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Mathematical modelling of the movement of animals, micro-organisms and cells is of
great relevance in the fields of biology, ecology and medicine. Movement models can take
many different forms, but the most widely used are based on the extensions of simple
random walk processes. In this review paper, our aim is twofold: to introduce the
mathematics behind random walks in a straightforward manner and to explain how such
models can be used to aid our understanding of biological processes. We introduce the
mathematical theory behind the simple random walk and explain how this relates to
Brownian motion and diffusive processes in general. We demonstrate how these simple
models can be extended to include drift and waiting times or be used to calculate first
passage times. We discuss biased random walks and show how hyperbolic models can be
used to generate correlated random walks. We cover two main applications of the
random walk model. Firstly, we review models and results relating to the movement,
dispersal and population redistribution of animals and micro-organisms. This includes
direct calculation of mean squared displacement, mean dispersal distance, tortuosity
measures, as well as possible limitations of these model approaches. Secondly, oriented
movement and chemotaxis models are reviewed. General hyperbolic models based on the
linear transport equation are introduced and we show how a reinforced random walk
can be used to model movement where the individual changes its environment. We
discuss the applications of these models in the context of cell migration leading to
blood vessel growth (angiogenesis). Finally, we discuss how the various random walk
models and approaches are related and the connections that underpin many of the key
processes involved.
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1. INTRODUCTION

The basis of random walk theory can be traced back to
the irregular motion of individual pollen particles,
famously studied by the botanist Brown (1828), now
known as Brownian motion. Classical works on
probability have been in existence for centuries, so it
is somewhat surprising that it was only at the beginning
of the twentieth century that a random walk was
described in the literature, when the journal Nature
published a discussion between Pearson (1905) and
Rayleigh (1905). Physicists, such as Einstein (1905,
1906) and Smoluchowski (1916), were then drawn to
the subject and many important fields, such as
random processes, random noise, spectral analysis and
stochastic equations, were developed during the course
of research on random walks. Random walk theory was
orrespondence (ecodling@essex.ac.uk).
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further developed with the mean-reversion process
(Uhlenbeck & Ornstein 1930).

The first simple models of movement using random
walks are uncorrelated and unbiased. In this context,
uncorrelated means the direction of movement is
completely independent of the previous directions
moved: the location after each step taken in the random
walk is dependent only on the location in the previous
step and the process is Markovian with regard to the
location (Weiss 1994). Unbiased means there is no
preferred direction: the direction moved at each step is
completely random. Assuming that movement in any
direction is allowed, this process is essentially Brownian
motion and such models can be shown to produce the
standard diffusion (or heat) equation.

Correlated random walks (CRWs) involve a corre-
lation between successive step orientations, which is
termed ‘persistence’ (Patlak 1953). This produces a
local directional bias: each step tends to point in the
same direction as the previous one, although the
J. R. Soc. Interface (2008) 5, 813–834
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influence of the initial direction of motion progressively
diminishes over time and step orientations are uniformly
distributed in the long term (Benhamou 2006). Since
most animals have a tendency to move forwards
(persistence), CRWs have been frequently used to
model animal paths in various contexts (e.g. Siniff &
Jessen 1969; Skellam 1973; Kareiva & Shigesada 1983;
Bovet & Benhamou 1988; Turchin 1998).

A global directional bias can be introduced by
making the probability of moving in a certain direction
greater, leading to the drift–diffusion (or advection–
diffusion) equation. Paths that contain a consistent bias
in the preferred direction or towards a given target are
termed biased random walks (BRWs), or biased and
CRWs (BCRWs) if persistence is also observed. The
bias may be due to the fixed external environmental
factors (e.g. bottom heavy micro-organisms moving
upwards under gyrotaxis; Hill & Häder 1997), to
spatially varying factors, such as chemical gradients
(Alt 1980; Othmer et al. 1988), to mean-reversion
mechanisms, such as movement within a home range
(Blackwell 1997), or to a choice of direction by
individuals at each step (Benhamou 2003). The target
direction and strength of bias are not necessarily fixed
over the whole path and may vary with location and
time (e.g. fish larvae aiming for a reef; Codling et al.
2004). When the target direction is fixed for all
individuals in the population, it is possible to quantify
the direction, functional form and magnitude of the
introduced bias (Hill & Häder 1997; Codling & Hill
2005a). However, due to the localized directional
bias (persistence) in CRW, it is a non-trivial
problem to distinguish between the CRW and BCRW
when individuals have different target directions
(Benhamou 2006).

In the context of population redistribution, uncor-
related random walks are classed as position jump
processes (Othmer et al. 1988). In general, they are
valid only for large time scales and can be thought of
as an asymptotic approximation to the true
equations governing movement that include corre-
lation effects. In turn, the CRW and BCRW are
often referred to as velocity jump processes (since
the process involves random changes in velocity) and
have been extensively studied leading to a general
framework to describe these processes (Othmer et al.
1988; Hillen & Othmer 2000; Hillen 2002; Othmer &
Hillen 2002).

The random walks discussed in this paper can have
either a fixed or variable step length. In the case of a
variable step length, only walks where the distribution
of step lengths has finite variance (e.g. the exponential
distribution) are considered. By the central limit
theorem, this means that, after a sufficient length of
time, the location coordinate of an individual walker on
any axis converges to a Gaussian distribution. A
different type of random walk that has generated
much recent interest is the Lévy walk, in which the
distribution of step lengths is heavy tailed, i.e. has
infinite variance. In this case, the walk exhibits scale-
invariant (i.e. fractal) characteristics. Several recent
studies (Viswanathan et al. 1996, 2000) have claimed
that Lévy walks provide a suitable model for animal
J. R. Soc. Interface (2008)
movements, although this is still the subject of some
controversy (Benhamou 2007; Edwards et al. 2007;
James & Plank 2007) and they may not be as generally
applicable as once thought. In fact, many of the
observed patterns that are attributed to Lévy processes
can be generated by a simpler composite random
walk process where the turning behaviour is spatially
dependent (Benichou et al. 2006; Benhamou 2007).
A full review of Lévy walks is outside the scope of
this paper.

Our aim in this review paper is to produce a
comprehensive reference that can be used by both
mathematicians and biologists. Other books and
review papers are available in this field (e.g. Weiss
1994; Turchin 1998; Okubo & Levin 2001; Hillen
2002), but we have yet to find one paper including all
the key results while also explaining how the models
used in different biological contexts are related to one
another. Random walk theory is generally applied in
two main biological contexts (although these are by no
means exclusive and there are many other relevant
contexts): the movement and dispersal of animals and
micro -organisms, and chemotaxis models of cell
signalling and movement. As we aim to demonstrate
in this review, most of the modelling approaches used
in these different contexts are based on the same
underlying models. The paper is split into two main
sections. In §2, the fundamental theory and equations
of random walks are introduced, and the central ideas
of bias and persistence are developed in some detail.
Section 3 reviews the use of random walks in relation
to animal and cell movements, by showing how the
theory can be used to predict information about rates
of spread and tortuosity, and movements that are
governed by chemical signalling agents (or other
stimuli). We discuss the benefits and limitations of
the different approaches used, and the connections
that underpin the models and results. We briefly
explain some of the more complex models available in
the literature, where relevant. Our aim is to be
comprehensive but not exhaustive; the reader is
referred to key papers for further details and exten-
sions of the basic ideas.
2. FUNDAMENTALS OF RANDOM WALKS

The simple isotropic random walk model (SRW) is
the basis of most of the theory of diffusive processes.
The walk is isotropic, or unbiased, meaning that the
walker is equally likely to move in each possible
direction and uncorrelated in direction, meaning that
the direction taken at a given time is independent of
the direction at all preceding times. Using this model,
it is straightforward to derive an equation for the
probability density function (PDF) for the location of
the walker in one dimension, either by considering the
limit as the number of steps gets very large or by
using a difference equation (we illustrate these
approaches in §§2.1 and 2.2). In §§2.3 and 2.4, we
show how the SRW is extended to higher dimensions
and, in §2.5, we discuss the general properties of
diffusive processes and some limitations of models
that use such an approach. In §2.6, we give a simple
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example of a random walk to a barrier to demonstrate
how the SRW can form the basis of more complex
models of movement.

An important extension to the SRW is the CRW,
in which there is a persistence in the walker’s
direction of movement. In §2.7, an equation, known
as the telegraph equation, describing the simplest one-
dimensional CRW is derived and, in §2.8, its relation to
the standard diffusion process is discussed. In §2.9, we
demonstrate how this analysis can be extended to
include bias in the global direction of movement.
However, in two (or more) dimensions a similar analysis
(for both the unbiased and biased cases) does not lead
to a closed-form equation for the probability density
in space and time. We discuss this problem and its
implications in §2.10.
2.1. The simple isotropic random walk

Consider a walker moving on an infinite one-dimensional
uniform lattice (i.e. a line split into discrete points).
Suppose the walker starts at the origin (xZ0) and then
moves a short distance d either left or right in a short
time t. The motion is assumed to be completely random,
so the probabilities of moving both left and right are 1/2.
After one time step, the walker can either be at a distance
d to the left or right of the origin, with probability 1/2
each. After the next time step, the walker will either be
at a distance 2d to the left or right of the origin (with
probability 1/4 each) or will have returned to the
origin (with probability 1/2). Note that, after an even
(odd) number of steps, the walker can only be at an
even (odd) distance away from the origin. Continuing in
this way, the probability that a walker will be at a
distance md to the right of the origin after n time
steps (where m and n are even) is given by

pðm;nÞZ 1

2

� �n
n

nKm

2

0
BB@

1
CCA

Z
n!

2nððnCmÞ=2Þ!ððnKmÞ=2Þ! : ð2:1Þ

This is a form of the binomial distribution, with mean
0 and variance n. For large n, this converges to a
normal (or Gaussian) distribution so, after a sufficiently
large amount of time tZnt, the location xZmd of the
walker is normally distributed with mean 0 and variance
d2t/t. Taking the limit d, t/0 such that d2/tZ2D,
where D is a constant known as the diffusion coefficient,
gives the PDF for the location of the walker after time t

pðx; tÞZ 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp
Kx 2

4Dt

� �
: ð2:2Þ

Note that this is the fundamental solution of the diffusion
equation (see §2.2).

Useful time-dependent statistics of this process are
the mean location E(Xt) and the mean squared
J. R. Soc. Interface (2008)
displacement (MSD) EðX2
t Þ, defined as

EðXtÞZ
ðN
KN

xpðx; tÞ dx;

EðX2
t ÞZ

ðN
KN

x2pðx; tÞ dx:

9>>=
>>; ð2:3Þ

Note that here, and throughout the paper, we adopt the
convention that random variables are denoted by upper
case letters (e.g. X, Q), while the possible numerical
values of these variables are denoted by lower case
letters (e.g. x, q; see Grimmett & Stirzaker 2001). For the
one-dimensional solution (2.2), it is easy to show that
E(Xt)Z0 and EðX 2

t ÞZ2Dt. The first result illustrates
the absence of a preferred direction or bias (on average
there is no overall movement in any direction), while the
second result illustrates the standard property of a
diffusive process—that MSD increases linearly with
time. This contrasts with a system or process where
the signal propagates as a wave (ballistic movement), in
which MSD increases linearly with t2 (Murray 1993;
Okubo & Levin 2001). This relationship between MSD
and D, and its equivalence in higher dimensions (see
§2.3), is extremely important as it provides a means of
estimating from empirical data the diffusion coefficientD
that is used in many mathematical models of spatial
population dynamics and diffusive processes.
2.2. A BRW with waiting times

It is also a standard procedure (Lin & Segel 1974;
Okubo & Levin 2001) to derive the governing equation
for a SRW using a difference equation, and sub-
sequently solve to find solutions of the form (2.2).
This method also allows more complex processes to be
modelled as part of the random walk and we illustrate
this in the following example by including both a
preferred direction (or bias) and a possible waiting time
between movement steps.

Consider a walker moving on a one-dimensional
lattice, where, at each time step t, the walker moves a
distance d to the left or right with probabilities l and r,
respectively, or stays in the same location (‘waits’),
with probability 1KlKr (the isotropic random walk in
§2.1 has rZlZ1/2 and there is no waiting time). Now,
if the walker is at location x at time tCt, then there are
three possibilities for its location at time t: (i) it was at
xKd and then moved to the right, (ii) it was at xCd and
then moved to the left, and (iii) it was at x and did not
move at all. Thus we have

pðx; tCtÞZ pðx; tÞð1KlKrÞCpðxKd; tÞr

CpðxCd; tÞl: ð2:4Þ

We now assume that t and d are small, so (2.4) can be
expressed as a Taylor series about (x, t). This gives the
partial differential equation (PDE)

vp

vt
ZK

de

t

vp

vx
C

kd2

2t

v2p

vx2
COðt2ÞCOðd3Þ; ð2:5Þ

with eZrKl; kZlCr ; and where O(t2) and O(d3)
represent higher order terms. Now let d, t/0 in such a
way that the following limits are positive and finite
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(compare with §2.1):

u Z lim
d;t/0

de

t
; D Z k lim

d;t/0

d2

2t
: ð2:6Þ

The requirement that d2/t remains positive and finite as
d, t/0 implies that the difference eZrKl between the
probabilities of moving left and right must be pro-
portional to d, and that e/0 as d, t/0. Hence, the
probabilities r and l are not fixed, but vary with the
spatial and temporal step sizes such that the above
limits exist. Under these limits, the O(t2) and O(d3)
terms in (2.5) tend to zero, giving

vp

vt
ZKu

vp

vx
CD

v2p

vx2
: ð2:7Þ

This is called the drift–diffusion (or advection–diffusion)
equation: the first term on the right-hand side represents
drift due to the bias in the probability of moving in the
preferred direction and the second term represents
diffusion. If we set rZlZ1/2, then we get uZ0 and
(2.7) reduces to the basic diffusion equation (which has
solution (2.2)). Equation (2.7) is a special case of the
Fokker–Planck equation (see §2.4) where the diffusion
coefficient D is constant. Similarly, multiplying (2.7) by
the total population size gives an equation of similar
form for the number density of the population (assuming
that all individuals act independently of each other),
which is a special case of Fick’s equation, with constant
diffusion coefficient D (see Okubo & Levin 2001).

It is worth noting that, owing to the waiting time
between movements, the value of the diffusion constant
D is smaller (kZlCr!1 in this case) than that in §2.1
and hence, as expected, diffusion is less rapid. Note also
that, due to the way the limits are taken in (2.6), the
term eZrKlmust tend to zero in order to obtain a finite
drift rate u.

The solution of (2.7) subjected to the initial condition
p(x, 0)Zdd(x) (the Dirac delta function), which means
that the walker is at xZ0 at time tZ0, is (Montroll &
Shlesinger 1984; Grimmett & Stirzaker 2001)

pðx; tÞZ 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt

p exp
KðxKutÞ2

4Dt

� �
; ð2:8Þ

which is similar to (2.2), except for the drift term in the
exponential, which shifts the centre of the Gaussian
distribution from xZ0 to xZut.

The mean location and the MSD can be easily
calculated by substituting (2.8) into (2.3). Alternatively,
it is possible to calculate the moments directly from the
governing PDE (2.7). This is a technique that is
particularly useful in more complex models when the
governing differential equation is known, but the solution
for p(x, t) may be difficult or impossible to find (see §3.5).
First, we multiply equation (2.7) either by x (to find
mean location) or by x2 (to find MSD) and integrate by
parts. Then, using the definitions in (2.3), the fact thatðN

KN
pðx; tÞ dx Z 1

and making the reasonable assumption that p(x, t) and
its first two derivatives with respect to x tend to zero as
jxj/N, we get

EðXtÞZ ut; EðX2
t ÞZ u2t2 C2Dt: ð2:9Þ
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Note that, in contrast to the isotropic (unbiased) random
walk in §2.1, theMSD of a diffusion process with drift has
EðX2

t Þwt 2 (when t is large), so the signal propagates as a
wave. For such a process, the statistic

s2t Z

ðN
KN

ðxKEðXtÞÞ2pðx; tÞ dx; ð2:10Þ

which measures the dispersal about the mean location
E(Xt), is a more appropriate measure than EðX2

t Þ, which
measures the dispersal about the origin. For (2.7), we get
s2t Z2Dt, which is linear in time and hence characteristic
of a standard diffusive process.
2.3. The BRW in higher dimensions

A similar derivation to that in §2.2 can be completed
using an N-dimensional lattice to give the standard
drift–diffusion equation

vp

vt
ZKu$VpCDV2p; ð2:11Þ

where u is the average drift velocity (now an N-
dimensional vector); V is the gradient operator; and V2

is the Laplacian. Assuming an initial Dirac delta
function distribution pðx; 0ÞZddðx 1Þ;.; ddðxN Þ (i.e.
the walker starts at xZ0), (2.11) has the following
solution (Montroll & Shlesinger 1984; Grimmett &
Stirzaker 2001):

pðx; tÞZ 1

ð4pDtÞN=2
exp

KjxKutj2

4Dt

� �
: ð2:12Þ

Figure 1a,b shows the PDF and some sample paths of a
BRW on a two-dimensional lattice. The moments of the
probability distribution can be calculated in a similar
way to §2.2. The mean location is E(Xt)Zut. The MSD
is defined in N dimensions by

EðR2
t ÞZ

ð
RN

jxj2pðx; tÞ dx

Z

ð
RN

ðx 2
1 C/Cx2N Þpðx; tÞ dx1.dxN ð2:13Þ

with RtZjXtj and, for (2.12), is given by

EðR2
t ÞZ juj2t 2 C2NDt: ð2:14Þ

It is interesting to note that, if two-dimensional
movement is not restricted to a lattice (box 1), then diffu-
sion in the direction of the bias is lower than that in the
perpendicular direction (see ch. 2 of Codling 2003; Coscoy
et al. 2007). This result is not always properly considered
in spatial population dynamics models, where diffusion
is usually assumed to be the same in all directions even
when there is an average drift in a particular direction.
2.4. The Fokker–Planck equation

It is also possible to extend the SRW in two (or more)
dimensions to include movement probabilities that are
spatially dependent. This results in the Fokker–Planck
equation for p(x, y, t) (Okubo & Levin 2001). Suppose
that an individualmoves ona two-dimensional lattice.At
each time step t, an individual can move a distance d

either up, down, left or rightwith probabilities dependent
on location, given by u(x, y), d(x, y), l(x, y) and r(x, y),
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Figure 1. (a,c,e) PDFs and (b,d, f ) sample paths of different random walks. (a,b) A lattice BRW with probabilities of moving a

distance d right or left of t(D/d2Gu/(2d)) and up or down of tD/d2. (c,d) A non-lattice CRW with probabilities of turning an

angle dq clockwise or anticlockwise of ts20=ð2d2qÞ. (e, f ) A non-lattice BCRW with probabilities of turning clockwise or

anticlockwise of t s20=ð2d2qÞGq=ð2BdqÞ
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(cf. the linear reorientation model of §3.4). In the BRW and BCRW, the global preferred

direction is q0Z0; in the CRW and BCRW, the initial direction is qZp/2 and the walker moves with constant speed v. In all

cases, the walker starts at (x, y)Z(0, 0) at tZ0 and is allowed to move until tZ10. The PDFs p(x, y, tZ10) were calculated from

106 realizations of the walk. In (a), the white lines show the contours of the corresponding theoretical PDF (2.12). In the sample

paths for the BRW, at each step the walker either stays still or moves right, left, up or down by a distance d. In the CRW and

BCRW, at each step the walker’s direction of motion q either stays the same or turns clockwise or anticlockwise by an angle dq,

and the walker’s movement is given by the vector vt(cos q, sin q). Parameter values: DZ0.2, uZ0.5, s20Z0:5, BZ2.5, vZ0.5.
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respectively (with uCdClCr%1), or remain at the same
location with probability 1Ku(x, y)Kl(x, y)Kd(x, y)K
r(x, y). We now use a difference equation as in §2.2,
expand as a Taylor series and define the following
parameters:

bi Z lim
d;t;ei/0

eid

t
; aii Z lim

d;t/0

kid
2

2t
; ði Z 1; 2Þ;
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with e1ZrKl; e2ZuKd; k1ZrCl; and k2ZuCd. (As these
parameters are spatially dependent, we also need to define
partial spatial derivatives ofaand b in the same limit.)Now,
taking appropriate limits as d, t, e1, e2/0, such that e1d/t,

e2d/t, k1d
2/(2t) and k2d

2/(2t) all tend to constants, gives

vp

vt
ZKV$ðupÞCV$ðDVpÞ; ð2:15Þ



Box 1. Stepping off the lattice.

The simple random walk models discussed in §2 are mostly restricted to N-dimensional lattices so that there are only a

finite number of choices of direction at each time step. A more realistic model allows for a continuous choice of direction. In

two dimensions, this means that the walker is allowed to move in any direction q on the unit circle. Linear statistical measures

cannot be used because any angular value q is only defined modulo 2p, so q and qC2p correspond to the same direction.

Instead, circular distributions can be used to draw random angles for either the direction of movement (in an SRW or BRW)

or turning angle (in a CRW or BCRW) at each step of a two-dimensional random walk.

Useful moments of a circular distribution (with PDF f(q)) are the mean cosine c and the mean sine s, defined as

cZEðcos QÞZ
ðp
Kp

cos qf ðqÞ dq; sZEðsin QÞZ
ðp
Kp

sin qf ðqÞ dq:

The mean angle is given by q0Zarctan (s/c) if cO0 and by q0Zarctan (s/c)Cp if c!0, and the mean vector length r as

rZ(s2Cc2)1/2, which gives a measure of how peaked the distribution is about the mean angle (Mardia & Jupp 1999).

Commonly used circular distributions are (Batschelet 1981; Mardia & Jupp 1999) as follows:

— The von Mises distribution

f ðqÞZM ðq; q0; kÞh
1

2pI0ðkÞ
ek cos ðqKq0Þ;

where I0 denotes the modified Bessel function of the first kind and order 0, defined by ImðkÞZ 1
2p

Ð p
Kp cos mqek cos q dq. The

mean vector length for this distribution is rZI1(k)/I0(k).

— The wrapped normal distribution

f ðqÞZW ðq; q0; sÞh
1

s
ffiffiffiffiffiffi
2p

p
XN
kZKN

exp K
ðqK q0 C2pkÞ2

2s2

� �
:

The mean vector length for this distribution is rZeKs2=2, where sigma is the standard deviation of the linear normal

distribution before wrapping.

— The wrapped Cauchy distribution

f ðqÞZCðq; q0; rÞh
1

2p

1Kr2

1Cr2K2r cos ðqK q0Þ

� �
:

The wrapped normal distribution is the standard normal distribution ‘wrapped’ around a unit circle, and is hence easy to

interpret and simulate. The von Mises distribution is easier to deal with analytically, however, and is similar to the wrapped

normal distribution with the same mean cosine, so is often used instead of the wrapped normal. The wrapped Cauchy

distribution is more peaked, with fatter tails than the von Mises and wrapped normal (Mardia & Jupp 1999).

In three-dimensional space, a second angular direction fmust also be specified, and spherical distributions defined (Fisher

et al. 1987). Spherical distributions and data are difficult to deal with (which may be the reason why many movement studies

are restricted to two dimensions), although it is possible to use a vector-based approach (e.g. Uttieri et al. 2007).
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with

uðx; yÞZ
b1ðx; yÞ
b2ðx; yÞ

 !
;

Dðx; yÞZ
a11ðx; yÞ 0

0 a22ðx; yÞ

 !
:

Equation (2.15) is an example of the Fokker–Planck
diffusion equation, which is similar to the two-dimensional
drift–diffusion equation (2.11), except that thedrift rateand
the diffusion coefficient now depend on location. In
principle, equation (2.15) can be solved if the dependence
of u andD on (x, y) are known, but this is usually possible
only in the simplest cases. A similar derivation can also be
completed for a random walk process where movement is
not restricted to a lattice (box 1). This leads to a governing
equation similar to (2.15), although the off-diagonal
terms, a12 and a21, in the diffusion matrix D may be
non-zero due to the covariance in the movement direction
J. R. Soc. Interface (2008)
(it becomes possible to move some distance in both the x
and y directions at each step; see ch. 2 of Codling 2003,
for further details).
2.5. General diffusive properties and model
limitations

Closer inspection of the diffusion equation solutions
(2.2) and (2.8) shows that the following important
property holds: p(x, t)O0 for all locations x and all
positive times t. Hence, for any positive time (no matter
how small), there is a positive probability of being at
any finite location.

Inpractice, theprobability of beingatanexceptionally
large distance away from the origin after an infinitesimal
time step is extremely small. However, the fact that this
property of ‘infinite propagation speed’ exists suggests
that the limiting process involved in deriving the
governing equation of the SRW model has some
limitations. As shown in §2.2, to derive the governing
equation of a simple BRW, we take limits assuming that
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d2/tZ2D is constant as d, t/0 (where d is the distance
moved at each time step t). Clearly, if this property holds
then, in the same limit, we get d/t/N, i.e. the effective
instantaneous speed is infinite (Okubo & Levin 2001).
The solution of the diffusion equation should hence be
considered only as an asymptotic approximation, valid
for large times (t[t), of equations that more accurately
describe the correlations in movement and finite speeds
that are present when considering movement at shorter
time scales.

A more detailed discussion of the infinite propa-
gation speed in diffusive processes can be found in
Okubo & Levin (2001), while in §2.7 we present a simple
model based on a velocity jump process (rather than a
position jump process), which avoids this problem.
2.6. Random walks with a barrier

To model movement in a confined domain, one can
introduce a repelling or reflecting barrier into the
random walk: a walker reaching the barrier will
automatically turn around and move away in the
opposite direction. Similarly, to model movement
where walkers leave the system upon reaching a given
point, one can introduce an absorbing barrier. Models
such as these are not only appropriate to model
movement in space, but they are also suited to
modelling development and growth where critical life
stages are reached (Pitchford & Brindley 2001;
Pitchford et al. 2005; Mullowney & James 2007) and
to ‘integrate and fire’ models of nerve responses
(Iyengar 2000). These are examples of first passage
time (or first hitting time) problems, in which the
distribution of the time taken to reach an absorbing
barrier is of primary interest (Condamin et al. 2007).

The simple example of an absorbing barrier given
below is adapted from an example by Grimmett &
Stirzaker (2001). Suppose we have a one-dimensional
random walk process that satisfies the drift–diffusion
equation (2.7) for xO0. Suppose the walker starts at
location xZx0O0, and there is an absorbing barrier at
xZ0 such that, if the walker reaches the point xZ0, it is
removed from the system. The appropriate boundary
and initial conditions in this case are

pð0; tÞZ 0 tR0; ð2:16Þ

pðx; 0ÞZ ddðxK x0Þ xR0: ð2:17Þ
The solution to (2.7) with initial condition (2.17) is
simply given by (2.8) with x replaced by xKx0. The
solution to (2.7), which takes into account both
conditions (2.16) and (2.17), can be found by extending
a result from Grimmett & Stirzaker (2001). This may
then be used to derive the PDF of the time Ta until the
absorption of the walker. At time t, either the walker
has been absorbed or its location has PDF given by
p(x, t), and hence

PrðTa% tÞZ1K

ðN
0
pðx; tÞ dx Z 1KJ

utCx0ffiffiffiffiffiffiffiffi
2Dt

p
� �

CJ
utK x0ffiffiffiffiffiffiffiffi

2Dt
p

� �
eKux 0=D; ð2:18Þ
J. R. Soc. Interface (2008)
where JðxÞZð1=
ffiffiffiffiffiffi
2p

p
Þ expðKx2=2Þ is the PDF of the

standard normal distribution function N(0, 1). Differ-
entiation of (2.18) with respect to t gives the PDF of the
absorbing time Ta

fTa
ðtÞZ x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDt3
p exp

Kðx 0 CutÞ2

4Dt

� �
: ð2:19Þ

From(2.18), it is easy to see that theprobability of absor-
ption taking place in a finite time (Ta!N) is given by

PrðTa!NÞZ
1 if u%0;

eKux 0=D if uO0:

(
ð2:20Þ

Thus, the walker is certain to be absorbed within a finite
time if there is no overall drift or if there is a drift towards
the barrier (u%0). If there is a drift away from the
barrier, there is still a possibility of the walker being
absorbed (because the random walk process allows for
individual steps towards the barrier, even though steps
away from the barrier are more likely), but this
probability decreases exponentially as the rate of drift
u, or the initial distance x0 from the barrier, increases.
Conversely, if the rate of diffusion D increases, the
probability of absorption will increase.

A similar analysis is possible for a reflecting barrier
(Grimmett&Stirzaker 2001) and the SRWmodel can be
extended or analysed in many other ways. Montroll &
Shlesinger (1984) give a good review of the general
theory of random walks and discuss a wide variety of
ideas and problems.
2.7. CRWs and the telegraph equation

A CRW takes into account short-term correlations in
the direction of movement. In most cases, this means
that the walker is more likely to move in the same or a
similar direction to its previous movement direction.
This tendency to continue in the same direction is
known as persistence (Patlak 1953; see for example
figure 1d ). By explicitly including persistence and a
fixed speed of movement in the random walk process,
the problem of infinite propagation speed discussed in
§2.5 is avoided (see also the discussion in Turchin
1998). The location at each step of the random walk is
no longer a Markov process (as it depends on the
sequence of previous locations). Hence the usual
framework for describing a CRW is a velocity jump
process, in which the variable following a Markov
process is the walker’s velocity rather than the location
(Othmer et al. 1988).

Consider a population of individuals moving either
left or right along an infinite line at a constant speed v.
Denote the density of right- and left-moving individuals
at location x and time t by a(x, t) and b(x, t),
respectively. The total population density is p(x, t)Z
a(x, t)Cb(x, t). At each time step t, each individual
either changes direction and moves a distance d in this
new direction (with probability rZlt), or moves a
distance d in the previous direction (with probability
qZ1Klt). Hence, turning events occur as a Poisson
process with rate l. If we take a forward time step, then
the number density of individuals at location x moving
right and left, respectively, is given by
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aðx; tCtÞZ ð1KltÞaðxKd; tÞCltbðxKd; tÞ; ð2:21Þ

bðx;tCtÞZltaðxCd;tÞCð1KltÞbðxCd;tÞ: ð2:22Þ

Expanding these as Taylor series and taking the limit d,
t/0 such that d/tZv gives

va

vt
ZKv

va

vx
ClðbKaÞ; ð2:23Þ

vb

vt
Zv

vb

vx
KlðbKaÞ: ð2:24Þ

Adding (2.23) and (2.24) and differentiating with
respect to t, and subtracting (2.23) from (2.24) and
differentiating with respect to x, respectively, give

v2ðaCbÞ
vt 2

Zv
v2ðbKaÞ
vx vt

; ð2:25Þ

v2ðbKaÞ
vx vt

Zv
v2ðaCbÞ

vx 2
K2l

vðbKaÞ
vx

: ð2:26Þ

Finally, substituting (2.26) into (2.25), and using
(2.23), (2.24) and the fact that aCbZp give

v2p

vt2
C2l

vp

vt
Zv2

v2p

vx2
: ð2:27Þ

Equation (2.27) is an example of the telegraph
equation, so called because it was originally studied
by Lord Kelvin in relation to signals propagating across
the transatlantic cable (Goldstein 1951). Goldstein
(1951) was the first to show that the equation is also the
governing equation of this special type of random walk
process. Kac (1974) also completed a similar analysis to
that shown previously, and hence this general type of
movement process is often termed the Goldstein–Kac
model. More recently, Shlesinger (2003) has demon-
strated that a random walk with a coupled space–time
memory can also be used to derive (2.27).

Note that, although (2.27) describes a correlated
movement process, the random walk is globally
unbiased in the sense that there is no overall preferred
direction, simply a tendency for individuals to persist in
their present direction of motion (a localized bias).
Although the original process uses a fixed time step t,
the mean time between turning events, �tZ1=l, is
different since the telegraph process does not have a
turning event at every time step.

Equation (2.27) can be solved given the initial
conditions p(x, 0) and (vp/vt)(x, 0), but the full solution
is quite complex (see Morse & Feshbach 1953, for
details). Since there is a fixed speed v, the solution does
not imply infinite propagation speeds (as found with the
solutions (2.2) and (2.8) of the diffusion equation).

It is possible to use a similar method to that used in
§2.2 to derive equations for the moments of the
solution: E(Xt)Z0 and

EðX2
t ÞZ

v 2

l
tK

1

2l
ð1KeK2ltÞ

� �
: ð2:28Þ

For small t (i.e. tz1/l), EðX 2
t ÞwOðv 2t2Þ, which is

characteristic of a wave propagation process; for large t,
EðX2

t ÞwOðv2t=lÞ, which is characteristic of a diffusion
process (box 2).
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2.8. Diffusion limit of the telegraph equation

In §2.1, we showed that the diffusion coefficient of
a SRW is DZd2/(2t), where d is the distance moved
at each jump and t is the time step between jumps.
Since the telegraph turning process is a Poisson
process of intensity l, the mean time between turning
events is �tZ1=l and the average distance moved
between turning events is �dZv=l. Hence the effective
diffusion coefficient for the telegraph process is indeed
given by

D Z
�d
2

2�t
Z

v 2

2l
: ð2:29Þ

Thus, the ‘diffusion limit’ of the telegraph process
consists of letting l/N and v/N, while maintaining
v2/l as a constant (equivalent to letting t/0 and
d/t/N, while maintaining d2/t as a constant in the
SRW). We can therefore argue that, as l/N, both the
uncorrelated SRW and the correlated telegraph process
tend to the same limit. This is equivalent to the large
time-limiting solutions of both processes being the
same, due to short-term correlation effects becoming
less evident at large time scales (more detailed analysis
and discussion can be found in Othmer et al. 1988;
Hillen & Othmer 2000; Okubo & Levin 2001; Hillen
2002; Othmer & Hillen 2002). This limiting process is
also known as the ‘parabolic limit’ of the telegraph
process (box 3).
2.9. The biased telegraph equation

The derivation of the biased one-dimensional telegraph
equation is similar to the unbiased case, except that we
use different turning probabilities depending on the
direction of movement. Denoting the probability of
turning by r1Zl1t for right-moving individuals and
r2Zl2t for left-moving individuals, it can be shown that
the governing equation, called the biased telegraph
equation, is

v2p

vt2
Cðl1 Cl2Þ

vp

vt
Cvðl2K l1Þ

vp

vx
Z v2

v2p

vx2
: ð2:30Þ

Comparing with (2.27), it can be seen that the presence
of bias in the process introduces a drift term into the
governing equation. If l1Ol2 then an individual is more
likely to turn if right moving and hence there will be a
drift to the left (and vice versa). If l1Zl2 then (2.30)
reduces to the unbiased form given in (2.27). As with
the unbiased case, it is straightforward to calculate
the moments directly from (2.30), but the details
are omitted.

Note that, in this example, the bias is introduced
through the different rate of turning in each direction,
which is a form of klinokinesis; this contrasts with the
uncorrelated BRW in §2.2, where the bias came about
through the probability of moving in each direction,
which is a form of taxis (see §3.8).
2.10. The telegraph equation in higher
dimensions

In §2.5, the solution to the two-dimensional diffusion
process with or without drift was shown to be valid only



Box 2. Anomalous diffusion.

As discussed in §§2 and 3, the MSD EðR2
t Þ, defined in (2.13), for a typical diffusive random walk is linearly related to time

(or number of steps) as in (2.14). However, there are situations where dispersal may not be diffusive, and the MSD is not

linear in time but instead has some other power-law relationship. Such situations are known as anomalous diffusion (e.g.

Weeks et al. 1996). The key parameter is the value of m that is observed in the relation EðR2
t Þwtm. There are five possible

situations to consider.

— mZ0. This corresponds to a stationary process with no movement over the period of observation.

— 0!m!1. This situation is known as sub-diffusion since MSD increases at a slower rate than in the case of standard

diffusion. Such situations typically occur when waiting times between steps are included in the models of movement (e.g.

Weeks et al. 1996; although a model with waiting times may not always be sub-diffusive, see §2.2), or if the spatial domain

is constrained in some way (Coscoy et al. 2007), e.g. with the presence of a barrier (as in §2.6).

— mZ1. This is the standard relation between MSD and time for diffusive movement.

— 1!m!2. This situation is known as super-diffusion since MSD increases at a faster rate than in the case of standard

diffusion (although not so fast as with ballistic movement). Such situations typically occur when the step lengths in the

walk are drawn from a distribution with infinite variance. Such a process is known as a Lévy walk and has been extensively

studied by physicists and more recently ecologists (Viswanathan et al. 1996) although its general applicability to animal

movement is still open to debate (Benhamou 2007; Edwards et al. 2007).

— mZ2. In this situation, the movement is described as ballistic or wavelike, and MSD increases quadratically with t. This

corresponds to the absolute displacement (cf. MDD) increasing linearly with time, which is a standard property of a wave

process. In such cases, the characteristic backtracking and random movement associated with diffusive processes is

not present, and each individual effectively moves in a straight line (in a random direction) away from the origin for the

whole time period. (Note that, as seen is §2.2, MSD scales with t2 for large t in a BRW; here, we are concerned only with an

unbiased movement process.)

These five cases are the only possibilities that can be observed for an individual moving with a finite speed; mO2 does not

correspond to anything meaningful in this context. It should also be noted that an observed path may appear to belong to

several of the above categories, depending on the time period of the observation and the spatial scale used. For example,

correlated movement may appear ballistic for small t, but diffusive at large t (with highly correlated movement taking a longer

time to appear diffusive than movement with low correlation). Hence, care should always be taken before classifying any

particular path as belonging to one of the cases above (Coscoy et al. 2007).

Box 3. Hyperbolic or parabolic?

A linear second-order PDE can be written in the form

a
v2u

vx2
C2b

v2u

vx vy
Cc

v2u

vy2
Cd

vu

vx
Ce

vu

vy
C fuCg Z 0;

where u(x, y) is a function of both x and y (which could represent, for example, space and time). If acKb2!0 then the PDE is

classed as hyperbolic. By contrast, if acKb2Z0 then the PDE is parabolic and if acKb2O0 then the PDE is elliptic.

Hyperbolic and parabolic equations have been extensively studied and there is a large body of theory available, which deals

with solving such equations (and also examines their relationship with each other), mainly relating to problems arising in

physics. However, in our case it is interesting to note that, using the above definitions, the drift–diffusion equation (2.8)

derived from a position jump processes is parabolic, while the telegraph equations, (2.27) and (2.30), and other velocity jump

processes (see §3.5) are hyperbolic.

The relationship between the limiting processes involved in the movement model and the governing hyperbolic and

parabolic equations has been discussed in more detail by, for example, Othmer et al. (1988), Hillen & Othmer (2000), Hillen

(2002) and Othmer & Hillen (2002).

Review. Random walk models in biology E. A. Codling et al. 821
as a long-time approximation. One can introduce
correlation by completing a similar derivation as in
§2.7, but working with a two-dimensional lattice rather
than a line. There are now four possible directions
of movement: right, left, up and down. Initially, we
assume that the probability of turning is independent of
the direction of movement (so there is no bias). As
J. R. Soc. Interface (2008)
before, we assume a constant speed v. We split the
population into individuals moving in each of the four
directions a1, ., a4. At each time step t, an individual
can turn p/2 rad anticlockwise or clockwise (with
probabilities l1t and l2t, respectively), turn p rad
(with probability l3t), or continue in the previous
direction (with probability 1K(l1Cl1Cl3)t).
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Completing a similar analysis to §2.7 leads to a set of
differential equations for each of the sub-populations
moving in the four directions. Further manipulation
similar to that in §2.7 then leads to

v2p

vt2
Zv 2 v2ða2 Ca4Þ

vx 2
C

v2ða1 Ca3Þ
vy 2

� �

Kvðl1 Cl2 C2l3Þ
vp

vt
Cðl2K l1Þ

!
vða3Ka1Þ

vx
K

vða4Ka2Þ
vy

� �
: ð2:31Þ

This has a similar form to the one-dimensional
telegraph equation (2.27), but the system cannot be
written in terms of the total population p. It is possible
to find solutions to the individual equations for
a1, ., a4, but it is not possible to solve directly for p.
The two-dimensional telegraph equation does exist and
can be solved, but it is not the limiting equation to the
CRW process we have described above. Recent work by
Keller (2004) may go some way to solving this problem,
but other methods have also been developed to directly
calculate the statistics of interest, such as mean
location and MSD as we show in §3.
3. RANDOM WALKS AS MODELS OF ANIMAL
AND CELL MOVEMENT

It was demonstrated in §2 how expressions may be
derived for the PDF, p(x, t), of an uncorrelated random
walk in one or more dimensions where the motion is
either a purely random or a biased diffusive process. If
p(x, t) is known, it is straightforward to calculate the
moments such as the mean location, E(Xt), or MSD,
EðR2

t Þ. Animal and cell movements are often charac-
terized by some directional correlation (persistence)
and, unfortunately, with a CRW, it is not usually
possible to calculate p(x, t) directly, or even to derive
a system of differential equations for p(x, t). Variations
of the telegraph equation can be used to model a
one-dimensional CRW and p(x, t) (and associated
moments) can be found. However, as discussed in
§2.10, it is still a non-trivial problem to derive a
solution for p(x, t) for a CRW in higher dimensions
(Othmer et al. 1988; Hillen 2002; Keller 2004).
Nevertheless, it is, in many cases, still possible to
calculate statistics of the CRW directly through
the analysis of paths, as discussed in §§3.1 and 3.2. In
§3.3, some measures of the tortuosity of a path are
introduced and their relation to MSD is discussed.

The situation is slightly more complex when move-
ment is both correlated and biased in a global preferred
direction (i.e. a BCRW). In §3.4, we discuss how it is
possible to detect bias in observed paths when there is
either a fixed global preferred direction (as in gyrotaxis
where bias is due to gravity) or when the preferred
direction is individual dependent (as in navigation to a
fixed target in space). Simple extensions of the BRW
model are also discussed. In §3.5, we introduce a
generalized mass-balance equation (the transport
equation) that describes hyperbolic movement and
discuss how this can be used as a general framework for
modelling BCRW.
J. R. Soc. Interface (2008)
In general, for organisms moving in an environment
that is varying spatially and/or temporally, transition
probabilities will depend explicitly on the time t and
walker’s location x. Typically, this dependence is via
some ‘control signal’, such as a chemical substance,
light, heat, humidity or odour. A control signal can
stimulate the organism in four main ways: the stimulus
may be an attractant (or repellent), providing a
directional bias that stimulates the organisms to
migrate up (or down) a concentration gradient field,
or may be an inducer (or inhibitor), causing the rate of
diffusive unbiased movement to increase (or decrease).
Of course, a specific stimulus may combine more than
one of these four properties, and it is not always
straightforward to distinguish between the different
effects, and the underlying mechanisms responsible for
them, on the basis of experimental observations
(Cai et al. 2006).

As a further complication, it is common for
migrating cells to modify their own chemical environ-
ment by producing or degrading the control substance.
For example, the slime mould Dictyostelium discoi-
deum secretes cyclic adenosine monophosphate
(cAMP), which acts as a chemoattractant, leading to
the aggregation of cells from a wide area (Höfer et al.
1995); certain types of bacteria secrete slime trails,
which provide directional guidance for other cells
(Othmer & Stevens 1997). In §3.6, the basic theory of
reinforced random walks (RRWs) is introduced,
together with some models for the transition probabil-
ities which lie at the heart of the RRW description.
Some applications of RRW modelling are reviewed in
§3.7. Finally, in §3.8, the link between non-lattice
random walks and tactic and kinetic movement
mechanisms is discussed.
3.1. Mean squared displacement of CRWs

The MSD, defined in N dimensions by (2.13), gives a
measure of the spatial spread of the population with
time and, owing to its relationship with the diffusion
coefficient D via, for example (2.14), is of great
importance to those studying dispersal in biological
systems (Okubo&Levin 2001). Interestingly, however,
many of the results discussed in this section were first
derived through studies in molecular chemistry. The
growth and space-filling properties of polymer chains
and larger molecules have been modelled as a CRWby,
for example, Tchen (1952) and Flory (1969), who both
derived equations for MSD. Tchen (1952) also demon-
strated the important result that the location coordi-
nates after a large number of steps of a CRW are
normally distributed.

Taylor (1921) derived the following expression for
the MSD in a one-dimensional correlated walk (see also
Tchen 1952; Flory 1969; Hanneken & Franceschetti
1998; Okubo & Levin 2001). Suppose the walker takes
a series of steps yj ( jZ1,., n) of constant length
(jyjjZd). A correlation is explicitly introduced between
the directions of successive steps (although this
correlation propagates in a gradually diminishing way
through the Markov process). As the number of steps n
becomes large, the MSD for this discrete process tends
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asymptotically to

EðX 2
nÞwnd2

1Cg

1Kg
; with gZ

EðyjyjC1Þ
d2

; ð3:1Þ

where we use the notation EðX 2
nÞ to distinguish from

EðX 2
t Þ, the MSD in a random walk in continuous

time as discussed in §2. The parameter 0!g!1
gives a measure of persistence (Patlak 1953). If g is
close to 1, the walk is highly correlated and will
result in long straight movements. There is still no
overall preferred direction or bias with this process
and, after a long time, the average movement will
appear diffusive since the correlation to the original
direction of movement is lost (after large n, EðX 2

nÞ
increases linearly with n, which is characteristic of a
diffusive process, see box 2). Conversely, if g is close
to 0, the process appears to be diffusive very quickly
since correlation to the original direction of move-
ment is lost almost immediately. In this case, (3.1)
reduces to EðX 2

nÞznd2, which is comparable with
the result E X 2

t

� �
Z2Dt, as derived in §2.1 for the

isotropic SRW.
Kareiva & Shigesada (1983) were the first to set up

and analyse a generalized model of a two-dimensional
CRW for animal movement that included a variable
step length and a general angular distribution for the
direction moved at each step (see also Skellam 1973;
Nossal & Weiss 1974; Lovely & Dahlquist 1975; Hall
1977; Dunn 1983; Marsh & Jones 1988). The CRW
consists of a series of discrete steps of length Lj and
direction Qj. The length Lj of the j th move and the
turning angle FjZQjC1KQj are assumed to be random
variables with no autocorrelation or cross-correlation
(and no correlation between step length and step
direction). The CRW thus consists of a series of
independent draws from the step length PDF, p(l ),
and the turning angle PDF, g(f) (box 1), for each step
(i.e. the process is a first-order Markov chain, see
Grimmett & Stirzaker (2001)). We define the mean
cosine c and mean sine s of the turning angle as (see
also box 1)

cZEðcos FÞZ
ðp
Kp

cos fgðfÞ df;

sZEðsin FÞZ
ð
p

Kp

sin fgðfÞ df:

9>>>>=
>>>>;

ð3:2Þ

In a CRW, the mean vector length 0!r Zðc2Cs2Þ1=2
!1 provides a measure of the degree to which the
direction of movement is correlated. If rz1, the
movement is highly correlated; if rz0, the movement
is close to being uncorrelated (cf. g in the previous
example). The value of the mean sine of turning angles s
gives a measure of the relative probability of clockwise
and anticlockwise turns. In random search movements
used by animals, clockwise and anticlockwise turns are
often balanced, so s and thereby the mean turning angle
f0 (defined by tan f0Zs/c) are zero, and the corre-
lation may be expressed only by the mean cosine of
turns c.
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Using this model, Kareiva & Shigesada (1983)
derived the following equation for the MSD after n steps

EðR2
nÞZnEðL2ÞC2ðEðLÞÞ2

!
nðcKc2Ks2ÞKc

ð1KcÞ2Cs2
C

2s2Cðc2Cs2ÞðnC1Þ=2g

ðð1KcÞ2Cs2Þ2

 !
;

ð3:3Þ
with

gZðð1KcÞ2Ks2ÞcosððnC1Þf0ÞK2sð1KcÞsinððnC1Þf0Þ:

It is worth noting that equation (3.3) contains the
expression r nC1, which is the directional correlation at
order nC1 (i.e. between any two steps that are n
steps apart). Since r!1, this correlation decreases
progressively as n increases (i.e. for increasingly
distant steps).

The general result (3.3) reduces to a much simpler
form in particular cases. For example, if there is no
persistence (i.e. the walk is uncorrelated), then g(f) has
a uniform density and both c and s are zero, and (3.3)

reduces to EðR2
nÞZnEðL2Þ (cf. (2.14) with no drift,

uZ0 and with NZ2). As mentioned, a more realistic
case is when organisms exhibit equal probabilities of
turning clockwise or anticlockwise, so g(f) is symmetric
about f0Z0 (although it is worth noting that this is not
always the case—for example, bacteria can exhibit
an inherent rotational bias due to the handedness of
their flagellar motor). In the case of equal turning
probabilities, we get sZ0 and (3.3) may be written in
terms of the coefficient of variation b of the step
length L (b2ZE(L2)/(E(L))2K1)

EðR2
nÞZðEðLÞÞ2 n

1Cc

1Kc
Cb2

� �
K

2cð1KcnÞ
ð1KcÞ2

� �
: ð3:4Þ

This formula relates changes in g(f) or p(l ) with
consequent changes in MSD, and also highlights
the difference between the MSD of a CRW with a
fixed step length l and that with a variable step
length with mean E(L)Zl. It is immediately clear
from (3.4) that, for c!1, the MSD is always larger
when the step length is variable (bO0) than when
it is fixed (bZ0). The effect of variability in the
step length on MSD can be quite significant. For
example, in a random walk where the step lengths
are drawn from an exponential distribution, we get
bZ1. Hence, as c/0, the MSD becomes almost
twice as large as the MSD of a random walk with
fixed step length.

In the case of random walks with bias, it can be more
complicated to derive expressions for MSD. It is
possible to write down the MSD of an uncorrelated
BRW using a similar approach to the above. Consider a
walk consisting of steps of length Lj and direction Qj

(note the important difference between the direction of
movement Qj and the turning angle FjZQjC1KQj),
whose mean sine is zero and whose mean cosine is q.
After n steps, the MSD is given by (Marsh & Jones
1988; Benhamou 2006)

EðR2
nÞZnEðL2ÞCnðnK1Þq2ðEðLÞÞ2: ð3:5Þ
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This is comparable with (2.14), consisting of a
component due to bias that scales with n2 and that
due to diffusion that scales with n.

An equation for MSD in a biased velocity jump
process can be generated for both the one-dimensional
case and higher dimensions, using a generalized
transport equation (see §3.5). However, these are
special cases of a BCRW where the turning events
occur as a Poisson process. In the case of a BCRW with
a fixed time step between turning events (where the
spatial step lengths can be either fixed or variable), it
remains an open problem to calculate a direct equation
for MSD.
3.2. Mean dispersal distance of unbiased CRWs

The MSD, defined in (2.13), is of interest to ecologists
and biologists owing to its relation to the diffusion
coefficient D via (2.14). The MSD is also a statistic
that is reasonably mathematically tractable, as
illustrated in §3.1. However, because the MSD deals
with the squared dispersal distance, it has been
suggested that a more intuitive statistic is the mean
dispersal distance (MDD; Bovet & Benhamou 1988;
McCulloch & Cain 1989; Wu et al. 2000; Byers 2001).
The MDD of a dispersing population is defined in N
dimensions as

EðRtÞZ
ð
RN

jxjpðx; tÞ dx

Z

ð
RN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 C/Cx2N

q
pðx; tÞ dx 1.dxN : ð3:6Þ

Note that E(Rt) is the mean of the absolute dispersal
distance and is not the same as E(Xt), the mean
location. The presence of an absolute value in (3.6)
causes problems and means that calculating the MDD
directly is mathematically very difficult (McCulloch &
Cain 1989; Wu et al. 2000; Byers 2001). Owing to the
way the squared dispersal distance is averaged across
the population in the respective definitions, as can be
seen by comparing (2.13) and (3.6), the MDD is not
simply the square root of the MSD. However, the MSD
and MDD are related and this fact can be exploited to
give a direct equation for MDD.

Consider a two-dimensional, unbiased, CRW with
mean step length E(L), and a symmetrical about zero
(i.e. zero mean sine) probability distribution g(f) for
the turning angle at each step. After a sufficiently large
number of steps n, the location coordinates Xn and Yn

are independently normally distributed with equal
variance. Bovet & Benhamou (1988) used this to derive
the following approximate relationship between MDD
and MSD:

EðRnÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pEðR2

nÞ
p

2
: ð3:7Þ

Combining this with equation (3.4) for MSD gives a
formula for MDD. Strictly, this approximation is only
valid for large n. Nevertheless, it is a good match to
simulated data even for small values of n, at least in
the case where the turning angles are distributed
J. R. Soc. Interface (2008)
according to a zero-centred wrapped normal distri-
bution, provided the complete equation (3.4) is used
rather than the asymptotic formula for large n (in which
case the second term in (3.4) becomes negligible;
Benhamou 2004, 2006). Relying on complicated empiri-
cal formulae, such as those proposed byWu et al. (2000)
and Byers (2001), seems to be unnecessary.

As discussed in §2.7, it is possible to derive
differential equations for the MSD of a BCRW where
the times between turning events are distributed as a
Poisson process but, owing to the presence of an
absolute value in (3.6), this approach cannot be used
to derive an equation for the MDD of a BCRW.
This remains an open problem but, for particular cases,
it may be possible to use the result of Bovet &
Benhamou (1988), together with an equation for the
MSD derived from a moment closure method (see
Codling 2003).
3.3. Tortuosity of CRWs

The tortuosity of a path describes the amount of turning
in a given space or time. Clearly, tortuosity is related to
the MSD and MDD: highly tortuous paths will spread
out in space slowly (small MSD), while straight paths
will spread out in space quickly (high MSD). Hence, it
can be useful to measure and study the tortuosity of
observed paths in order to understand the processes
involved, estimate the area searched by an organism
and predict spatial dispersal. Several measures of
tortuosity are available but most have some limitations.

The straightness index (sometimes called the net-
to-gross displacement ratio) is a relative measure that
compares the overall net displacement G of a path with
the total path length T (Batschelet 1981). For example,
if a random walk starts at location (x0, y0) and, after n
steps with lengths l j ( jZ1,., n), ends at (xn, yn), then
the straightness index is given by

G

T
Z

jðx nK x 0; ynK y0ÞjPn
jZ1

l j

: ð3:8Þ

This number must lie between 0 and 1, where 1
corresponds to movement in a straight line (the shortest
distance between two points) and 0 corresponds to a
randomwalk that returns to the origin. The straightness
index is intuitively easy to understand and is also
straightforward to compute. Benhamou (2004) shows
how it can act as an unbiased estimator of orientation
efficiency in a BCRW, both in cases with an ‘infinite’
goal (fixed directional bias) and in cases with a goal at a
finite distance (so that the directional bias changes with
each step).

Unfortunately the straightness index is not a reliable
measure of tortuosity of a CRW, because the mean ofG
corresponds to the MDD and hence increases with the
square root of n. Consequently, the ratio G/T tends to
zero as the number of steps increases (Benhamou 2004).
Thus, when observing a CRW and measuring the
straightness index, a different result will be found
depending on the number of steps considered (the total
time observed or the total path length used). It is,
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therefore, very difficult to compare the tortuosity of
different CRWs using this method, unless they all
consist of a similar number of steps.

The tortuosity of a CRW corresponds to the amount
of turning associated with a given path length and, in
some way, measures its long-term diffusion potential.
On this basis, Benhamou (2004) defined the path
sinuosity in terms of the mean step length and MSD
after a large number of steps as SZ2ðnEðLÞ=EðR2

nÞÞ1=2.
Using equation (3.4) simplified by removing the second
term on the right-hand side, which becomes negligible
in the long term, gives

S Z 2 EðLÞ 1Cc

1Kc
Cb2

� �� �K1=2

; ð3:9Þ

where c is the mean cosine of turns and b is the
coefficient of variation of step lengths (see §3.1). With
this formulation, the path sinuosity S of a (two-
dimensional) CRW can be very simply related to the
diffusion coefficient D by DZv/S 2, where v is the mean
speed. Hence, in the simplest case where step lengths
are constant (bZ0 and E(L)Zl ), the sinuosity for a
CRW with particular values of c and l is exactly the
same as an SRW (c�Z0) with a step length l �Zl(1Cc)/
(1Kc). In other words, both types of random walk
have the same long-term diffusion potential. This
equivalence makes sense as it is quite obvious that
the tendency to continue moving in the previous
direction not only depends on the persistence, usually
defined by the value of c (Patlak 1953), but also on
the step length. The particular form of (3.9) makes it
possible to get a simple and intuitive formulation of
sinuosity in the case where step lengths are constant
and turning angles are drawn from a wrapped normal
distribution with null mean and variance s2ZK2 ln (c)
(box 1). When the turning angle variance is low
enough to prevent too much wrapping (s!1.2 rad,
i.e. cO0.5), the ratio (1Cc)/(1Kc) is approximately
equal to 4/s2 and (3.9) reduces to SZs=

ffiffi
l

p
(Bovet &

Benhamou 1988).
Equation (3.9) can be applied directly to actual

paths when animals naturally move in a discrete way
(e.g. a bee flying from one flower to another), provided
the basic requirements of a CRW are respected
(independence of step lengths and turns). For animals
moving in a continuous way, the path is usually
discretized when recorded (i.e. the raw data consist of
a set of locations rather than of a continuous track),
and can be rediscretized for analysis purposes.
(Re)discretization has been shown to alter the turning
angle and step length distributions, and hence involves
the use of corrected formulae (Bovet & Benhamou
1988; Benhamou 2004; Codling &Hill 2005a). Note that
rediscretization can be done either spatially (Bovet &
Benhamou 1988), which is easier to fit with the
analysis above, or temporally (Codling & Hill 2005a),
which is perhaps more natural for experiments in
the field.

It has also been proposed to measure the tortuosity
of animals’ random search paths by a fractal dimension.
This would be useful for actual paths that can be
reliably represented using fractioned Brownian motion,
J. R. Soc. Interface (2008)
which is a fractal movement model where the persist-
ence is related to the fractal dimension through the
use of a parameter called the Hurst coefficient. To our
knowledge, however, it has not yet been shown that this
kind of model can provide a better representation of
animals’ random search paths than CRW, whose true
fractal dimension is equal to 2 for two-dimensional
movements (i.e. they will eventually fill the entire
plane) for any positive sinuosity (for SZ0, the CRW
reduces to a straight line, with fractal dimension equal
to 1). Applying the classical ‘divider’ method, initially
developed to measure the fractal dimension of fractal
lines, the CRW provides pseudo-fractal dimension
values (Turchin 1998; Benhamou 2004), which corre-
spond to indirect measures of the mean cosine of turns c
(Nams 1996, 2005). These pseudo-fractal values cannot
reliably estimate the path tortuosity of a CRW, which
depends not only on the mean cosine of turns c, but also
on the mean step length E(L) and coefficient of
variation b.
3.4. Bias in observed paths

The next step up in model complexity from a CRW is a
BCRW. We will deal with modelling approaches for
BCRWs in §§3.5 and 3.6, while in this section we will
consider the ways in which bias may be detected in an
observed path (see also Coscoy et al. 2007). Assuming the
simplest possible environment and behaviour, there are
two main ways in which individuals may respond to a
signal and hence introduce bias into their movement.
Firstly, there may be a fixed sensory gradient such that
the preferred direction is always the same for all
individuals at all locations in space (e.g. micro-organisms
moving under the influence of gravity). Secondly, there
may be a target or point source fixed in space, such that
the preferred direction is towards a fixed point (e.g.
animals searching for a food source). Note that the first
scenario can be considered as a special case of the second
where the target is fixed at infinity.

In order to parametrize continuum models of
bioconvection in micro-organisms (Kessler 1986; Hill &
Pedley 2005), Hill & Häder (1997) analysed the paths
of swimming algae undergoing gyrotaxis (upward
swimming due to a gravitational torque) or phototaxis
(swimming towards a light source). In both situations,
it was assumed that the preferred absolute direction
of movement was independent of location (i.e. a ‘target
at infinity’), but that the turning angle was dependent
on the most recent direction of movement. To help
inform experimental observations, Hill & Häder (1997)
set up a random walk on the unit circle as follows: at
each time step t, the walker makes a small turn d

clockwise with probability a(q) or anticlockwise with
probability b(q), or continues in the same direction
with probability 1Ka(q)Kb(q). Following a similar
method to that used in §2.2 and taking the limit d, t/0
such that d2/t is constant yields the Fokker–Planck
equation for the PDF p(q, t) of travelling in direction q

at time t

vp

vt
ZK

v

vq
ðm0ðqÞpÞC

1

2

v2

vq2
s20ðqÞp
� �

; ð3:10Þ
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where m0(q) and s2
0ðqÞ are, respectively, the unit mean

and variance of the turning rate,

m0ðqÞZ lim
t/0

1

t
EðQðtCtÞKQðtÞÞ

Z lim
d;t/0

d

t
ðaðqÞKbðqÞÞ;

s2
0ðqÞZ lim

t/0

1

t
VarðQðtCtÞKQðtÞÞ

Z lim
d;t/0

d2

t
ða ðqÞCbðqÞÞ:

As with the movement probabilities for a BRW in §2.2,
the probabilities a(q) and b(q) are required to be such
that both these limits exist (see for example the turning
probabilities for the BCRW in figure 1). Note that m0 is
the mean net change in q per unit time, which will be
zero if there is no directional bias (a(q)Zb(q)), as
opposed to the mean absolute turning rate, which is
always positive. Hence m0 is a measure of the directional
response of the organism to stimuli, whereas s2

0

(sometimes called the angular diffusivity) measures
the random turning component; both parameters are
required to parametrize continuum models of biocon-
vection (Kessler 1986; Hill & Pedley 2005).

By rediscretizing the observed paths and binning the
data, Hill & Häder (1997) estimated s2

0 using a similar
method to Bovet & Benhamou (1988; as s2

0 is
essentially the same measure as sinuosity, see §3.3),
and also the functional form of m0. For gyrotaxis, a
sinusoidal reorientation model was found to fit well:
m0(q, t)ZKsin (qKq0(t))/B, where q0(t) is the pre-
ferred direction and B is the average time taken to
reorient to the preferred direction. If both s2

0 and q0 are
assumed to be constant then the steady state of the
Fokker–Planck equation (3.10) is a von Mises distri-
bution (box 1). This sinusoidal response was predicted
by Kessler (1986) and can be explained by the
gravitational torque that acts on the individual alga:
the torque is zero if the alga is moving in the preferred
direction or in the opposite direction, and is the
greatest when the alga is moving perpendicular to the
gravitational force. For phototaxis, a better fit was given
by a simple linear response: m0(q, t)ZK(qKq0(t))/B.
This case ismore generally applicable since there are only
a few physical situations likely to result in a sinusoidal
response. However, if both s2

0 and q0 are allowed to
be variable, then the steady state of the Fokker–Planck
equation (3.10) is more complicated (Hill &Häder 1997).

This ad hoc method used by Hill & Häder (1997) was
tested using simulations by Codling & Hill (2005a) and
found to be valid (allowing for smoothing errors not
accounted for by Hill & Häder (1997) and assuming
that sinuosity is low enough to avoid ‘wrapping’
problems leading to an underestimate of s2

0 (Bovet &
Benhamou 1988; Benhamou 2004)). Note that this
method allows for both the functional form of the bias
response to be estimated and the relevant parameters
(mean reorientation time and angular diffusivity) to
be quantified.

The situation is more difficult when the preferred
direction changes with spatial location (and is thus
J. R. Soc. Interface (2008)
individual dependent), a common scenario when animals
are moving towards a target in space. The main problem
in such a scenario is distinguishing between localized bias
due to forward persistence and true biased movement
towards a target. This is particularly true if there is more
than one target or if the targetmoves in space.Benhamou
(2006) suggested a new procedure based on the backward
evolution of the beeline distance from the end of the path
(the goal) to each animal’s preceding locations. This
procedure is efficient, as it requires only a small sample of
short paths for detecting a possible orientation com-
ponent, but is not perfect as there remains a relatively
high (approx. 30%) probability of misidentifying a true
CRW as a BCRW. This type I error can be reduced by
considering together a number of paths assumed to be of
the same kind.

The above scenarios assume that bias is introduced
through reorientation towards the preferred direction.
However, there are many other ways to model
mechanisms that produce a directional drift, including
the case where the mean turning rate is null and the
directional bias comes about through variations in s2

0

(see Benhamou 2006, and §3.8). For example, the
classical run-and-tumble behaviour observed in chemo-
tactic bacteria is usually modelled through a low rate of
turning when moving in the preferred direction (runs)
and a high rate of turning (tumbles) otherwise (Berg
1983). We discuss the relation between these various
mechanisms in §3.8.
3.5. The transport equation and general
hyperbolic models of movement

In §2.7, it was shown how the telegraph process could
be used in one dimension to model a CRW and how this
resulted in a hyperbolic governing equation (box 3). A
similar process does not produce a closed equation in
two or more dimensions, but it is still possible to work
with a generalized hyperbolic governing equation to
model the CRW and BCRW (velocity jump processes)
in higher dimensions. Othmer et al. (1988) introduced
the idea of a governing mass balance equation, the
linear transport equation, which can be used to describe
the movement and reorientation of cells (and animals;
see also Alt 1980).

Let p(x, v, t) be the density function for individuals
moving in N-dimensional space, where x2R

N is the
location of an individual and v2R

N is its velocity. The
total number density of individuals at location x,
regardless of velocity, is given by integrating p over all
possible velocities

nðx; tÞZ
ð
RN

pðx; v; tÞ dv: ð3:11Þ

We assume that p(x, v, t)/0 as jxj/N and that
changes in an individual’s velocity occur as a Poisson
process of intensity l, where l may be depending on
location x or other variables. Thus, lK1 is themean
time between changes in direction. We define the
reorientation kernel T(v, v 0) as the probability of a
change in velocity from v0 to v, given that a reori-
entation occurs, which must be non-negative and
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normalized so that
Ð
Tðv; v 0Þ dvZ1 for all v0. We

assume thatT(v, v 0) is independent of the time between
jumps. It can be shown that the governing equation,
known as the linear transport equation, for this process
is (Othmer et al. 1988)

vp

vt
Cv$VxpZKlpCl

ð
RN

Tðv;v 0Þpðx;v0; tÞ dv0: ð3:12Þ

(Note that Vx denotes the spatial gradient operator
ðv=vx1;.;v=vxN Þ.)

In general, we are interested in the first few velocity
moments (as from these we can calculate the statistics
of interest such as E(X t) and E(Rt

2)), including the
number density n(x, t) introduced in (3.11), and the
average velocity u(x, t), which is defined by

nðx; tÞuðx; tÞZ
ð
RN

pðx; v; tÞv dv:

Integrating (3.12) over v gives an evolution equation
for n in terms of u

vn

vt
CVx$ðnuÞZ 0: ð3:13Þ

Similarly, multiplying (3.12) by v and integrating over
v gives

vðnuÞ
vt

C

ð
RN

vVx$ðvpÞ dv

ZKlnuCl

ð ð
R2N

Tðv; v 0Þvpðx; v 0; tÞ dv 0 dv:

ð3:14Þ

It is worth noting that equation (3.12) describes a
general process, of which many of the basic random
walk models discussed previously are special cases. For
example, in one spatial dimension, and under the
assumption that individuals move with constant speed
v, there are only two possible velocities: Cv and Kv.
With the additional assumption that the turning
frequency l is constant, it can be shown that (3.13)
and (3.14) reduce to equations (2.25) and (2.26) derived
in §2.7, which lead to the one-dimensional telegraph
equation.

The transport equation also provides a natural
extension of the basic telegraph process to two
dimensions, without the need to restrict the popu-
lation to a lattice as in §2.10. Retaining the assump-
tions of constant turning frequency l and constant
speed v, an individual’s velocity may be described
simply by the angle q between its direction of motion
and the positive x1-axis. The appropriate density
function is now p(x, q, t). The transport equation
(3.12) reduces to

vp

vt
Cvðcos q; sin qÞ$Vxp

ZKlpCl

ðp
Kp

Tðq; q0Þpðx; q0; tÞ dq0: ð3:15Þ

Othmer et al. (1988) used the following example to
illustrate how a random walk in an external field can
be modelled using (3.15). Suppose individuals are
moving with a taxis-inducing gradient in the direction
J. R. Soc. Interface (2008)
q0Z0 (i.e. the positive x1-direction), under the assump-
tion that the gradient influences only the reorientation
kernel T(q, q0). Suppose also that the reorientation
kernel T(q, q0) is the sum of a symmetric probability
distribution h(f), where fZqKq0, and a bias term k(q)
that results from the taxis-inducing gradient. Since
the gradient is directed along the x1-axis, the bias
term takes its maximum at qZ0 and is symmetric
about qZ0. Thus

Tðq; q0ÞZ hðqKq0ÞCkðqÞ: ð3:16Þ

The quantities

l0 Zl 1K

ð
p

Kp

hðfÞcos f df

� �
and

CI Z
l

l0

ðp
Kp

kðqÞcos q dq%1;

respectively, measure the relative turning rate and the
net effect of bias due to the taxis-inducing gradient in
the direction q0Z0.

Assuming that all individuals start at the origin
(0, 0), with initial directions uniformly distributed
around the unit circle, one can derive a system of
differential equations, known as moment equations, for
the statistics of interest. For the above choice of
T(q, q 0), this system is straightforward to solve
(Othmer et al. 1988; Codling 2003). The mean velocity
and mean location are given by

EðV tÞZ vCI ð1KeKl 0tÞðcos q0; sin q0Þ;

EðX tÞZ vCI tK
1

l0
ð1KeKl 0tÞ

� �
ðcos q0; sin q0Þ:

The MSD is given by
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and the mean squared dispersal about the average
location by
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The choice of reorientation kernel in (3.16) is crucial
in the above analysis as it results in a closed system of
differential equations for the statistics of interest.
Codling & Hill (2005b) used an arguably more realistic
reorientation kernel based on a single symmetric
distribution with mean turning angle dependent on
the direction of movement (see §3.4). However, this
results in a ‘cascade’ of higher moment equations
and further assumptions to close the system need to
be made.

A general discussion of the issues relating to the
moment closure of systems of moment equations
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resulting from transport equations is given in Hillen
(2002). The transport equation can be developed
further to allow more complex scenarios to be modelled
(spatially dependent parameters, etc.) although this is
likely to make finding a closed-form solution more
difficult. The hyperbolic movement model has been
used in the place of diffusion models to create reaction–
transport systems (Hillen 1996, 2002), which can be
used in place of the classical reaction–diffusion models
(Turing 1952; Murray 1993) used in pattern formation
and developmental biology.
3.6. Reinforced random walks

The types of processes whereby walkers modify the
chemical environment of themselves and of other
individuals in the population have led modellers of
cell locomotion to employ the theory of RRWs, which
allows the walker to modify (reinforce) the transition
probabilities associated with the grid points, or inter-
val, it traverses (Davis 1990). The most common way of
representing a one-dimensional RRW is the so-called
master equation

v

vt
pðx; tÞZTCðxKd; tÞpðxKd; tÞ

CTKðxCd; tÞpðxCd; tÞKðTCðx; tÞ
CTKðx; tÞÞpðx; tÞ: ð3:17Þ

Here, TK(x, t) and TC(x, t) are called the transition
rates from x to xKd and x to xCd, respectively, and, in
general, depend on location x and time t. Equation
(3.17) is in the form of a continuous-time jump process
as it is continuous in time and discrete in space. This is
closely related to equation (2.4) (which is described as a
discrete time jump process) for a simple nearest-
neighbour walk. Typically, the random walk is
simulated by choosing a fixed time step t. The left
and right transition probabilities for each time step
may then be calculated as tTG(x, t).

There are many possible models for the transition
rates TG in terms of the concentration w(x, t) of a
control substance, such as the ‘local model’, ‘barrier
model’ and ‘normalized barrier model’ proposed by
Othmer & Stevens (1997). For a specific choice of
transition rates, the continuum limit of the master
equation (3.17) can often be found by a similar method
to that used to obtain equation (2.5), and may usually
be written in the form

vp

vt
Z

v

vx
dðwÞ vp

vx
KcðwÞp vw

vx

� �
; ð3:18Þ

by an appropriate choice of the diffusivity d(w) and the
chemotactic sensitivity c(w) (if c(w)O0 the cells will
move up a gradient in w and vice versa if c(w)!0).
(Note that (3.18) is a one-dimensional version of the
Fokker–Planck equation (2.15).) This is convenient
from a modelling perspective as it allows the relation-
ship between a particular choice of transition rates,
which model individual cell behaviour on a microscopic
scale, and the macroscopic behaviour at a population
level to be seen via the functional forms of d(w)
J. R. Soc. Interface (2008)
(which describes the effects of the control substance
on random motility) and c(w) (which describes direc-
tional effects).

In the local model of Othmer & Stevens (1997), the
transition rates depend only on the local concentration
of control substance: TKðx; tÞZTCðx; tÞZrFðwðx; tÞÞ
for some constant r and positive function F, called the
transition probability function. Taking the limit d/0
and r/N, such that DZrd2 is a constant, leads to a
continuum limit equation (3.18) with diffusivity d(w)Z
DF(w) and chemotactic sensitivity c(w)ZKD(dF/dw).
Hence, as well as modulating the rate of random
motility, the control substance provides a directional
bias because the cell is more likely to move from an area
of high motility to low motility than vice versa.

In the barriermodel, the transition rates depend on the
concentration of control substance in the interval to be
traversed: TGðx; tÞZrFðwðxGd=2; tÞÞ. Hence, the cell
can sense concentrations at xGd/2 (so d is the effective
sensory range of the cell) and uses these to decide its
direction of movement. The continuum limit equation is
(3.18) with diffusivity d(w)ZDt(w) and chemotactic
sensitivity c(w)Z0. Hence, the control substance has an
effect of randommotility, as in the local model, but there
is no directional bias. This is expected because the
transition probability from x to xCd, determined by the
control substance concentration at xCd/2, is the same as
the transition probability from xCd to x, so there is no
directional bias.

In the normalized barrier model, the transition rates
are as in the barrier model, but are normalized so that
TCCTK is a constant,

TGðx; tÞZ 2r
F w xG d

2 ; t
� �� �

F w xG d
2 ; t

� �� �
CF w xG d

2 ; t
� �� � :

ð3:19Þ

The cell again senses concentrations at xGd/2, but
the normalization means that the probability of moving
left plus the probability of moving right is constant.
Hence the decision ‘when to move’ is independent of
the decision ‘where to move’ and the mean waiting
time at a point is constant (Othmer & Stevens 1997).
This is reflected in the fact that the diffusivity in the
continuum limit equation (3.18) is a constantD, but the
chemotactic sensitivity is cðwÞZDð1=FðwÞÞðdF=dwÞ,
so there is a directional bias.

The actions of the control substance under each of
these three models are summarized in table 1. Note that
the normalized barrier model represents a control
substance that is an attractant or repellent, whereas
the barrier model represents an inducer or inhibitor.
The local model allows both the motility and the
directional bias to be varied. However, the constraint
on the relationship between d(w) and c(w) in the local
model means that the substance must either be an
inducer and a repellent, or an inhibitor and an
attractor, which is not always realistic. Motivated by
this limitation, the normalized barrier model may be
generalized to allow for a variable mean waiting time
(VMWT). This may be achieved in two ways. Firstly,
the transition rates take the form (3.19), but r is



Table 1. Summary of the biological interpretation of different models for the RRW transition rates, in terms of the non-
directional (d(w)) and directional (c(w)) effects of the control substance.

model d(w) c(w) control substance action

local DF(w) KD(dF/dw) inducer & repellent (if dF/dwO0)
inhibitor & attractant (if dF/dw!0)

barrier DF(w) 0 inducer (if dF/dwO0)
inhibitor (if dF/dw!0)

normalized barrier D D(1/F(w))(dF/dw) attractant (if dF/dwO0)
repellent (if dF/dw!0)

VMWT1 Dr(w) D(r(w)/F(w))(dF/dw) inducer (if dr/dwO0)
inhibitor (if dr/dwO0)
attractant (if dF/dwO0)
repellent (if dF/dw!0)

VMWT2 G(w) D(1/F(w))(dF/dw) inducer (if dG/dwO0)
inhibitor (if dG/dw!0)
attractant (if dF/dwO0)
repellent (if dF/dw!0)
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permitted to be a function of the control substance
concentration w (Plank 2003). This results in a
diffusivity of d(w)ZDl(w) and a chemotactic sensitivity
of cðwÞZDrðwÞð1=FðwÞÞðdF=dwÞ, thus allowing both
non-directional (random) and directional effects of the
control substance to be specified independently. A
second possible method is to combine the normalized
and unnormalized barrier models by taking the
transition rates as

TGðx; tÞZr
2FðwðxGd=2; tÞÞ

FðwðxKd=2; tÞÞCFðwðxCd=2; tÞÞ

�

C
GðwðxGd=2; tÞÞ

D
K1

�
; ð3:20Þ

for some positive function G (Plank et al. 2004).
Under this model, d(w)ZG(w) and cðwÞZDð1=FðwÞÞ
ðdF=dwÞ, so again the non-directional and directional
actions of the control substance may be chosen
independently. Both these models (termed VMWT1
and VMWT2, respectively) are summarized in table 1.

Partial differential equations of the form (3.18)
have been studied analytically for certain choices of
the functions c(w) and d(w) and of the dynamics for
w. For example, Keller & Segel (1971) obtained
travelling wave solutions and Rascle & Ziti (1995)
obtained similarity solutions in the case where
chemotactic sensitivity is inversely related to w, and
the control substance is consumed linearly by the
cells. Othmer & Stevens (1997) considered three main
cases of cell behaviour, which they termed ‘aggrega-
tion’ (meaning solutions in which the cell density
aggregates to a finite positive value in certain
regions), ‘blow-up’ (cell density tends to infinity in
finite time) and ‘collapse’ (cell density tends to zero
everywhere). Analogous results for the discrete RRW
were originally shown by Davis (1990), and were
linked to the continuum-level results by Plank (2003).
Analytical conditions for the cases of aggregation,
blow-up and collapse were developed by Levine &
Sleeman (1997) and further theoretical work on mixed
parabolic–hyperbolic equations was done by Takase &
Sleeman (2002).
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3.7. Applications of reinforced random walks

The theory of RRWs has been presented in terms of
one-dimensional walks for simplicity, but is straight-
forward to extend to higher dimensions. Furthermore,
the actions of multiple control substances (w1, ., wn)
can be modelled by taking the transition probability
function t to be of the form F(w)ZF1(w1). Fn(wn)
(Levine et al. 2001). Under the normalized barrier
model, this leads to a sum of n chemotactic terms in
the continuum limit equation (3.18).

RRWs have been used to model the movement of
myxobacteria (Othmer & Stevens 1997) and the
migration of endothelial cells during tumour-induced
angiogenesis (growth of new blood vessels; Levine et al.
2001; Sleeman & Wallis 2002; Plank & Sleeman 2003).
These studies adopted the normalized barrier model,
chiefly because this models a control substance that
offers a directional stimulus (which is of prime
importance for successful angiogenesis), but has no
direct effects on cell motility. Nevertheless, the growth
factors regulating angiogenesis do also influence cell
motility and an extension to a VMWT model, which
allows for both directional and non-directional effects,
was proposed by Plank et al. (2004). A non-lattice
RRW, similar to that outlined in §3.4, was subsequently
used (Plank 2003; Plank & Sleeman 2004) to model
angiogenesis in two and three dimensions. In addition to
choosing an appropriate functional form for the reor-
ientation rate m0(q), one must define the preferred
direction q0. In the case of a chemoattractant, the natural
choice is to define q0 to be in the direction of increasing
chemical concentration (i.e. in the same direction asVw),
whichmay be a function of the cell’s locationx and time t.

In models such as these, the control substance(s)
may be assumed to be in a steady state, or the random
walk model for cell movement may be coupled to one
or more time-dependent PDEs for the concentration
of the control substance(s). If the cells modulate
their chemical environment by producing or con-
suming control substances, these PDEs will contain
source/sink terms depending on cell density. In the case
of angiogenesis, the basic cellular motion driving
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capillary growth is modelled by a random walk, but
further rules must be specified to allow for capillary
branching and looping (anastomosis). In addition to the
transition probabilities, each cell has a probability,
which may depend on local control substance concen-
tration, of branching to create two daughter capillaries.
If a capillary tip collides with an existing vessel, an
anastomosis is formed and the colliding cell ceases to
take part in the random walk.

An alternative to the RRW approach described
above is to take a continuum Fokker–Planck equation
of the form (3.18) as the starting point. This may be
discretized using standard techniques to obtain a finite-
difference equation of the form (2.4) (with the obvious
extension to higher dimensions), which can be used to
identify the relevant transition probabilities of moving
left and right, and staying still. This method was
developed by Anderson et al. (1997) to model nematode
movement and has since been used to study tumour
angiogenesis (Anderson & Chaplain 1998) and tumour
cell invasion (Anderson et al. 2000), and to distinguish
between the inhibitory and repellent effects of a
signalling molecule called ‘Slit’ in experimental work
(Cai et al. 2006). The random walk model for
angiogenesis has also been coupled to a flow model to
study the effects of blood flow and nutrient delivery in a
nascent capillary network (McDougall et al. 2006).

Both the ‘bottom-up’ approach of the RRW and the
‘top-down’ approach of discretizing a PDE have the
same governing equation (3.18) in the continuum limit.
However, the two methods will, in general, result in
random walks with different transition probabilities,
illustrating the fact that, usually, there is not a unique
randomwalkmodel corresponding to a given continuum
equation. The RRWmethod has the advantage that the
transitionprobabilities are derivedmechanistically from
the underlying biology, using a transition probability
model of the type summarized in table 1, rather than via
a mathematical discretization and normalization
procedure (see Plank & Sleeman 2004, for details).
3.8. Biological orientation mechanisms

There are two main types of mechanisms for move-
ment in response to a stimulus. Kinesis refers to the
situation where the organism samples only the stimulus
intensity at a single point and modulates its speed of
movement (orthokinesis or O-kinesis) or its path
sinuosity (klinokinesis or K-kinesis) accordingly. The
terms O-kinesis and K-kinesis were first defined by
Gunn et al. (1937) in terms of linear and angular speeds,
but the redefinition of K-kinesis in purely spatial terms
(Benhamou & Bovet 1989), by using sinuosity rather
than rate of change of direction, has led to a much
clearer view of the properties of kineses. By contrast,
taxis is where the organism is able to detect a
preferential direction of movement, and bias its turns
accordingly, without necessarily altering its overall
speed of movement or rate of turning.

The random walks described above are all couched in
terms of transition rates, which are implicitly assumed
to be under the full control of the migrating organism.
This raises questions concerning the information that
J. R. Soc. Interface (2008)
the organism requires in order to be able to exert this
control, and the probable realism of assuming that such
information is available. In the case of the barrier-type
models (see §3.6), it is clear that the walker needs at
least two sensors in order to compute the transition
rates ‘on the spot’ (i.e. without moving); this type of
mechanism is referred to as tropotaxis. The same is also
true for the non-lattice random walk (§3.5) if the walker
needs to resolve the target direction q0, for example by
measuring Vw. The same taxis may also be produced if
the organism has only one sensor (or many sensors that
are too close together to allow it reliably to detect
differences), but moves its body in various directions
to sample the local variations in stimulus; this is
termed klinotaxis. In its simplest form, taxis does not
incorporate a correlation between successive step
directions, and hence corresponds to a BRW: individ-
uals directly settle their local direction with respect
to the target direction. More realistic taxis models
can be obtained in the form of BCRW by introducing
such a directional correlation (Benhamou & Bovet
1992; Benhamou 1994). The result of the taxis is then
determined by the relative weights of the local
directional bias (persistence, which controls the moti-
lity) and the global directional bias (goal attractive-
ness, which controls the advection), and by the level of
random noise in the system.

By contrast, the local model in §3.6 comes under the
category of kinesis, as opposed to taxis, because the
walker measures only the stimulus intensity at a single
point in order to compute the transition rates. Although
the probabilities of moving in different directions are
always equal at any given time, this mechanism results
in an effective directional bias towards areas of low
motility, illustrating the fact that a kinetic mechanism
can produce a directional bias.

There are twoworkingmodes of kinesis (Benhamou&
Bovet 1989): absolute (A) and differential (D). The
movement is controlled, in A mode, with respect to the
local stimulus intensity experiencedat anygiven location
or, in D mode, with respect to the change in stimulus
intensity experienced during a step (e.g. through sensory
adaptation). Both AO-kinesis and AK-kinesis are space-
use mechanisms for exploiting patchy environments,
enabling the animal to reduce locally the diffusion
coefficient (DZv/S 2) of its movement (by decreasing
mean speed v or increasing the sinuosity S ) in the most
suitable areas (Benhamou & Bovet 1989). Unlike
AO-kinesis, however, AK-kinesis is able, when applied
to a gradient field, to generate a slight drift in the
gradient direction based on simple differences in angular
diffusivity s2

0

� �
, with a null mean turning rate (m0Z0).

This property was used by Jamon & Bovet (1987) to
account for the homing behaviour of mice. However, the
advection component is very weak (and accordingly
most animals get lost), so that AK-kinesis cannot be
considered as an efficient orientation mechanism. By
contrast, DK-kinesis can reach 90% of the efficiency of a
pure taxis (BRW; although taxis with persistence can
outperform it in a noisy environment because persistence
can be used to smooth the noise (Benhamou & Bovet
1992)). Indeed the so-called chemotaxis of bacteria
(Alt 1980; Berg 1983) is mainly a DK-kinesis where
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the sinuosity is modulated through step length rather
than turning angle variance (called a run-and-tumble
mechanism). Finally, DO-kinesis seems to have no
biological applications.
4. CONCLUSION

The field of random walks is a large and growing area of
applied mathematics that is being increasingly used to
model biological systems, notably in ecology (animal
movements) and pathophysiology (cell movements in,
for example, blood vessel formation and cancer cell
invasion). In this review paper, the fundamental
mathematical theory behind the unbiased and biased,
and uncorrelated and CRWs has been developed.
Limitations and extensions of these basic models have
been discussed, and the progress and pitfalls associated
with the application of random walk models to
biological scenarios have been examined. A notable
advantage of random walk models lies in their ability to
distinguish, in a systematic way, underlying mechanisms
(such as persistence, kineses and taxes) from observed
data, in a way that would not be possible without the
insight that rigorousmathematics provides. As a result of
this, understandingof thevariousmovementmechanisms
that occur in nature has been greatly improved.

Research in the area of random walks is far from
complete. There remains a wealth of mathematical
problems relating to random walks that have yet to be
solved (for example, formulae for the MSD and MDD in
a general BCRW) and, of course, an almost endless
supply of biological systems that are amenable to
modelling using random walk techniques. We have
discussed very simple environmental interactions
(relating to simple changes in transition probabilities
in a RRW) but, in reality, most animals (and many
micro-organisms) are highly developed and able to
interact extensively with their environment to optimize
search strategies. Furthermore, most of the simple
models discussed here implicitly assume homogeneous
(or at most very simple heterogeneous) environments,
whereas most real environments are highly complicated
with barriers and differential terrain over all three
dimensions that will affect movement behaviour and
speed (Vuilleumier & Metzger 2006). Distinguishing
between changes in behaviour due to environmental or
spatial interactions simply by observing and analysing
movements will always be difficult without further
biological information. In general, we have considered
only movements at an individual level, with population-
level effects being subsequently extrapolated under the
assumption that there are no interactions between
individuals. However, in reality, these interactions can
have an important effect on the overall behaviour and
subsequent dispersal or orientation of a population
(Couzin et al. 2005; Codling et al. 2007). Statistical
techniques for the analysis of simple CRWs, for instance
by measuring their MSD or their tortuosity, are
relatively well developed, but there is little work in
this area for the more general case of reinforced random
walks. This is a potential avenue for future research.

One of the main issues that is causing many notable
problems in the literature is the confusion between
J. R. Soc. Interface (2008)
observed pattern and the underlying process that
generated it. For example, Benhamou (2006)
illustrated the high error rate in distinguishing between
localized and global bias, while Parrish et al. (2002) and
Codling et al. (2007) showed that it was very difficult to
distinguish between individuals independently orient-
ing towards a common target and an interacting group.
Another example is aggregation, i.e. the increase in
animal density in some places. This has often been
considered as a mechanism, but is just a pattern that
can be generated by two kinds of mechanisms:
exploitation mechanisms (e.g. AO- and AK-kinesis)
by which the animals spend more time in certain places
and directional mechanisms (e.g. DK-kinesis and taxis)
by which animals orient towards these places. This
confusion between pattern and process has arguably
led to many of the results in the literature (e.g.
Viswanathan et al. 1996, 2000) interpreting animal
movement as a Lévy process, a different class of random
walk outside the scope of this review paper. Recent
studies (Benhamou 2007; Edwards et al. 2007; Plank &
James in press) have suggested that the Lévy model is
less applicable than first thought and hence a better
modelling approach may be to use extensions of the
random walk models discussed here.
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Glossary
Ballistic movement: movement in which the mean squared

displacement is linear with t2.
Bias: preference for moving in a particular direction.
Biased random walk (BRW ): random walk with bias but no

persistence.
Biased and correlated random walk (BCRW ): random walk

with bias and persistence.
Brownian motion: purely random movement first observed in

the movement of pollen grains by Brown (1828).
Chemotactic sensitivity: the amount of directional bias

(or taxis) induced by a control substance.
Correlated random walk (CRW ): random walk with

persistence.
Diffusion: the spontaneous random movement of particles,

resulting in net migration from an area of high concen-
tration to that of low concentration.

Diffusion coefficient (D ): see diffusivity.
Diffusivity: the rate at which spontaneous randommovements

of particles occurs. For simple Brownian motion, diffusiv-
ity is defined as the ratio of the square of the distance
moved in a short time step to the length of the time step.
J. R. Soc. Interface (2008)
Dirac delta function (dd(x)): function such that dd(x)Z0 for
xs0 and the total area under the function is 1.

Displacement: straight-line distance between the start and
endpoints of a path.

First passage (or hitting) time: first time that a walker arrives
at a specified location.

Kinesis: non-directional response to a stimulus (cf. taxis).
Klinokinesis: type of kinesis in which the walker alters its

sinuosity in response to a stimulus.
Location: coordinates of a walker at a certain time.
Markov process: process in which the probability of future

states depends only on the present state, and not on the
past state of the process.

Mean dispersal distance (MDD ): mean of the absolute
displacement of all individuals in the population.

Mean squared displacement (MSD): mean of the squared
displacement of all individuals in the population.

Path: an ordered set of location coordinates for a walker.
Persistence: tendency to keep moving in the same direction,

resulting in a correlation between successive step
directions.

Position jump process: random walk in which the walker’s
location undergoes a series of discrete jumps.

Probability density function (PDF ): at time t, p(x, t)d is
equal to the probability of being between x and xCd

as d/0.
Reinforced random walk (RRW ): random walk in which the

walker modifies the transition probabilities associated with
its present location, e.g. by secreting a chemoattractant.

Simple random walk (SRW ): random walk with no bias or
persistence.

Sinuosity: a measure of the tortuosity of a random walk.
Step length: distance (or time) moved in a straight line before

changing direction.
Straightness index: ratio of the net displacement to the total

distance travelled.
Taxis: directional (or oriented) response to a stimulus

(cf. kinesis). Examples include chemotaxis, phototaxis,
gyrotaxis.

Tortuosity: the amount of turning associated with a path.
Transition probability: probability of moving one location to

another in a position jump process, or of changing from one
velocity to another in a velocity jump process.

Turning angle: angle turned between successive steps.
Velocity jump process: random walk in which the walker’s

velocity (i.e. speed and direction) undergoes a series of
discrete jumps.
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