           |                                            |
|                     |                                  | 10/1/2020            |                       |                          | 10/1/2020                 |                                            |
| Andrew Schlar       |                                  | <u>12/1/2020</u>     | Nicolas Picard        |                          | <u>12/1/2020</u>          | Formatted: Line spacing: 1.5 lines         |
|                     |                                  |                      |                       |                          |                           |                                            |
| DEFINITIO           | DNS:                             |                      |                       |                          |                           | Formatted: Font: (Default) Times New Roman |
| Hazard: Any sit     | tuation, object, or behavio      | r that exists, or th | at can potentially c  | ause ill health, injury. | loss or property          | Formatted: Line spacing: 1.5 lines         |
| e.g. electricity, c | chemicals, biohazard mate        | rials, sharp objec   | ts, noise, wet floor, | etc. OSHA defines h      | nazards as " <i>any s</i> | ource of                                   |
| potential damage    | e, harm or adverse health        | effects on someth    | ing or someone". A    | list of hazard types ar  | nd examples are p         | provided                                   |
| in appendix A.      | •                                |                      |                       |                          |                           | Formatted: Font: (Default) Times New Roman |
| Hazard control      | : Hazard control refers to       | workplace measu      | res to eliminate/mi   | nimize adverse health    | n effects, injury, l      | loss, and                                  |
| property damage     | e. Hazard control practices      | s are often catego   | rized into following  | g three groups (priori   | ty as listed):            | Formatted: Font: (Default) Times New Roman |
| <u>1.</u> <b>H</b>  | E <b>ngineering control:</b> phy | sical modification   | ons to a process,     | equipment, or ins        | stallation of a           |                                            |
| barrie              | r into a system to minimi        | ze worker exposi     | ure to a hazard. Ex   | amples are ventilatio    | n (fume hood,             |                                            |
| biolog              | gical safety cabinet), conta     | inment (glove bo     | ox, sealed containers | s, barriers), substituti | on/elimination            |                                            |
| (consi              | ider less hazardous altern       | ative materials),    | process controls (    | safety valves, gauge     | s, temperature            |                                            |
| sensor              | r, regulators, alarms, moni      | tors, electrical gr  | ounding and bonding   | <u>ng), etc.</u>         |                           |                                            |
| <u>2.</u> A         | Administrative control:          | changes in work      | procedures to redu    | ice exposure and mit     | tigate hazards.           |                                            |
| Exam                | ples are reducing scale of       | process (micro-s     | cale experiments),    | reducing time of pers    | sonal exposure            |                                            |
| to pro              | ocess, providing training        | on proper techni     | iques, writing safe   | ty policies, supervisi   | ion, requesting           |                                            |
| expert              | ts to perform the task, etc.     | _                    |                       |                          |                           |                                            |
| <u>3.</u> <b>I</b>  | Personal protective equ          | ipment (PPE):        | equipment worn to     | o minimize exposur       | e to hazards.             |                                            |
| Exam                | ples are gloves, safety gla      | sses, goggles, ste   | eel toe shoes, earplu | ugs or muffs, hard ha    | ts, respirators,          |                                            |
| vests,              | full body suits, laboratory      | coats, etc.          |                       |                          |                           |                                            |
|                     | (s): Everyone who works of       |                      |                       | , postdocs, etc.). The   | primary contact           | must be                                    |
|                     | rovide phone number and          | email for contact    |                       |                          | 101                       | Formatted: Font: (Default) Times New Roman |
| 1                   | Геат 509                         |                      |                       |                          | 131                       |                                            |
|                     |                                  |                      |                       |                          | 2021                      |                                            |



| facilitate the imp  | lementatio                                                   | on of the safety expect  | ations in the laborat   | ory. Duties include (l | out are not limited to): | Formatted: Font: (Default) Times New Roman |  |  |  |  |
|---------------------|--------------------------------------------------------------|--------------------------|-------------------------|------------------------|--------------------------|--------------------------------------------|--|--|--|--|
| • Act               | as a poir                                                    | t of contact between     | the laboratory me       | mbers and the colle    | ge safety committee      |                                            |  |  |  |  |
| membe               | ers.                                                         |                          |                         |                        |                          |                                            |  |  |  |  |
| • Ens               | ure laborat                                                  | ory members are follo    | owing the safety rule   | <u>es.</u>             |                          |                                            |  |  |  |  |
| • Con               | <u>Conduct periodic safety inspection of the laboratory.</u> |                          |                         |                        |                          |                                            |  |  |  |  |
| • Sch               | edule labo                                                   | ratory clean up dates    | with the laboratory r   | nembers.               |                          |                                            |  |  |  |  |
| • Req               | uest for ha                                                  | zardous waste pick up    | )                       |                        |                          |                                            |  |  |  |  |
| esidual risk:       | Residual                                                     | Risk Assessm             | ent Matrix              | are used to            | determine project        | <u>'s risk</u>                             |  |  |  |  |
| evel. The hazard as | ssessment                                                    | matrix (table 1) and th  | e residual risk asses   | sment matrix (table2)  | are used to identify th  | ne residual                                |  |  |  |  |
| sk category.        |                                                              |                          |                         |                        |                          | Formatted: Font: (Default) Times New Roman |  |  |  |  |
| he instructions to  | use hazard                                                   | assessment matrix (ta    | able 1) are listed bel  | ow:                    |                          | Formatted: Font: (Default) Times New Roman |  |  |  |  |
| 1. Def              | ine the wo                                                   | rkers familiarity level  | to perform the task     | and the complexity of  | f the task.              |                                            |  |  |  |  |
|                     |                                                              | associated with famil    | -                       |                        |                          |                                            |  |  |  |  |
|                     | A workshe                                                    |                          |                         |                        |                          |                                            |  |  |  |  |
|                     |                                                              | sment matrix.            |                         |                        |                          |                                            |  |  |  |  |
|                     |                                                              |                          |                         | Complexity             | 7                        |                                            |  |  |  |  |
| -                   |                                                              |                          | Simple                  | Moderate               | – Difficult              |                                            |  |  |  |  |
|                     |                                                              | Very Familiar            | <u> </u>                | 2                      | 3                        |                                            |  |  |  |  |
| Familiari           | ty Level                                                     | Somewhat Familiar        | 2                       | <u>3</u>               | 4                        | Formatted: Line spacing: 1.5 lines         |  |  |  |  |
|                     |                                                              | Unfamiliar               | 3                       | <u>4</u>               | <u>5</u>                 |                                            |  |  |  |  |
|                     |                                                              |                          |                         |                        | ·                        | Formatted: Line spacing: 1.5 lines         |  |  |  |  |
| he instructions to  | use residua                                                  | al risk assessment mat   | rix (table 2) are liste | ed below:              |                          | Formatted: Font: (Default) Times New Roman |  |  |  |  |
| 1. Ider             | ntify the ro                                                 | w associated with the    | familiarity/complex     | tity value $(1-5)$ .   |                          | Formatted: Font: (Default) Times New Roman |  |  |  |  |
| 2. Ider             | ntify the co                                                 | onsequences and enter    | value next to: CON      | SEQ on the PHA         |                          |                                            |  |  |  |  |
|                     | -                                                            | quences are determin     |                         |                        | orst case scenario if    |                                            |  |  |  |  |
| control             |                                                              | •                        | U                       | <u> </u>               |                          |                                            |  |  |  |  |
|                     |                                                              | gible: minor injury res  | ulting in basic first   | aid treatment that car | be provided on site.     |                                            |  |  |  |  |
|                     |                                                              | : minor injury resultir  |                         |                        | •                        |                                            |  |  |  |  |
|                     | -                                                            | rate: injuries that requ |                         |                        |                          |                                            |  |  |  |  |
|                     |                                                              | icant: severe injuries   |                         |                        | quire nospitanzation.    |                                            |  |  |  |  |
|                     |                                                              |                          |                         | <u></u>                |                          |                                            |  |  |  |  |
|                     |                                                              | e: death or permanent    | <u>disability.</u>      |                        |                          |                                            |  |  |  |  |
|                     | ım 509                                                       |                          |                         |                        | 132                      |                                            |  |  |  |  |
| Tea                 |                                                              |                          |                         |                        |                          |                                            |  |  |  |  |
| Tea                 |                                                              |                          |                         |                        | 2021                     |                                            |  |  |  |  |
| Tea                 |                                                              |                          |                         |                        | 2021                     |                                            |  |  |  |  |
| Tea                 |                                                              |                          |                         |                        | 2021                     |                                            |  |  |  |  |



3. Find the residual risk value associated with assessed hazard/consequences: Low –Low Med – Med– Med High – High.

4. Enter value next to: RESIDUAL on the PHA worksheet.

| •                             |                   |                   |                   |                  |                                       | Formatted: Font: (Default) Times New Roman |
|-------------------------------|-------------------|-------------------|-------------------|------------------|---------------------------------------|--------------------------------------------|
| Table 2. Residual risk ass    | essment matrix.   |                   |                   |                  |                                       |                                            |
| Assessed Honord Long          |                   |                   | Conseque          |                  |                                       |                                            |
| Assessed Hazard Level         | Negligible        | Minor             | Moderate          | Significant      | Severe                                |                                            |
| <u>5</u>                      | Low Med           | Medium            | Med High          | High             | High •                                | Formatted: Line spacing: 1.5 lines         |
| <u>4</u>                      | Low               | Low Med           | Medium            | Med High         | High •                                | Formatted: Line spacing: 1.5 lines         |
| 3                             | Low               | Low Med           | Medium            | Med High         | Med High                              | Formatted: Line spacing: 1.5 lines         |
| 2_                            | Low               | Low Med           | Low Med           | Medium           | Medium 4                              | Formatted: Line spacing: 1.5 lines         |
| <u>1</u>                      | Low               | Low               | Low Med           | Low Med          | Medium •                              | Formatted: Line spacing: 1.5 lines         |
|                               |                   |                   |                   |                  | ـــــــــــــــــــــــــــــــــــــ | Formatted: Font: (Default) Times New Roman |
| ecific rules for each ca      | ategory of the ro | esidual risk:     |                   |                  |                                       | Formatted: Line spacing: 1.5 lines         |
| ow:                           |                   |                   |                   |                  |                                       | Formatted: Font: (Default) Times New Roman |
|                               |                   |                   |                   |                  |                                       | Formatted: Font: (Default) Times New Roman |
| • Safety co                   | ntrols are planne | ed by both the w  | orker and super   | <u>visor.</u>    |                                       |                                            |
| <ul> <li>Proceed v</li> </ul> | with supervisor a | uthorization.     |                   |                  |                                       |                                            |
| ow Med:                       |                   |                   |                   |                  |                                       | Formatted: Font: (Default) Times New Roman |
| • Safety co                   | ntrols are planne | ed by both the w  | orker and super   | visor.           |                                       | Formatted: Font: (Default) Times New Roman |
|                               |                   |                   |                   | ed (buddy system | n).                                   |                                            |
|                               | with supervisor a |                   |                   | ea (eaaa) eysten | <u></u>                               |                                            |
|                               | with supervisor a |                   |                   |                  |                                       |                                            |
| ed:                           |                   |                   |                   |                  |                                       | Formatted: Font: (Default) Times New Roman |
| • After app                   | roval by the PI,  | a copy must be    | sent to the Safet | y Committee.     |                                       |                                            |
| • A writter                   | n Project Hazard  | l Control is req  | uired and must    | t be approved b  | y the PI before                       |                                            |
| proceeding.                   | A copy must be    | sent to the Safet | y Committee.      |                  |                                       |                                            |
| • A second                    | worker must be    | in place before   | work can proce    | ed (buddy system | n).                                   |                                            |
|                               | number of autho   | -                 | -                 |                  |                                       |                                            |
|                               | number of dutie   | Jized workers I   | in the hazard are | <u>.</u>         |                                       | Formathed Facts (Default) Times New Demos  |
| led High:                     |                   |                   |                   |                  |                                       | Formatted: Font: (Default) Times New Roman |
| • After app                   | roval by the PI,  | the Safety Com    | mittee and/or E   | HS must review   | and approve the                       | Formatted: Font: (Default) Times New Roman |
| completed P                   | <u>HA.</u>        |                   |                   |                  |                                       |                                            |
| • A writter                   | n Project Hazaro  | d Control is re-  | quired and mu     | st be approved   | by the PI and                         |                                            |
| the Safety Co                 | ommittee before   | proceeding.       |                   |                  |                                       |                                            |
| Team 509                      |                   |                   |                   |                  | 133                                   |                                            |
|                               |                   |                   |                   |                  | 2021                                  |                                            |
|                               |                   |                   |                   |                  | 2021                                  |                                            |



|                    | Two qualified workers must be in place before work can proceed.<br>Limit the number of authorized workers in the hazard area. |   |                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------|
| High:              |                                                                                                                               | _ | Formatted: Font: (Default) Times New Roman |
|                    | The activity will not be performed. The activity must be redesigned to fall in a lower hazard                                 |   |                                            |
| _                  |                                                                                                                               |   |                                            |
| <u></u>            | ategory.                                                                                                                      |   |                                            |
| <u> </u>           |                                                                                                                               |   | Formatted: Font: (Default) Times New Roman |
| -                  |                                                                                                                               |   | Formatted: Font: (Default) Times New Roman |
| -                  |                                                                                                                               |   | Formatted: Font: (Default) Times New Roman |
| Hazard type        | es and examples                                                                                                               |   |                                            |
| Types of Hazard    | Example                                                                                                                       |   | Formatted: Line spacing: 1.5 lines         |
| Physical hazards   | Wet floors, loose electrical cables objects protruding in walkways or doorways                                                | - | Formatted: Line spacing: 1.5 lines         |
|                    |                                                                                                                               | / | Formatted: Font: (Default) Times New Roman |
| Ergonomic hazards  | Lifting heavy objects Stretching the body                                                                                     |   | Formatted: Line spacing: 1.5 lines         |
|                    | Twisting the body                                                                                                             | / | Formatted: Font: (Default) Times New Roman |
|                    | Poor desk seating                                                                                                             |   |                                            |
| Psychological      | Heights, loud sounds, tunnels, bright lights                                                                                  |   | Formatted: Line spacing: 1.5 lines         |
| hazards            |                                                                                                                               |   | Formatted: Font: (Default) Times New Roman |
| Environmental      | Room temperature, ventilation contaminated air, photocopiers, some office plants                                              |   | Formatted: Line spacing: 1.5 lines         |
| hazards            | acids                                                                                                                         |   | Formatted: Font: (Default) Times New Roman |
| Hazardous          | Alkalis solvents                                                                                                              |   | Formatted: Line spacing: 1.5 lines         |
| substances         |                                                                                                                               |   | Formatted: Font: (Default) Times New Roman |
| Biological hazards | Hepatitis B, new strain influenza                                                                                             |   | Formatted: Line spacing: 1.5 lines         |
| Radiation hazards  | Electric welding flashes Sunburn                                                                                              |   | Formatted: Font: (Default) Times New Roman |
|                    |                                                                                                                               | / | Formatted: Line spacing: 1.5 lines         |
| Chemical hazards   | Effects on central nervous system, lungs, digestive system, circulatory system,                                               |   | Formatted: Line spacing: 1.5 lines         |
| -                  | skin, reproductive system. Short term (acute) effects such as burns, rashes,                                                  |   | Formatted: Font: (Default) Times New Roman |
|                    | irritation, feeling unwell, coma and death.                                                                                   |   |                                            |
|                    | Long term (chronic) effects such as mutagenic (affects cell structure), carcinogenic                                          |   |                                            |
|                    | (cancer), teratogenic (reproductive effect), dermatitis of the skin, and occupational                                         |   |                                            |
|                    | asthma and lung damage.                                                                                                       |   |                                            |



| Noise                 | High levels of industrial noise will cause irritation in the short term, and industrial | Formatted: Font: (Default) Times New Roman |
|-----------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|
|                       | deafness in the long term.                                                              | Formatted: Line spacing: 1.5 lines         |
| <u>Femperature</u>    | Personal comfort is best between temperatures of 16°C and 30°C, better between          | Formatted: Font: (Default) Times New Roman |
|                       | 21°C and 26°C.                                                                          | Formatted: Line spacing: 1.5 lines         |
|                       | Working outside these temperature ranges: may lead to becoming chilled, even            |                                            |
|                       | hypothermia (deep body cooling) in the colder temperatures, and may lead to             |                                            |
|                       | dehydration, cramps, heat exhaustion, and hyperthermia (heat stroke) in the             |                                            |
|                       | warmer temperatures.                                                                    |                                            |
| Being struck by       | This hazard could be a projectile, moving object or material. The health effect         | Formatted: Line spacing: 1.5 lines         |
|                       | could be lacerations, bruising, breaks, eye injuries, and possibly death.               | Formatted: Font: (Default) Times New Roman |
| Crushed by            | A typical example of this hazard is tractor rollover. Death is usually the result       | Formatted: Font: (Default) Times New Roman |
| Entangled by          | Becoming entangled in machinery. Effects could be crushing, lacerations, bruising,      | Formatted: Line spacing: 1.5 lines         |
|                       | breaks amputation and death.                                                            | Formatted: Line spacing: 1.5 lines         |
|                       |                                                                                         | Formatted: Font: (Default) Times New Roman |
| High energy           | Explosions, high pressure gases, liquids and dusts, fires, electricity and sources      | Formatted: Line spacing: 1.5 lines         |
| ources                | such as lasers can all have serious effects on the body, even death.                    | Formatted: Font: (Default) Times New Roman |
| /ibration             | Vibration can affect the human body in the hand arm with `white-finger' or              | Formatted: Line spacing: 1.5 lines         |
|                       | Raynaud's Syndrome, and the whole body with motion sickness, giddiness,                 | Formatted: Font: (Default) Times New Roman |
|                       | damage to bones and audits, blood pressure and nervous system problems.                 |                                            |
| lips, trips and falls | A very common workplace hazard from tripping on floors, falling off structures or       | Formatted: Font: (Default) Times New Roman |
|                       | down stairs, and slipping on spills.                                                    | Formatted: Line spacing: 1.5 lines         |
| Radiation             | Radiation can have serious health effects. Skin cancer, other cancers, sterility, birth | Formatted: Line spacing: 1.5 lines         |
|                       | deformities, blood changes, skin burns and eye damage are examples.                     |                                            |
| hysical               | Excessive effort, poor posture and repetition can all lead to muscular pain, tendon     | Formatted: Line spacing: 1.5 lines         |
|                       | damage and deterioration to bones and related structures                                | Formatted: Font: (Default) Times New Roman |
| sychological          | Stress, anxiety, tiredness, poor concentration, headaches, back pain and heart          | Formatted: Line spacing: 1.5 lines         |
| <u> </u>              | disease can be the health effects                                                       | Formatted: Font: (Default) Times New Roman |
| Biological            | More common in the health, food and agricultural industries. Effects such as            | Formatted: Line spacing: 1.5 lines         |
|                       | infectious disease, rashes and allergic response.                                       |                                            |
| <u> </u>              |                                                                                         | Formatted: Font: 8 pt                      |



Formatted

## Project Hazard Control - For Projects with Medium and Higher Risks

| Team member                                                                                                                                                                                                                                                                                                | Phone number                                                                                                                                                                   | e-mail                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ryan Floyd                                                                                                                                                                                                                                                                                                 | 305-542-7542                                                                                                                                                                   | rmf17@my.fsu.edu                                                                                                                                                     |
| Nicolas Picard                                                                                                                                                                                                                                                                                             | 407-714-8610                                                                                                                                                                   | np16b@my.fsu.edu                                                                                                                                                     |
| Ninett Sanchez                                                                                                                                                                                                                                                                                             | 508-405-6281                                                                                                                                                                   | nos16@my.fsu.edu                                                                                                                                                     |
| Andrew Schlar                                                                                                                                                                                                                                                                                              | 850-812-9173                                                                                                                                                                   | as18fy@my.fsu.edu                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | <u> <u> </u></u>                                                                                                                                                     |
| Faculty mentor                                                                                                                                                                                                                                                                                             | Phone number                                                                                                                                                                   | e-mail                                                                                                                                                               |
| Shayne McConomy                                                                                                                                                                                                                                                                                            | 850-410-6624                                                                                                                                                                   | smcconomy@eng.famu.fsu.edu                                                                                                                                           |
| <u> 2</u>                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                                      |
| Rewrite the project steps to inclu                                                                                                                                                                                                                                                                         | de all safety measures                                                                                                                                                         | aken for each step or combination of                                                                                                                                 |
| teps. Be specific (don't just stat                                                                                                                                                                                                                                                                         |                                                                                                                                                                                | *                                                                                                                                                                    |
| Lifting Heavy Parts/Rover:                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                      |
| <ul> <li>Use multiple peop</li> </ul>                                                                                                                                                                                                                                                                      | ole to lift                                                                                                                                                                    |                                                                                                                                                                      |
| Lift with legs                                                                                                                                                                                                                                                                                             | <u>*************************************</u>                                                                                                                                   |                                                                                                                                                                      |
| Wear closed-toed                                                                                                                                                                                                                                                                                           | shoes                                                                                                                                                                          |                                                                                                                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                      |
| Handling Power Tools/Shar                                                                                                                                                                                                                                                                                  | n Objects:                                                                                                                                                                     |                                                                                                                                                                      |
| .Wear gloves.                                                                                                                                                                                                                                                                                              | <u>b Objects.</u>                                                                                                                                                              |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                            | riate piece of equipmer                                                                                                                                                        | at for task                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                            | late piece of equipment                                                                                                                                                        |                                                                                                                                                                      |
| <ul> <li>Tie bair up</li> </ul>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                      |
| <u>Tie hair up</u> Wear closed-toed                                                                                                                                                                                                                                                                        | shoes                                                                                                                                                                          |                                                                                                                                                                      |
| <ul> <li>Wear closed-toed</li> </ul>                                                                                                                                                                                                                                                                       |                                                                                                                                                                                |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                      |
| Wear closed-toed     Wear safety glass                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                      |
| Wear closed-toed     Wear safety glass  Cesting Rover:                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                      |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets                                                                                                                                                                                                                                    | es.                                                                                                                                                                            |                                                                                                                                                                      |
| Wear closed-toed     Wear safety glass <u>     Wear safety glass     Wear helmets     Wear protective k </u>                                                                                                                                                                                               | es.                                                                                                                                                                            | shoulder pads, gloves and safety                                                                                                                                     |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses                                                                                                                                                                                                  | es .<br>nee pads, elbow pads,                                                                                                                                                  |                                                                                                                                                                      |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses                                                                                                                                                                                                  | es .<br>nee pads, elbow pads,                                                                                                                                                  | shoulder pads, gloves and safety<br>ugs, alcohol or prescription medicatio                                                                                           |
| Wear closed-toed     Wear safety glass      Cesting Rover:     Wear helmets     Wear protective k     glasses     Do not operate un                                                                                                                                                                        | es,<br>mee pads, elbow pads,<br>nder the influence of d                                                                                                                        | ugs, alcohol or prescription medicatio                                                                                                                               |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses     Do not operate up  Thinking about the accidents that                                                                                                                                         | es,<br>mee pads, elbow pads,<br>nder the influence of d                                                                                                                        |                                                                                                                                                                      |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses     Do not operate un  Chinking about the accidents that mergency response procedures                                                                                                            | es,<br>mee pads, elbow pads,<br>nder the influence of d<br>t have occurred or that<br>to use.                                                                                  | ugs, alcohol or prescription medication                                                                                                                              |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses     Do not operate un  Chinking about the accidents that mergency response procedures  Should a cut, or scrape occur, the                                                                        | es,<br>mee pads, elbow pads,<br>nder the influence of d<br>t have occurred or that<br>to use.<br>e wound must be tended                                                        | ugs, alcohol or prescription medication<br>you have identified as a risk, describe<br>to immediately using a first aid kit ar                                        |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses     Do not operate un  Chinking about the accidents that mergency response procedures the Should a cut, or scrape occur, the iny applicable safety measures. I                                   | es,<br>enee pads, elbow pads,<br>nder the influence of d<br>t have occurred or that<br>to use.<br>e wound must be tended<br>in the case of a serious                           | ugs, alcohol or prescription medication<br>you have identified as a risk, describe<br>to immediately using a first aid kit ar<br>accident, the riders must remain in |
| Wear closed-toed     Wear safety glass  Festing Rover:     Wear helmets     Wear protective k     glasses     Do not operate un Chinking about the accidents that mergency response procedures the Should a cut, or scrape occur, the iny applicable safety measures. I position to check for possible boo | es,<br>enee pads, elbow pads,<br>nder the influence of d<br>t have occurred or that<br>to use.<br>e wound must be tended<br>in the case of a serious<br>dily damage and then a | ugs, alcohol or prescription medication<br>you have identified as a risk, describe<br>to immediately using a first aid kit ar                                        |

<u>...</u> Formatted Table <u>...</u> Formatted <u>...</u> Formatted <u>...</u> Formatted <u>...</u> Formatted ·... Formatted <u>...</u> Formatted **... Field Code Changed** (... Formatted ·... Formatted ( ... Formatted <u>...</u> Formatted ( ... Field Code Changed <u>...</u> Formatted <u>...</u> Formatted ( ... ) Formatted .... Formatted ( ... Field Code Changed .... <u>...</u> Formatted Formatted .... Formatted **(**... Formatted ( ... **Field Code Changed** (... Formatted <u>...</u> Formatted ( ... Formatted ( ... Formatted <u>...</u> Formatted .... Formatted .... Formatted <u>...</u> Formatted <u>...</u> **Field Code Changed** ( ... Formatted **...** Formatted <u>...</u> Formatted <u>...</u> Formatted <u>...</u> Formatted ( ... Formatted ( ... Formatted <u>...</u> Formatted ... Formatted <u>...</u> Formatted .... Formatted <u>...</u> Formatted <u>...</u> Formatted <u>...</u> Formatted ·... Formatted ( ... Formatted ·... Formatted <u>...</u>)

Team 509

2021



137

2021

| List emergency response con                                                 | ntact information | <u>:</u>                            |              |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------|-------------------------------------|--------------|--|--|--|--|--|--|
| Call 911 for life threatening injuries, fires or other emergency situations |                   |                                     |              |  |  |  |  |  |  |
| Call your dep                                                               | partment represen | tative to report a facility concern |              |  |  |  |  |  |  |
| Name                                                                        | Phone number      | Faculty or other COE emergency      | Phone number |  |  |  |  |  |  |
|                                                                             |                   | <u>contact</u>                      |              |  |  |  |  |  |  |
| Zackary VonZimmerman                                                        | 251-597-4942      | Shayne McConomy                     | 850-410-6624 |  |  |  |  |  |  |
| Benji Charles                                                               | 850-692-4222      |                                     | _            |  |  |  |  |  |  |
| Edwin Ulysse                                                                | 904-708-7928      | _                                   | _            |  |  |  |  |  |  |
| _                                                                           | _                 | _                                   | _            |  |  |  |  |  |  |
| Safety review signatures                                                    |                   |                                     |              |  |  |  |  |  |  |
| Team member                                                                 | Date              | Faculty mentor                      | Date         |  |  |  |  |  |  |
| Ryan Floyd                                                                  | 12/4/2020         | _                                   | _            |  |  |  |  |  |  |
| Nicolas Picard                                                              | 12/4/2020         | _                                   | _            |  |  |  |  |  |  |
| Ninett Sanchez                                                              | 12/4/2020         | _                                   |              |  |  |  |  |  |  |
| Andrew Schlar                                                               | 12/4/2020         |                                     | _            |  |  |  |  |  |  |
| Defenences                                                                  |                   |                                     |              |  |  |  |  |  |  |

## **References**

Bike Forums. (2006, July 11). Maximum Human Torque. BikeForums.net. Retrieved from

https://www.bikeforums.net/general-cycling-discussion/210283-maximum-human-

torque.html#:~:text=Torque%20is%20force%20times%20radius,much%20lower%2C%20somet

hing%20about%2050NM

Ellington, S. (1995, February 14). Bicycle Gearing for Wisconsin Hills. Retrieved from

http://sdellington.us/gearing/gearing.html

Gardner, A. S., Martin, J. C., Martin, D. T., Barras, M., & Jenkins, D. G. (2007, October 10).

Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and

field tests. PubMed.gov. doi:10.1007/s00421-007-0498-4

Grainger. (2020). Trash Pickers & Grabbers. W.W. Grainger. Retrieved November 4, 2020, from

https://www.grainger.com/category/cleaning-and-janitorial/waste-recycling-trash-supplies/trash-

pickers-grabbers

Team 509

## Formatted: Font: Not Bold

| Formatted: Font: Not Bold                   |  |
|---------------------------------------------|--|
| Formatted: Font: Not Bold                   |  |
| Formatted: Font: Not Bold                   |  |
| Formatted: Font: 12 pt                      |  |
| Formatted: Font: Not Bold                   |  |
| Formatted: Left                             |  |
| Formatted: Indent: Left: 0". First line: 0" |  |

Formatted: Indent: Left: 0", First line: 0



Late Model Restoration. (2020). 3 POINT RETRACTABLE SEAT BELT - UNIVERSAL. Late Model Restoration. Retrieved November 5, 2020, from https://lmr.com/item/LRS-B4051000/3point-retractable-seat-belt Maxpeedingrods. (n.d.). For 110cc Go Kart Steering Wheel Quad Parts W/ Steel Gear Rack Pinion. Retrieved from https://www.maxpeedingrods.com/product/fit-110cc-go-kart-steeringwheel-quad-parts-w-steel-gear-rack-pinion.html McConomy, S. (2020, September 16). Senior Design Professor; Project Sponsor; Project Advisor;. (A. Schlar, R. Floyd, N. Sanchez, & N. Picard, Interviewers) McConomy, S. (2020, September 22). Senior Design Professor; Project Sponsor; Project Advisor;. (R. Floyd, & A. Schlar, Interviewers) Menon, A. (2017, July 4). What is the method to calculate turning radius if only the steering ratio and vehicle's basic dimensions are known? Retrieved October 29, 2020, from https://www.quora.com/What is the method to calculate turning radius if only the steeringratio and vehicles basic dimensions areknown#:--:text=Tan%20(a)%20%3Dwheelbase%2Fturning%20radius.&text=Steering%20Ratio %20is%20just%20a,steering%20ration%20is%2030% National Aeronautics and Space Administration (NASA). (2020, August). National Aeronautics and Space Administration Human Exploration Rover Challenge 2021 Guidebook. 1, 48. National Aeronautics and Space Administration. Retrieved September 19, 2020, from https://www.nasa.gov/stem/roverchallenge/guidebook/index.html

Team 509

138



Tire Friction and Rolling Resistance Coefficients Calculator. (n.d.). HPWizard.com. Retrieved

from http://hpwizard.com/tire-friction-coefficient.html

Xbits. (2020). MTB Tire Comparison. BicycleRollingResistance.com.

doi:https://www.bicyclerollingresistance.com/mtb-reviews/compare

Formatted: Indent: First line: 0"

Formatted: Indent: First line: 0", Space After: 8 pt, Line spacing: Multiple 1.08 li

Team 509

139