Usage of Microbial Fuel Cell Technology in Landfills. Year II. Enhanced Organic Compound Decomposition and Nitrogen Removal

Gang Chen, Amy Chan Hilton, and Kamal Tawfiq

Department of Civil and Environmental Engineering FAMU-FSU College of Engineering

Project Website: http://www.eng.fsu.edu/~gchen

Ammonium Source in Landfill Leachate

Protein

> 0.5% of Dry Weight of Municipal Solid Waste

Landfill Leachate with High Ammonium Content

- > Organic Decomposition
- Nutrient Removal
- Energy Generation

Landfills at Isolated Locations

NO2

Anammox for Ammonium Removal

O₂

O2

Electricity Generation

Electron Consumption Separated from Organic Carbon Oxidation

> Landfill Leachate organic Compound Decomposition

 $C_{12}H_{22}O_{11} + 13H_2O \rightarrow 12CO_2 + 48H^+ + 48e^-$

Electricity Generation

Prior Research – Microbial Fuel Cell

Power Generation — Batch MFC

Power Generation — Continuous MFC

Organic Decomposition

Organic Decomposition

	K _S (mg/L)	Y (g/g)	μ_{max} (day ⁻¹)
Glucose	154.3	0.678	0.0124
Gadsden County	271.6	0.323	0.0072
Leon County	172.1	0.412	0.0089
Okaloosa County	163.7	0.486	0.0105
Santa Rosa County	174.5	0.421	0.0093

Iron Release in NW Florida

Central Landfill Walton County

Fairgrounds Branch below Auto Shred Landfill

Visible Iron Release nearby Landfills

Iron Release Prevention Experiments

Parallel Control Experiments

Iron Release Prevention Results

Prior Research – Anammox

Prior Research – Anammox

Anammox Impacted by Alkalinity

Anammox Impacted by Partial Nitrification

Objectives

- 1. Landfill Leachate Treatment in Ammonium Oxidation/MFC Reactor
- 2. Landfill Leachate Treatment in MFC/Anammox Reactor
- 3. System Comparison in terms of Power Generation as well as Organic Compound Decomposition and Nitrogen Removal

Landfill Soil and Leachate Collection

Leachate was collected from a tank, using a bailer at Franklin County Central Landfill. The leachate tank is located near Monitoring Well MW-19.

Landfill Leachate Characterization

- > BOD₅ up to 20,000 mg/l
- > NH_4^+ -N up to 500 mg/l
- Phosphorus up to 200 mg/l

Santa Rosa County Central Landfill

S. putrefaciens and G. metallireducens Culturing

polymerase chain reaction

- Culturing Media
- ➤ KH₂PO₄ 160 mg/l
- ≻ K₂HPO₄ 420 mg/l
- ➢ Na₂HPO₄ 50 mg/l
- ➢ NH₄CI 40 mg/I
- ➢ MgSO₄·7H₂O 50 mg/l
- ➤ CaCl₂ 50 mg/l
- FeCl₃·6H₂O 0.5 mg/l
- ➢ MnSO₄·4H₂O 0.05 mg/l
- ≻ H₃BO₃ 0.1 mg/l
- ➤ ZnSO₄·7H₂O 0.05 mg/l
- ➤ (NH4)₆Mo₇O₂₄ 0.03 mg/l
- Glucose 200 mg/l

Ammonium Oxidation/MFC Reactor

Graphite Rod without Catalyst Coating as Anode, Inoculated with S. putrefaciens

Carbon Cloth as Cathode, Inoculated with G. metallireducens

Synthetic Polymeric Nanoporous Membranes as Cation-Exchange Membrane

Treated Leachate Looped into Cathodic Chamber

Operation Conditions

- ➢ Organic Load (up to 20,000 BOD₅)
- Retention Time (up to 80 hrs)
- ≻ pH (4 to 12)
- > Alkalinity (up to 500 mg/l as $CaCO_3$)
- Nitrification Reaction Time (up to 2 hrs)

MFC/Anammox Reactor

Graphite Rod without Catalyst Coating as Anode, Inoculated with S. putrefaciens

Carbon Cloth as Cathode, Inoculated with G. metallireducens and Anammox Consortia

Synthetic Polymeric Nanoporous Membranes as Cation-Exchange Membrane

Treated Leachate Looped into Cathodic Chamber

Partial Nitrification

Operation Conditions

- ➢ Organic Load (up to 20,000 mg/I BOD₅)
- Retention Time (up to 80 hrs)
- ≻ pH (4 to 12)
- > Alkalinity (up to 500 mg/l as $CaCO_3$)
- Dissolved Oxygen Concentration (up to 0.60 mg/l)

Expected Results

Expected Results

Power Generation

Current and Power

I: Current

E: Voltage

R: Electrical Resistance

P: Power Output

Organic Decomposition Modeling

Organic Decomposition in MFCs

$W(x) + \ln[W(x)] = \ln(x)$

S: Organic Compound Concentration K_m : Half Saturation Constant μ_{max} : Maximum Bacterial Growth Rate t: Time

S₀: Initial Organic Compound Concentration W: Lambert Function

Nitrogen Removal Modeling

Ammonium Removal Rate

$$\frac{d[NH_4^+]}{dt} = -\frac{k_r[NH_4^+]}{K_s + [NH_4^+] + [NH_4^+]^2 / K_I} [X]$$

[NH₄⁺]: Ammonium Concentration t: Time (h)

[X]: Bacterial Cell Concentration

K_r: Ammonium Removal Constant

K_s: Half Saturation Constant

K_I: Inhibition Constant

System Comparison

Ammonium Oxidation/MFC Reactor

- Complete Ammonium Oxidation
- No Cation Passing through Cation Exchange Membrance
- MFC/Anammox Reactor
 - Ammonium Oxidation Coupled with Denitrification
 - More Power Generation
 - Complicated

Timeline of Milestones

Activity	Month 1-3	Month 3 - 6	Month 7 – 9	Month 9 - 12
Landfill Leachate and Soil Sample Collection				
S. putrefaciens and G. metallireducens Culturing				
Landfill Leachate Treatment in Ammonium Oxidation/MFC Reactor				
Landfill Leachate Treatment in MFC/Anammox Reactor				
System Comparison				
Reporting	Quarterly Report	Quarterly Report	Quarterly Report	Final Report

Ammonium Oxidation/MFC Reactor Setup

Ammonia Depletion

Nitrate Production

Time (hr)

Questions?

