Chapter 4: The M68HC11 Instruction Set

- The branch instructions all use relative addressing.
- Always use the JSR instruction to jump to a subroutine.
- Condition code register bits may be used to transfer binary information between parts of a program.

4.18 Further Reading

There are two Motorola references that will help with your programming. The M68HC11xxx Programming Reference Guide is a pocket-size guide with all instructions and their symbolic operations, addressing modes, hexadecimal machine codes, the number of bytes, the number of clock cycles, and the effect on the condition code register. The M68HC11 Reference Manual contains details for programming all I/O in the M68HC11 and a complete listing of the instruction set.

4.19 Problems

4.1 For each of the following questions, assume the memory display of the M68HC11 shows:

C100 B0 53 05 2B 36 89 00 FF FE 80 91 3E 77 AB 8F 7F

Give the results after each of the following instructions is executed.

(a)	LDAA	\$C100	A = ?, NZVC = ?
(b)	Assume IX =	= \$C100	
	LDAA	0,X	A = ?, NZVC = ?
(c)	Assume IX =	\$C100	
	LDAA	6.X	A = ? NZVC = ?

4.2 Use the contents of memory shown in Problem 4.1 and give the results of the following instructions.

(a)	LDX	\$C100	X = ?
(b)	LDY	\$C102	Y = ?
(c)	LDX	\$C103	
	PSHX		
	PULA		
	PULB		X = ?, A = ?, B = ?
(d)	LDD	\$C100	
	LDX	\$C102	
	XGDX		D = ?, X = ?
(e)	Assume IX	= \$C100	
	LDD	\$0A,X	D = ?

4.3 Use the contents of memory shown in Problem 4.1 and give the results of the following instructions.

(a)
$$SP = C105$$

PULA A = ?, SP = ?

76

(1)			
(b)			
	PULA	A = ?	
	PULB	B = ?	
(c)			· · ·
	PSHA		
	PSHB	SP = 2	
(d)	SP = C10A		
	PULA		
	PSHB	A = ?,	SP = ?
Why c	lo store instruction	is not us	e the immediate addressing mode?
			wn in Problem 4.1 and give the results of the following
	ructions.		0
(a)	Assume $IX = C$	2100	
()	BSET 0,X \$0F		(\$C100) = ?
(b)	Assume $IX = $	2100	
(-)	BSET 6,X \$AA		EA = ?, (EA) = ?
(c)	· · · · · · · · · · · · · · · · · · ·	107	
.,	BCLR 0,X \$AA		(\$C107) = ?
(d)		2100	
	BCLR 0,Y \$FF		(\$C100) = ?
Assum		ne NZV	C bits are 0001. Give the result in A and the NZVC
	for each of the fol		
			A; (d) ASRA; (e) ROLA; (f) RORA.
			same operation codes as the LSLx instructions. Why?
			wn in Problem 4.1 and give the results of the following
	ructions.		and a second with the give the results of the following
(a)		2103	
(a)		C104	
	ABA \$C	104	A = ?, B = ?, NZVC = ?
	ΛUΛ		A = i, D = i, IVZVC = i

.

. 1

4.4 4.5

4.6

4.7 4.8

.

(a)	LDAA	90105	
	LDAB	\$C104	
	ABA		A = ?, B = ?, NZVC = ?
(b)	LDX	\$C100	
	LDAB	\$C107	
	ABX		X = ?, NZVC = ?
(c)	LDAB	\$C109	
	ADDB	\$C10A	B = ?, NZVC = ?
(d)	Assume IX =	• \$C100	
	LDAA	9,X	
	ADDA	\$0A,X	A = ?, NZVC = ?
(e)	Assume IX =	\$C100	
	LDAA	9,X	
	SUBA	\$0A,X	A = ?, NZVC = ?
(f)	LDAA	\$C100	
	LDAB	\$C101	
	ABA		
	ADCA	\$C102	A = ?, NZVC = ?
Teo al			min Dashlana & Land mina

4.9 Use the contents of memory shown in Problem 4.1 and give the results of the following instructions.

(a).	LDAA	\$C106	
	NEGA		A = ?, NZVC = ?
(b)	LDAA	\$C107	
	NEGA		A = ?, NZVC = ?
(c)	NEG	\$C109	(\$C109) = ?, NZVC = ?
(d)	LDAA	\$C106	
	COMA		A = ?, NZVC = ?
(e)	LDAA	\$C107	
	COMA		A = ?, NZVC = ?
(f)	COM	\$C109	(\$C109) = ?, NZVC = ?

4.10 After an addition, the carry bit in a status register indicates that a 2's complement overflow has occurred—true or false?

4.11 The following straight binary addition was done in the M68HC11. What is the binary result and what are the N, Z, V, and C flags? 01010111

01100110

4.12 Assume the following M68HC11 code is executed in sequence. Give the hexadecimal result in each of the indicated registers after each instruction is executed.

	Α	В	С	Ν	Z	V	
ldaa #\$4A		XXXX			_		
ldab #\$D3	XXXX					—	
aba							
adca #\$70						_	

4.13 Use the contents of memory shown in Problem 4.1 and give the results of the following instructions.

LDAA	\$C102	
ADDA	\$C104	A = ?
DAA		A = ?

4.14 Use the contents of memory shown in Problem 4.1 and give the results of the following instructions.

(a)	LDAA	\$C102	
.,	ORAA	\$C103	A = ?, NZVC = ?
(b)	LDAA	\$C102	
	EORA	\$C103	A = ?, NZVC = ?
(c)	LDAA	\$C10D	
	ANDA	\$C10E	A = ?, NZVC = ?
(d)	LDAB	\$C102	
	COMB		A = ?, NZVC = ?

4.15 Use the contents of memory shown in Problem 4.1 and give the results of the following instructions.

(a)	LDAA	\$C100	
	CMP	\$C101	A = ?, NZVC = ?
(b)	TST	\$C106	NZVC = ?
(c)	TST	\$C107	NZVC = ?

4.16 Assume the ACCA = \$00 and memory location DATA = \$B0. A CMPA DATA in-

struction is executed followed by a conditional branch. For each of the conditional branch instructions in the table, indicate by yes or no if you expect the branch to be taken.

BGE	BLE	BGT	BLT	BEQ	BNE
BHS	BLS	BHI	BLO		

4.17

Assume the ACCA = \$05 and memory location DATA = \$22. A *CMPA DATA* instruction is executed followed by a conditional branch. For each of the conditional branch instructions in the table, indicate by yes or no if you expect the branch to be taken.

BGE	BLE	BGT	BLT	BEQ	BNE
BHS	BLS	BHI	BLO		

4.18 Assume the ACCA = \$56 and memory location DATA = \$22. A CMPA DATA instruction is executed followed by a conditional branch. For each of the conditional branch instructions in the table, indicate by yes or no if you expect the branch to be taken.

BGE	BLE	BGT	BLT	BEQ	BNĘ
BHS	BLS	BHI	BLO	_	

4.19 Assume the ACCA = \$22 and memory location DATA = \$22. A CMPA DATA instruction is executed followed by a conditional branch. For each of the conditional branch instructions in the table, indicate by yes or no if you expect the branch to be taken.

BGE	BLE	BGT	BLT	BEQ	BNE
BHS	BLS	BHI	BLO		

- Briefly describe what each of the following instructions do. These are separate instructions, not a program.
 COMA; CBA; CMPB 10,X; TSTB; BRN; SWI; BITA \$80; BCC LOOP; XGDX; LSR \$C100; NEGB
- 4.21 Example 4-25 shows how to use shift instructions to multiply by 10. Write an equivalent section of code using the MUL instruction and compare the time taken for the two.
- 4.22 Example 4-26 shows a comparison of the time it takes to do a multiply using the arithmetic shift versus using the MUL instruction. What advantage does using the MUL instruction give you?
- 4.23 Without using IDIV or FDIV, write a segment of M68HC11 code to divide the 16-bit, 2's complement integer number in the D accumulator by 10. Assume the quotient is to remain in D and the remainder is ignored.
- 4.24 Assume two 8-bit, two's-complement, integer numbers are in the A and B accumulators. Write a segment of M68HC11 code to multiply them.

./