next up previous
Next: Dimensional Analysis -II Governing Up: Dimensional Analysis Previous: Dimensional Analysis

tex2html_wrap_inline2807 Theorem

The first step to solve the fluid and heat transfer problem is to find out how many parameters are involved. Let tex2html_wrap_inline2809 n variables having a general relation as

displaymath2771

If the variables may be described with m number of fundamental dimensional units e.g. length, l, time, t, temperature, K, and mass, m, then these variables can be grouped into m-n dimensionless tex2html_wrap_inline2807 terms

displaymath2772

Example :

displaymath2773

Fundamental quantityL tex2html_wrap_inline2205 tex2html_wrap_inline2413 U tex2html_wrap_inline2583 kh tex2html_wrap_inline2837
length l1-3-112100
mass m01100110
time t00-1-1-2-3-30
degree K0000-1-1-11

There are 4 fundamental dimensions, m=4 and 8 variables n=8, there will be tex2html_wrap_inline2851 terms

displaymath2774

displaymath2775

displaymath2776

displaymath2777

for tex2html_wrap_inline2853

displaymath2778

displaymath2779

displaymath2780

displaymath2781

solving the set of algebraic equations yeilds tex2html_wrap_inline2855 , tex2html_wrap_inline2857 , tex2html_wrap_inline2859 and tex2html_wrap_inline2861 which gives

displaymath2782

Nusselt number Similarly

displaymath2783

displaymath2784

displaymath2785

then

displaymath2786

displaymath2787

example Laminar Boundary layer (small Ec)

displaymath2788



Yousef Haik
Sun Sep 1 16:31:13 EDT 1996