#### Impact of Landfill Leachate on Iron Release from Northwest Florida Iron Rich Soils

Gang Chen, Tarek Abichou , and Jeffrey Chanton

#### Department of Civil and Environmental Engineering FAMU-FSU College of Engineering Department of Oceanography Florida State University





#### Iron Release in NW Florida



#### Central Landfill Walton County



Fairgrounds Branch below Auto Shred Landfill

#### **Visible Iron Release near Landfills**





Florida State

University

#### Roles of Microorganisms in Iron Release



#### **NW Florida Iron Rich Soil**

#### **Microorganisms**



#### **Carbon and Nutrient Sources**



#### **Iron/Sulfur Bacteria Growth from Unlined Landfills**





Florida State

University

### **Objectives**

- To provide evidence iron can be released from the iron-rich soil
- To quantify the iron release processes





### <u>Outline</u>

- Soil sampling
- Batch experiments
- Results
- Future work
  - Column experiments
  - Soil iron quantification





# **Iron-Reducing Bacteria**



Shewanella oneidensis strain MR-1 growing on the surface of the iron oxide mineral hematite



- Iron-reducing bacteria to reduce iron oxides to ferrous iron
- Shewanella oneidensis strain MR-1 to conserve energy for growth with the structure Fe(III) bound in smectite clay
- Most of the iron on earth in the form of silicate minerals or iron oxides

 $CH_2O + 2Fe_2O_3 + 3H_2O = CO_2 + 4Fe^{2+} + 8OH^{-}$ 



# **Anaerobic Culture Cultivation**



- Sampled soil as base consortium
- Under anaerobic conditions
- Teflon-sealed container equipped with CO<sub>2</sub> entrapping devices
- Mineral salts media



- Glucose as carbon source
- In the presence of simulated leachate and Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·7H<sub>2</sub>O





#### **Anaerobic Bacteria Culturing**







### **Leon County Landfill**









Florida State University

### **Laboratory Experiments**



Leon County Landfill Soil



#### Iron Reducing Bacteria



**Artificial Leachate** 



### **Laboratory Experiment Results**







### Low Iron Content Soil Sample









Florida State University

### **Laboratory Experiments**



#### Low Iron Content Soil



Iron Reducing Bacteria





**Artificial Leachate** 

### **Laboratory Experiment Results**



**Jniversity** 

Florida State University

# Soil and Leachate Sampling

#### Soil and leachate sampled from following landfills:

| Landfill                              | County     |
|---------------------------------------|------------|
| Steelfield Landfill                   | Bay        |
| Perdido Landfill                      | Escambia   |
| Franklin County Central Landfill      | Franklin   |
| Quincy Byrd Landfill                  | Gadsden    |
| Five Points Landfill                  | Gulf       |
| Holmes County Landfill                | Holmes     |
| Springhill Regional Landfill          | Jackson    |
| Leon County Solid Waste Mgmt Facility | Leon       |
| Wright Landfill                       | Okaloosa   |
| Holley Navarre Landfill               | Santa Rosa |
| Santa Rosa Central Landfill           | Santa Rosa |
| Lower Bridge Landfill                 | Wakulla    |
| Walton County Central Landfill        | Walton     |





### **Representing NW Florida**







#### Santa Rosa Central Landfill







### **Perdido Landfill**







# **Soil Sampling**





#### Santa Rosa Central Landfill

#### **Holmes County Landfill**





# **Soil Sampling**



#### Franklin County Central

#### **Steelfield Landfill, Bay County**





# Soil Sampling





# Spring Hill South landfill Jackson County

#### Leon County Landfill





#### **Batch Experiments**







### **Results for 55 Days**







### **Student Training**



#### Microbial activity characterization nearby landfill sites





### **Student Training**



#### Microbial mediated iron transformation





#### Dissemination



ACS 83rd Annual Florida Meeting and Exposition





### www.eng.fsu.edu/~gchen





### Dissemination



Available online at www.sciencedirect.com





Colloids and Surfaces A: Physicochem. Eng. Aspects 302 (2007) 342-348

www.elsevier.com/locate/colsurfa

#### Impact of surface charge density on colloid deposition in unsaturated porous media

Gang Chen\*, Tarek Abichou, Kamal Tawfiq, Pawan Kumar Subramaniam

Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, United States Received 6 December 2006; received in revised form 5 February 2007; accepted 27 February 2007 Available online 3 March 2007





### **Future Work**







# **Support for Funding Acquisition from EPA**

- AGENCY: ENVIRONMENTAL PROTECTION AGENCY (EPA)
- TITLE: "OSWER INNOVATIONS PILOT PROJECTS"
- ACTION: Request for Applications (RFA) Initial Announcement
- RFA NO: EPA-OSWER-IO-06-08

Cooperative Partners. Provide names and phone numbers of individuals and organizations that have agreed to participate in the implementation of the project:

Letters of support from any partners involved with the proposal. If the applicant is including cooperative partners as part of the project team, a letter of support from each cooperative partner is required. The letter must be on the partner's letterhead and must be signed by a responsible official of the partner organization stating their intention to work on and/or contribute funds to the project including an estimate of the funding and time commitment. Letters of support must be provided to document any matching or supplemental funds that are described in the proposal. Letters of support must be received by the closing date and time for receipt of applications under this announcement.





#### **Questions?**



