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ABSTRACT
In this paper we revisit two classes of mobility models whichare
widely used to represent users’ mobility in wireless networks: Ran-
dom Waypoint (RWP) and Random Direction (RD). For both mod-
els we obtain systems of partial differential equations which de-
scribe the evolution of the users’ distribution. For the RD model,
we show how the equations can be solved analytically both in the
stationary and transient regime adopting standard mathematical tech-
niques. Our main contributions are i) simple expressions which re-
late the transient duration to the model parameters; ii) thedefinition
of a generalized random direction model whose stationary distribu-
tion of mobiles in the physical space corresponds to an assigned
distribution.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General; C.2.1 [Computer Com-
munication Networks]: Network Architecture and Design—Wire-
less communication; G.1.8 [Numerical Analysis]: Partial Differ-
ential Equations

General Terms
Theory, Design, Performance

Keywords
Mobility models, Partial differential equations

1. INTRODUCTION
Mobility models play a fundamental role in the analysis and de-

sign of wireless systems [1, 2]. In the past several years, researchers
have proposed a number of mobility models for the purpose of sim-
ulating the movement of users in a wireless network. Two widely
used models are the Random Waypoint model (RWP) and the Ran-
dom Direction model (RD). In both models, users independently
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follow a sequence of linear segments and traverse each segment at
constant speed. The two models differ in how a user chooses the
next segment to traverse: under the RWP model, a user selectsa
random destination point within the space; instead, under the RD
model a user chooses a direction to travel in and a duration for the
travel. In both cases, the speed on a segment is taken from some
given distribution. Moreover, before starting to travel onthe new
segment users can stop for a random time, thus alternating phases
in which they move with phases in which they keep still.

Despite their wide use in simulation studies, properties ofthe
above mobility models have only recently been established and
fully understood. In [5] the authors have used Palm calculusto
study the stationary regime of a large class of mobility models
(including RWP and RD), explaining a number of previously ob-
served phenomena such as speed decay [9] and non-uniform dis-
tribution of nodes [7]. Their analysis generalizes findingsin [3, 6,
8] about existence and uniqueness of a stationary regime, and pro-
vides the correct methodology to start a simulation in steady state
so as to avoid transient effects (perfect simulation). Moreover, the
proposed perfect sampling technique applies to quite general area
shapes (e.g., the Swiss Cross), without requiring the computation
of complex geometric integrals (like for example in [4]).

It turns out that the RWP mobility pattern, which is appealing
because of its natural physical interpretation, is more difficult to
analyze and control in terms of the stationary distributions of loca-
tion and speed of mobiles, and does not usually lead to a uniform
density of nodes in the space. On the contrary, the RD mobility
pattern has the nice property that users always tend to be uniformly
distributed in the space, irrespective of the boundary conditions im-
posed (wrap around or reflection). Moreover, the distribution of
location and speed at a random time instant are the same as at a
transition instant [5], which greatly simplifies the analysis.

Two important issues in the analysis of mobility models still need
to be solved. The first is the study of the convergence rate to the
stationary regime from arbitrary initial conditions. Thatis, how
long does it take to approach the stationary distribution ifthe simu-
lation starts away from the equilibrium? So far, in the literature, the
transient behavior of mobility models has mostly been considered
a nuisance, and many efforts have been devoted precisely to elim-
inate transient effects from simulations. However, capacity plan-
ning, network resilience and reliability, etc., usually require to test
applications and protocols in time-varying, critical conditions, not
in the steady state. Take, for example, the case of a large num-
ber of mobile nodes forming an ad-hoc network initially confined
in a small area (such as a conference room, a football stadium, or
the like), who at some point start dispersing away. One wouldlike
to simulate such a scenario to see how the network behaves while
nodes get more and more far apart till connectivity is lost. This



paper will show that theoretical mobility models permit to do this
in a controlled and predictable fashion, i.e., it is possible to choose
parameters of the mobility model to obtain a desired nodes’ disper-
sion rate and duration of the transient. Our dynamical viewpoint
thus brings what might be regarded as ideal, unrealistic mobility
models much closer to practical applications.

The second issue is the reverse of the problem considered so
far in analytical studies appeared in the literature: is it possible
to devise a mobility pattern that achieves a desired stationary dis-
tribution of nodes in space? So far, theoretical studies have just
predicted the stationary distribution generated by a givenmobil-
ity model. However, the ability to design a mobility model that
produces an assigned distribution of nodes in the area wouldbe of
much greater interest in real problems, where node densities are al-
most always non-uniform. As an example, one could be interested
in simulating scenarios in which nodes are more densely concen-
trated in some portions of the area, like in a urban context.

In this paper we propose an analysis of the RWP and RD mod-
els that allows us to address both issues above, filling the existing
gap in the analysis of mobility models. We use partial differential
equations (PDE’s) to describe how the mobiles’ state distribution
evolves over time. Our novel formulation provides the analytical
basis for solving both transient and non-uniform cases. In partic-
ular, it permits to study the transient dynamics of a system start-
ing from arbitrary initial condition, for both RWP and RD models.
For the RD model, we show how the partial differential equations
can be solvedanalytically in the transient regime adopting stan-
dard mathematical techniques. Moreover we re-derive knownre-
sults about the stationary distribution of the RD model in a more
straightforward manner than previous approaches based on Palm
Calculus. Our methodology allows, for the first time to the best of
our knowledge: i) to derive simple expressions relating thetran-
sient duration to the model parameters; ii) to generalize the RD
model so as to obtain a desired stationary distribution of nodes in
the space.

The remainder of paper is organized as follows. In Sections 2
and 3 we present the equations describing the behavior of a single
user moving according to the RD and RWP model, respectively.In
Section 4 we statistically re-interpret the previously obtained equa-
tions for a single user, showing that they can be used as well to
describe the dynamics of a large population of mobile users.The
steady state analysis of the standard RD model is provided inSec-
tion 5, whereas the extension of this model to achieve arbitrary
distributions of nodes in the area is described in Section 6.The
transient analysis of the RD model is presented in Section 7.In
Section 8 we validate our analysis by simulation on a few exam-
ples and present possible applications of our methodology.Finally
Section 9 concludes the paper.

2. EQUATIONS OF THE RD MODEL
We start considering a single user moving according to the ran-

dom direction model over a unidimensional domain, further assum-
ing that move and pause times are exponentially distributed. Then
we generalize our approach to the case in which move and pause
times have a general distribution. Finally we extend our equations
to the multidimensional case.

2.1 Unidimensional case with exponential phases
We assume that the domain in which the mobile can move is the

interval [xl, xu], Move and pause times are taken from an expo-
nential distribution of parameterµ andλ, respectively. When the
mobile starts travelling on a new segment it selects a speed from
the generic distributionfV (v). We further assume that the abso-

lute speed value is upper bounded by a constantVmax, i.e., support
of fV (v) is in the interval[−Vmax, Vmax]. This is a reasonable
assumption for all cases of practical interest.

The dynamics of the mobile can be described in terms of a Markov
Process over a general space state [10], in which the instantaneous
mobile stateK(t) is characterized by: i) the phaseP (t) ∈ P =
{move, pause}; ii) the instantaneous positionX(t) ∈ [xl, xu]; iii)
the current speedV (t) (in caseP (t) = move).

Let N(x, v, t) be the cumulative probability that at timet the
mobile is in themovephase at a positionX(t) ∈ [xl, x] with a
speedV (t) ∈ [−Vmax, v]:

N(x, v, t)
∆
= Pr{P (t) = move,X(t)∈ [xl, x], V (t)∈ [−Vmax,v]}

Let S(x, t) be the cumulative probability that at timet the mobile
is in thepausephase at a positionx ∈ [xl, x]:

S(x, t)
∆
= Pr{P (t) = pause, X(t) ∈ [xl, x]}

Consider a small intervalT = [t, t + ∆t). Conditionally over
the fact that no phase transition occurs inT , according to the RD
model at timet+∆t stateK(t) = (move, x, v) is deterministically
transformed into stateK(t+ ∆t) = (move, x+ v∆t, v), whereas
stateK(t) = (pause, x) is deterministically transformed into state
K(t+ ∆t) = (pause, x); thus, conditionally over the fact that no
phase transition occurs inT , we have:

N(x+ v∆t, v, t+ ∆t) = N(x, v, t)

S(x, t+ ∆t) = S(x, t)

If a transition occurs att+τ ∈ T , stateK(t)=(pause, x−v(∆t−τ ))
is deterministically transformed into stateK(t+ ∆t)=(move, x, v),
whereas stateK(t) = (move, x− vτ, v) is transformed into state
K(t+ ∆t) = (pause, x). Thus, conditionally over the fact that a
phase transition occurs inT , it results:

N(x, v, t+ ∆t) = S(x, t)

Z v

−Vmax

fV (v) dv +O(∆t)

S(x, t+ ∆t) =

Z Vmax

−Vmax

N(x, v, t) dv +O(∆t)

Due to the exponential distribution of the move and pause times,
the probability that a phase transition occurs inT from pauseto
moveis λ∆t + o(∆t); the probability that a phase transition oc-
curs duringT from moveto pauseisµ∆t+ o(∆t); the probability
that more than one phase transition occurs inT is, instead,o(∆t).
Therefore, we can write:

N(x+ v∆t, v, t+ ∆t) =

N(x, v, t)(1 − µ∆t) + λ∆tS(x+ v∆t, t) + o(∆t)

S(x, t+ ∆t) =

(1 − λ∆t)S(x, t) + µ∆t

Z Vmax

−Vmax

N(x, v, t) dv + o(∆t)

Letting∆t→ 0, assumingfV (v) to be a continuous and derivable
function, and defining

n(x, v, t) =
∂2N(x, v, t)

∂x ∂v
; s(x, t) =

∂S(x, t)

∂x

we obtain the following coupled differential equations:

∂n(x, v, t)

∂t
= −v

∂n(x, v, t)

∂x
+ λfV (v)s(x) − µ n(x, v, t) (1)

∂s(x, t)

∂t
= −λs(x, t) + µ

Z

v

n(x, v, t) dv (2)



Boundary Conditions

A problem that arises in the RD model is what to do when the mo-
bile hits a boundary. Several strategies have been proposed; among
them the most popular arewrap aroundandreflection. In thewrap
aroundmodel, the mobile hitting a boundary with speedv instanta-
neously reappears at the opposite side maintaining the samespeed.
Thus the boundary conditions of thewrap aroundmodel for (1) and
(2) are:

n(xl, v, t) = n(xu, v, t) ∀v, t

lim
x→x

+

l

∂n(x, v, t)

∂x
= lim

x→x
−
u

∂n(x, v, t)

∂x
∀v, t

s(xl, t) = s(xu, t) ∀t

lim
x→x

+

l

∂s(x, t)

∂x
= lim

x→x
−
u

∂s(x, t)

∂x
∀t

In thereflection model, instead, the mobile is bounced back revers-
ing its speed. The boundary conditions of thereflectionmodel for
(1) are:

n(xl, v, t) = n(xl,−v, t) ∀v, t

n(xu, v, t) = n(xu,−v, t) ∀v, t

In both cases the initial condition is assumed to be given:

n(x, v, 0) = no(x, v)

s(x, 0) = so(x)

We remark that the initial condition must satisfy the constraints re-
lated to its physical interpretation as pdf of the mobile position,
speed and phase at timet = 0. In particular,no(x, v) ≥ 0,
so(x) ≥ 0 and

ZZ

no(x, v) dxdv +

Z

so(x) dx = 1

Uniqueness of solution

In Appendix A we prove that the mathematical problem defined
by equations (1) and (2) subject to the boundary and initial condi-
tions defined above either for thewrap-aroundor reflectionmodels,
admits no more that one solution. We emphasize that this is a fun-
damental step of our analysis; indeed, under uniqueness assump-
tions, if we find a solution of the equations with assigned initial
and boundary conditions we can conclude that it correspondsto the
actual system trajectory.

2.2 Extension to general phase times distribu-
tions

Let g(y) be the pdf ofmovetime, andµ(y) the associated haz-
ard functionµ(y) = g(y)/(1 − G(y)), beingG(y) the cdf of
movetime. Similarly, leth(z) be the pdf ofpausetimes, andλ(z)
the associated hazard functionλ(z) = h(z)/(1 − H(z)), being
H(z) the cdf ofpausetime. The systems dynamics can still be de-
scribed as a Markov process over a general space state. However,
in this case the state space becomes more complex since phasedu-
rations are not memoryless: the mobile stateK(t) is now charac-
terized by the timeW (t) elapsed since the last phase transition, in
addition to its current phaseP (t), instantaneous positionX(t) and
current speedV (t) (in caseP (t) = move).

The mobile dynamics satisfies the following system of differen-

tial equations:

∂n(x, v, y, t)

∂t
= −v

∂n(x, v, y, t)

∂x
−
∂n(x, v, y, t)

∂y
+

+δ(y)

Z

z

λ(z)fV (v)s(x, z, t) dz − µ(y)n(x, v, y, t) (3)

∂s(x, z, t)

∂t
= −

∂s(x, z, t)

∂z
− λ(z)s(x, z, t)

+δ(z)

ZZ

µ(y)n(x, v, y, t) dv dy (4)

2.3 The multidimensional case
The extension to a k-dimensional domain∈ R

k is rather straight-
forward. Letx = (x1, x2, . . . , xk) be the position of the mobile
andv = (v1, v2, . . . , vk) the current speed vector (each compo-
nent represents the mobile’s position/speed along the correspond-
ing dimension). In case of exponential move and pause times the
Chapman-Kolmogorov equations of the system are:

∂n(x,v, t)

∂t
= −v · ∇xn(x,v, t)

+λfV (v)s(x) − µn(x,v, t) (5)

∂s(x, t)

∂t
= −λs(x, t) + µ

Z

n(x,v, t) dv (6)

beingv·∇xn(x,v, t) the inner product betweenv and∇xn(x,v, t).
In the case of general distributions of phase durations, we have

∂n(x,v, y, t)

∂t
= −v.∇xn(x,v, y, t) −

∂n(x,v, y, t)

∂y

+δ(y)

Z

z

λ(z)fV (v)s(x, z) dz − µ(y)n(x,v, y, t) (7)

∂s(x, z, t)

∂t
= −

∂s(x, z, t)

∂z
− λ(z)s(x, z, t)

+δ(z)

ZZ

µ(y)n(x,v, y, t) dv dy (8)

3. EQUATIONS OF THE RWP MODEL
Similarly to what we have done for the RD model, we start con-

sidering a mobile moving along a unidimensional domain, assum-
ing that pause times are exponentially distributed. Noticethat in
the RWP model users do not choose a duration for the move phase,
which instead depends on the selected destination point andspeed.
Next we generalize our approach to the case in which pause times
are generally distributed, and finally to the multidimensional case.

3.1 The unidimensional case with exponential
pauses

Let [xl, xu] be the domain in which the mobile can move, andλ
the parameter of the exponentially distributed pause time.The mo-
bile in x, when choosing the next segment to travel in, first selects
a destination pointd according to the distributionr(d), then selects
a speed according to the distributionfV (v|d, x). We notice that if
d > x it must befV (v|d, x) = 0 for v < 0, while if d < x it must
befV (v|d, x) = 0 for v > 0. We again assume that the absolute
speed value is upper bounded by a constantVmax; i.e., support of
fV (v|d, x) falls in the interval[−Vmax, Vmax],∀d, x.

The dynamics of the mobile can be described in terms of a Markov
Process over an general space state in which the instantaneous state
K(t) is characterized by: i) the phaseP (t) ∈ P = {move, pause};
ii) the instantaneous positionX(t) ∈ [xl, xu]; iii) the current desti-



nationD(t) ∈ [xl, xu]; iv) the current speedV (t) ∈ [−Vmax, Vmax]
(in caseP (t) = move).

LetN(x, v, d, t) be the cumulative probability that at timet the
mobile is in themovephase at a positionX(t) ∈ [xl, x], with a
destinationD(t) ∈ [xl, d], and a speedV (t) ∈ [−Vmax, v]:

N(x, v, d, t)
∆
= Pr{P (t) = move,X(t) ∈ [xl, x],

,D(t) ∈ [xl, d], V (t) ∈ [−Vmax, v]}

LetS(x, t) be the cumulative probability that at timet the mobile
is in thepausephase at a positionX(t) ∈ [xl, x]:

S(x, t)
∆
= Pr{P (t) = pause,X(t) ∈ [xl, x]}

Introducing the derivatives

n(x, v, d, t) =
∂3N(x, v, d, t)

∂x ∂v ∂d
; s(x, t) =

∂S(x, t)

∂x

we obtain the following pair of equations, in a way similar towhat
has been done for the RD model:

∂n(x, v, d, t)

∂t
= −v

∂n(x, v, d, t)

∂x
+ λfV (v | d)r(d)s(x, t) (9)

∂s(x, t)

∂t
= −λs(x, t) +

Z

v n(x, v, x, t) dv (10)

where (9) is defined ford ≥ x andv > 0, or d ≤ x andv < 0.

Boundary conditions

In the RWP model, the boundary conditions express the fact that
the probability for the mobile to hit the boundaries is null:

n(xl, v, d, t) = 0 ∀v, d, t

n(xu, v, d, t) = 0 ∀v, d, t

s(xl, t) = 0 ∀t

s(xu, t) = 0 ∀t

In addition we impose the initial conditions:

n(x, v, d, 0) = no(x, v, d)

s(x, 0) = so(x)

which must be a proper pdf for the mobile’s initial position,speed,
and destination.

3.2 Extension to general pause time distribu-
tion

Leth(z) be the pdf of pause time, andλ(z) the associated hazard
function. The system dynamics can still be described by a Markov
Process over a general state space; we only need to add to the state
associated to the pause phase the timez elapsed since the mobile
entered the pause phase. The model equations become:

∂n(x, v, d, t)

∂t
= −v

∂n(x, v, d, t)

∂x
+

fV (v|x, d)r(d)

Z

λ(z)s(x, z, t) dz (11)

defined ford ≥ x andv > 0 or d ≤ x andv < 0, and

∂s(x, z, t)

∂t
= −

∂s(x, z, t)

∂z
−

−λ(z)s(x, z, t) + δ(z)

Z

v n(x, v, x, t) dv (12)

3.3 Multidimensional case
Let x = (x1, x2, . . . , xk) be the position of the mobile,d =

(d1, d2, . . . , dk) the current destination, andv the current speed.
Considering the case in which the pause time is generally dis-

tributed, with hazard functionλ(z), we obtain

∂n(x,v,d, t)

∂t
= −v · ∇xn(x,v,d, t)

+fV (v|d,x)r(d)

Z

z

λ(z)s(x, z, t) dz

∂s(x, z, t)

∂t
= −

∂s(x, z, t)

∂z
−

−λ(z)s(x, z, t) + δ(z)

Z

||v||n(x,v,x, t) dv

4. STATISTICAL INTERPRETATION OF
PREVIOUS EQUATIONS

In this section we provide a statistical interpretation of the equa-
tions derived in Sections 2 and 3, valid when the population of
mobile users becomes large. We restrict ourselves to the unidimen-
sional random direction model under general phases distributions,
however the same interpretation holds in all other cases.

Consider a population ofN mobiles, moving independently of
each other. The complete state for mobilei at time t is denoted
by Ki(t) = (P (t),X(t), V (t),W (t)). Let M be the set of all
states in which the mobile is in themovephase, andS the set of
all states in which the mobile is in thepausephase. LetA be any
(Lebesgue measurable) set of states, and defineAM = A∩M and
AS = A∩S . Let1Ki(t)∈A be an indicator function which returns
1 if mobile i at timet is in a state belonging toA, i.e.Ki(t) ∈ A,
and 0 otherwise.

By the strong law of large numbers, it results:

lim
N→∞

1

N

N
X

i=1

1Ki(t)∈A = E[1K1(t)∈A] = Pr{K1(t) ∈ A} =

=

Z

AM

n(x, v, y, t) dAM +

Z

AS

s(x, z, t) dAS

Now we observe that:

lim
N→∞

1

N

N
X

i=1

1Ki(t)∈A

has an immediate physical interpretation as the fraction ofmobiles
whose instantaneous state at timet belongs toA; as a consequence
(3) and (4) describe the statistical density evolution of a large popu-
lation of users moving according to the considered mobilitymodel.

5. STEADY STATE ANALYSIS
In this Section we compute the steady-state solutions (i.e.solu-

tions which are invariant with respect to time) of the RD model. We
start considering the unidimensional case with exponential phase
times. Next we generalize our solution to the case in which phases
are generally distributed, and finally to the multidimensional case.

5.1 The exponential case
The system dynamics are described by a Markov process over an

uncountable compact1 space state, whose properties have recently
been studied proving that the steady state distribution exists unique

1Any closed bounded subset ofR
n, ∀n, is compact.



[5, 6]. 2 Moreover, regardless of the initial condition,n(x, v, t) and
s(x, t) tend to the steady state distribution fort→ ∞.

By setting the derivative with respect to time equal to zero in
both (1) and (2), we obtain that steady state solutionsn(x, v), s(x)
must satisfy the following equations:

v
∂n(x, v)

∂x
= λfV (v)s(x)− µ n(x, v) (13)

λs(x) = µ

Z

n(x, v) dv (14)

with the boundary conditions defined in Section 2.
Considering product-form candidate solutions forn(x, v), i.e.

n(x, v) = α(x)β(v), we obtain the following solution of steady-
state equations:

n(x, v) =
λfV (v)

(λ+ µ)|xu − xl|
; s(x) =

µ

(λ+ µ)|xu − xl|

which satisfies the boundary conditions for bothwrap aroundand
reflection, in the latter case under the mild assumption that the
speed distribution is symmetric, i.e.,fV (v) = fV (−v). Notice that
we have basically reobtained the known result that the steady state
distribution of nodes is uniform in space, while the speed distribu-
tion is the same as that used to select a new speed at the transition
points.

5.2 General phase times distributions
When phase times have a general distribution, the steady state

distribution still exists unique, under the only conditionthat aver-
age phase durations are finite [5, 6]. In addition, regardless of the
initial condition,n(x, v, t) ands(x, t) tend to the steady state dis-
tribution for t→ ∞.

Now we show how the steady state analysis of RD models with
generally distributed phases can be reconducted to the analysis of
RD models with exponential phases. Setting the derivative with
respect to time equal to zero in both (3) and (4), we have:

−v
∂n(x, v, y)

∂x
= −

∂n(x, v, y)

∂y
+

+δ(y)

Z

z

λ(z)fV (v)s(x, z) dz − µ(y)n(x, v, y) (15)

∂s(x, z)

∂z
= −λ(z)s(x, z) + δ(z)

ZZ

µ(y)n(x, v, y) dv dy (16)

Considering product-form candidate solutions of the type
n(x, v, y) = m(x, v)k(y) ands(x, z) = p(x)h(z) with
R

∞

0−
h(z)dz =

R

∞

0−
k(y)dy = 1, and defining:

λeff =

Z

∞

0−

λ(z)h(z) dz =
1

E[Tpause]

µeff =

Z

∞

0−

µ(y)k(y) dy =
1

E[Tmove]

it results thatm(x, v), p(x), k(y), andh(z) must satisfy:

v
∂m(x, v)

∂x
= λeff fV (v)p(x)− µeff m(x, v) (17)

λeff p(x) = µeff

Z

m(x, v) dv (18)

2In [5, 6] the properties of RD models have been analyzed, by con-
sidering the embedded discrete time Markov process which isob-
tained by sampling the system dynamics at instants in which the
mobile changes phase. An exhaustive analysis of Markov processes
over uncountable space states can be found in [10] for the discrete
time case.

∂k(y)

∂y
pmove = λeff δ(y)ppause − µ(y)k(y)pmove (19)

∂h(z)

∂y
ppause = µeff δ(z)pmove − λ(z)h(z)ppause (20)

whereppause andpmove are, respectively, the probability for the
mobile of being in pause and move phase at steady state:

ppause =
E[Tpause]

E[Tmove] + E[Tpause]

pmove =
E[Tmove]

E[Tmove] + E[Tpause]

We observe that equations (17) and (18) are structurally identical
to equations (13) and (14), thus they admit the same solution(with
proper parameter substitutions). Instead, equations (19)and (20)
admit the following solutions:

k(y) =
e−

R y
0
µ(α) dα

R

∞

0−
e−

R y
0
µ(α) dα dy

=
1 −G(y)

E[Tmove]

h(z) =
e−

R

z
0
λ(α) dα

R

∞

0−
e−

R

z
0
λ(α)dα dz

=
1 −H(z)

E[Tpause]

which correspond, as expected, to the residual time spent inthe
move or in the pause phase when sampling the system at a random
point in time. Also in this case we have found the unique steady
state solution for bothwrap aroundandreflection(in the latter case
under the assumption thatfV (v) = fV (−v)).

5.3 The multidimensional case
Previous results can be immediately generalized to a multidi-

mensional domain, since in this case steady-state equations admit
product form solutions

n(x,v, y) = n1(x1, v1)n2(x1, v1) · · ·nk(xk, vk) k(y)

s(x, z) = s1(x1)s2(x1) · · · sk(xk)h(z)

and thus can be decoupled into unidimensional equations which are
structurally identical to those presented in the previous Section.

5.4 Discussion
As a final remark of our steady-state analysis, we emphasize the

our approach based on differential equations allows to obtain the
steady-state distribution of RD models withwrap-aroundor reflec-
tion (in the latter case under the condition thatfV (v) = fV (−v))
in a straightforward manner, providing an alternative to approaches
based on Palm Calculus [6, 5].

6. GENERALIZED RD MODEL WITH NON
UNIFORM STATIONARY SOLUTION

The standard random direction model brings to a steady statein
which nodes are uniformly distributed in space. However, inmany
practical cases one would like to have an anisotropous node den-
sity in the area. For this reason we now generalize the RD model
in such a way that the stationary distributions of nodes in the move
and/or pause phases are not necessarily uniform in space, but fol-
low a desired (assigned) distribution. In particular, we consider a
random direction model in which: i) the pause time may depend
on the positionx where the mobile stops; ii) the speed of mobiles
during the move phase can vary with the instantaneous positionx.
To simplify the presentation, we consider only the unidimentional
case with exponential phase times distribution, however the same



results apply to the case of general phase distributions andto the
multidimensional case.

When a mobile starts travelling on a new segment, we assume it
chooses a “base speed”ζ from a generic distributionfV (ζ). The
actual speedv is a deterministic function of the positionx and the
base speedζ. For simplicity we assume that the actual speed is
simply proportional to the base speedζ through a factorψ(x) that
depends only on the position, i.e.,v(x, ζ) = ψ(x)ζ.

The equations of the generalized RD model are:

∂n(x, ζ, t)

∂t
= −

∂[v(x, ζ)n(x, ζ, t)]

∂x
+

+λ(x)fV (ζ)s(x)− µn(x, ζ, t) (21)

∂s(x, t)

∂t
= −λ(x)s(x, t) + µ

Z

n(x, ζ, t) dζ (22)

from which the steady-state equations are:

∂[v(x, ζ)n(x, ζ)]

∂x
= λ(x)fV (ζ)s(x) − µn(x, ζ) (23)

λ(x)s(x) = µ

Z

n(x, ζ) dζ (24)

Substituting the expression ofs(x) obtained from (24) into (23),
we obtain:

∂[v(x, ζ)n(x, ζ)]

∂x
= fV (ζ)µ

Z

n(x, ζ) dζ − µn(x, ζ) (25)

Now, considering product-form candidate solutions, i.e.,solutions
of the formn(x, ζ) = m(x)β(ζ), with

R

β(ζ)dζ = 1, it results:

ζβ(ζ)
∂[ψ(x)m(x)]

∂x
= µm(x)[fV (ζ) − β(ζ)] (26)

and we can decouple the previous equation into two ordinary dif-
ferential equations:

d[ψ(x)m(x)]

dx
= Cµm(x)

Cζ =
fV (ζ)

β(ζ)
− 1

from which:

β(ζ) =
fV (ζ)

[Cζ + 1]

Sinceβ(ζ) ≥ 0 and
R

β(ζ) dζ = 1, it resultsC = 0;
hence,β(ζ) = fV (ζ) andm(x) = a

ψ(x)
for somea such that

R

m(x) dx = 1.
In conclusion, we can obtain any assigned profilesñ(x) ands̃(x)

of the mobiles’ density in the move and pause phases, respectively,
by setting

ψ(x) =
1

ñ(x)

λ(x) =
µ ñ(x)

s̃(x)

7. TRANSIENT ANALYSIS
In this section we present an analytical solution for the tran-

sient regime of the RD model. We start considering the case of
wrap aroundboundary conditions. As we will see at the end of
this section, the transient analysis of the RD model withreflection
comes for free once we know how to solve the RD model withwrap
around. As usual, we first consider the unidimensional case with
exponential phase times. Then we extend the analysis to the case
of general phase times, and finally to the multidimensional case.

7.1 Unidimensional case with exponential phase
times

We apply the methodology of separation of variables to find solu-
tions for the system of equations (1) and (2), in case ofwrap around
boundary conditions. Consider product-form candidate solutions:
n(x, v, t) = τ (t)m(x, v) ands(x, t) = τ (t)r(x); substituting into
(1) and (2), we obtain:

dτ (t)

dt
m(x, v) = −vτ (t)

∂m(x, v)

∂x
+

+λfV (v)r(x)τ (t)− µm(x, v)τ (t)

dτ (t)

dt
r(x) = −λr(x)τ (t) + µτ (t)

Z

m(x, v) dv

From which we can separate the dependency on time from the de-
pendency on space and speed, yielding:

dτ (t)

dt
= γτ (t) (27)

v
∂m(x, v)

∂x
= λfV (v)r(x) − (µ+ γ)m(x, v) (28)

r(x) =
µ

λ+ γ

Z

m(x, v) dv (29)

Now substituting the expression ofr(x) provided by (29) into (28)
we have:

v
∂m(x, v)

∂x
= fV (v)

λµ

λ+ γ

Z

m(x, v) dv − (µ+ γ)m(x, v)

Form(x, v), we consider again product-form candidate solutions
m(x, v) = α(x)β(v), obtaining:

vβ(y)
dα(x)

dx
=

fV (v)
λµ

λ+ γ
α(x)

Z

β(v) dv − (µ+ γ)α(x)β(v)

in which we can separate the functions which depend onx from the
functions which depend onv:

dα(x)

dx
= ηα(x) (30)

β(v)
R

β(w)dw
= fV (v)

λµ

(λ+ γ)(µ+ γ + ηv)
(31)

Functionsα(x) = eηx, beingη any complex number, are solutions
of (30). Instead from (31), since

R

v

β(v)
R

β(w) dw
dv = 1, we obtain a

fundamental relation betweenγ andη:

λµ

λ+ γ

Z

v

fV (v)

µ+ γ + ηv
dv = 1 (32)

Wrap around boundary conditions require thatα(xl) = α(xu),
lim

x→x
+

l

∂α(x)
∂x

= lim
x→x

−
u

∂α(x)
∂x

. This constraint is satisfied

whenα(x) is periodic with period1/fx = xu− xl. It follows that
wrap around boundary conditions are satisfied whenη = j2πfxk,
with k ∈ Z. Notice that solutionsαk(x) = ej2πfxkx corre-
spond to the standard Fourier basis for the interval[xu, xl], which
is dense inC0([xu, xl]), the class of continuous functions defined
over [xu, xl].

For any givenk ∈ Z, (32) provides an implicit equation that
defines exponentγ(k):

λµ

λ+ γ

Z

v

fV (v)

µ+ γ + j2πkfxv
dv = 1 (33)



In particular, whenk = 0, (33) admits the solutionγ1 = 0,
corresponding to the steady-state distribution of the system already
found in Section 5. There is also the solutionγ2 = −(λ+µ), which
has a different physical interpretation: it is the rate at which the
system converges to the steady state distribution from the condition
in which the probability of being in the move or pause phases are
uniform over space but not in equilibrium.

Fork 6= 0, the existence of real solutions forγ can be guaranteed
when the probability density function of nodes’ speed is symmetric,
i.e. fV (v) = fV (−v). In this case, the imaginary component of
R

v

fV (v)
(µ+γ+j2πkv)

dv is null.
For example, in casefV (v) is uniform in the interval[−V, V ]

equation (33) reduces to:

λµ

(λ+ γ)2πkfxV
arctan

„

2πkfxV

µ+ γ

«

= 1

from whichγ can be easily obtained numerically. In general, it can
be shown thatγ has two negative solutionsγ1 andγ2 for everyk
(γ2 < γ1 < 0).

As a result of previous calculations, the class of elementary func-
tions:

nk(x, v, t) =
λµfV (v)ej2πfxkxeγt

(λ+ γ)(µ+ γ + j2πkfxv)
(34)

sk(x, t) =
µ

λ+ γ
ej2πfxkxeγt (35)

are solutions of (1) and (2), withwrap aroundboundary condi-
tions. Moreover, lettinĝnk(x, t) =

R

nk(x, v, t) dv, we obtain the
elementary solution vector:

 

n̂k(x, t)

sk(x, t)

!

=

 

λ+ γ

µ

!

ej2πfxkxeγt (36)

Recalling that for every value ofk there exist two solutions ofγ, it
turns out that any solution of (1) and (2) in which the initialdistribu-
tion profiles in the move and pause phases are continuous withre-
spect to the space coordinate (i.e.,∈ C0([xu, xl])) can be expanded
in series of the above elementary vectors3.

The procedure to compute the system state at an arbitrary time
instantt can be summarized into the following steps:

1. Compute the values ofγ1(k) andγ2(k) associated to every
elementary vector.

2. Compute the Fourier series expansion of the initial distribu-
tion of mobiles’ in terms of elementary vectors evaluated at
time t = 0.

3. Multiply each coefficient of the (possibly truncated) series
expansion by the exponential decay factor of the correspond-
ing solution vector (eithere−γ1(k)t or e−γ2(k)t).

4. Reconstruct the distribution of mobiles’ using the new values
of coefficients at timet.

Of course, steps 1 and 2 has to be performed only once, not for
anyt. As expected, as time tends to infinity all ‘propagation modes’
αk(x), with k 6= 0, tend to vanish exponentially, leaving only the
uniform distribution associated tok = 0 (γ1 = 0). Moveover, we
observe that the duration of the transient is essentially determined
by the periodic component with the minimum absolute value ofγ1.

3This is due to the fact that Fourier system represents a complete
orthogonal system in the class of square summable functionswhich
comprise functions inC0([xu, xl]).

7.2 General phase times distributions
We have not tried to solve exactly the transient analysis of the

system in case the move and/or pause times have general (non-
exponential) distributions. However, an approximate analysis can
be performed using a stage decomposition approach. This means
that a separate differential equation has to be written for each stage
of the decomposition. For example, consider the case in which the
move time is described by an hyper-exponential distribution of the
second order:

H2(t) = p1µ1e
−µ1t + p2µ2e

−µ2t

This simple 2-stage approximation allows to match the first two
moments an any distribution having a coefficient of variation larger
than one. Letn1(x, v, t) andn2(x, v, t) be the pdf over(x, v) of
the mobile in move stages 1 and 2, respectively, at timet. The
transient behavior is then described by the following system of dif-
ferential equations

8

>

>

>

>

<

>

>

>

>

:

∂n1
∂t

= −v ∂n1
∂t

+ λp1fV s− µ1 n1

∂n2
∂t

= −v ∂n2
∂t

+ λp2fV s− µ2 n2

∂s
∂t

= −λs+ µ1

R

n1 dv + µ2

R

n2 dv

(37)

which can be solved in a way analogous to the exponential case. In
this case the equation relatingγ to η is

p1µ1

Z

fV (v)

µ1+γ+ηv
dv + p2 µ2

Z

fV (v)

µ2+γ+ηv
dv =

λ+γ

λ

Similarly, we can analyze the case in which the pause time is
described by an hyper-exponential distribution of the second order,
obtaining the set of equations

8

>

>

>

>

<

>

>

>

>

:

∂n
∂t

= −v ∂n
∂t

+ λ1fV s1 + λ2fV s2 − µn

∂s1
∂t

= −λ1s1 + p1µ
R

ndv

∂s2
∂t

= −λ2s2 + p2µ
R

ndv

(38)

In this case the equation relatingγ to η becomes
„

p1λ1

λ1 + γ
+

p2λ2

λ2 + γ

«

µ

Z

v

fV (v)

µ+ γ + ηv
dv = 1

Instead, in the case in which move time is described by an Er-
lang distribution of the second order (the sum of two exponential
distributions with rateµ1 andµ2), we obtain:

8

>

>

>

>

<

>

>

>

>

:

∂n1
∂t

= −v ∂n1
∂t

+ λp1fV s− µ1 n1

∂n2
∂t

= −v ∂n2
∂t

+ µn1 − µ2 n2

∂s
∂t

= −λs+ µ2

R

n2 dv

(39)

In this case the equation relatingγ to η is

µ1µ2

Z

fV (v)

(µ1+γ+ηv)(µ2+γ+ηv)
dv =

λ+γ

λ

From the examples above it is clear that one can write a set of
equations for a generic stage decomposition of the move and/or
pause time, and obtain an implicit equation ofγ for each feasible
value ofη. We remark that to analyze the transient it is not neces-
sary to solve the entire set of differential equations, justto derive
(numerically) the proper value ofγ for each value ofη, and apply
the same procedure described at the end of Section 7.1. Thus,using



a stage decomposition approach the analysis of the transient behav-
ior of the system in the general case has the same computationally
complexity as the exponential case.

7.3 The multidimensional case
The transient analysis can be extended also to the multidimen-

sional case. Since the most interesting applications of mobility
models arise on the bi-dimensional space, here we describe more
in detail the transient analysis in the 2D case, restrictingourselves
to the case of exponential sojourn times in the move and pause
states. We assume that mobiles are free to move in the rectangular
area[xu, xl]×[yu, yl], and independently choose the speed compo-
nents alongx andy from arbitrary distributionsfVx andfVy (pos-
sibly different). Similarly to the mono-dimensional case,we apply
the methodology of separation of variables, looking for solutions
of equations (5) and (6) in the form

n(x, y, vx, vy , t) = τ (t) αX (x) βX(vx) αY (y) βY (vy)

s(x, y, t) = τ (t) rX(x) rY (y)

Plugging these expressions into (5) and (6) we havedτ(t)
dt

= γτ (t),
while boundary conditions of the wrap around model imply that the
only feasible solutions forαX(x) andαY (y) belong to the discrete
setsαkX

(x) = ej2πfxkxx andαkY
(y) = ej2πfykxy , respectively.

Now we have that exponentsγ associated to each pair(kx, kx) ∈
Z

2, have to satisfy the equation

λµ

λ+ γ

ZZ

fVx(vx)fVy (vy)

µ+ γ + j2π(kxfxvx + kyfyvy)
dvx dvy = 1 (40)

The procedure to evaluate the system state at a generic time instant
t follows the same steps described in Section 7.1, except thatnow
we need to perform a bi-dimensional (Fourier) expansion of the
initial distribution of mobiles in the move and pause phasesover
the rectangular region.

7.4 Extension to reflection boundary condi-
tions

The transient analysis of the RD model withreflectioncan be
easily reconducted to the analysis of the RD model withwrap around.
Here we provide an intuitive explanation of how this can be done.

BA

a’
a

b’
b

BA

a’

a b
b’

c
c’

C

Figure 1: Reduction of RD model with reflection to RD model
with wrap around

A formal proof is reported in Appendix B. Consider first the sim-
ple case in which the initial distribution of mobiles in themoveand
pausephases are symmetric (top of Figure 1). In this case, the
solution of the RD model withreflection is exactly the same as

that of the RD model withwrap around. Indeed, the flows of mo-
biles hitting the boundaries are the same,a = b

′, and since in
the wrap aroundb

′ = a
′ we havea = a

′ (similarly, b = b
′),

which means that the dynamics are the same as in thereflection
model. If the initial conditions are not symmetric, we double the
area adding a specular ‘image’ of the initial domain to the right (or
to the left), as shown in the bottom part of Figure 1. Doing so,
we obtain a scenario in which the initial conditions are symmetric,
thusa = c

′ = a
′. Moreover, by construction we haveb = b

′.
Therefore the dynamics of thewrap aroundmodel in the extended
area ‘contain’ those of thereflectionmodel in the restricted area.

8. VALIDATION AND APPLICATIONS
In this Section we validate our analysis of the RD model com-

paring analytical prediction with simulation results obtained from
an event-driven simulator. At the same time we offer examples of
possible applications of our methodology.

8.1 Generalized mobility model.
Suppose that we want to achieve a given non-uniform stationary

distribution of mobiles’ on the 2D plane. In particular, consider a
metropolitan area divided into 3 concentric ringsR1, R2, R3 in a
square area of edge 20 kilometers, as depicted in Figure 2.

R1

R

R

R2

3

4

Figure 2: Regions of the metropolitan area

The outer region is denoted byR4. Let’s assume the population
density is maximum inR1, equal toρ1, whereas the density in
regionRi, (i > 1), is ρi = ρ1/i. We can design a generalized RD
model whose stationary distribution of mobiles’ location follows
exactly this distribution. Assuming an equal fraction of users in the
move and pause states (λ = µ), we have to set the scaling factor of
speed velocityψ(x, y) = i ,∀(x, y) ∈ Ri.

Figure 3 contains the results of a simulation in which 8 million
mobiles move according to the generalized mobility model spec-
ified above. Irrespective of their initial position, distributions of
move/pause times, distribution of speed, they tend to the desired
non-uniform density. In particular, the plot in Figure 3 reports the
total number of users measured in simulation in each square of edge
100m after 5 hours of simulated time, assuming a base speed uni-
formly distributed in [-10 km/h, 10 km/h] in each direction.

8.2 Transient analysis in 2D.
We now present an example of transient analysis on the 2D plane.

We assume that mobiles are initially uniformly distributedwithin
a circle of radius 2 in the middle of square area of edge 20. At
time t = 0 they start moving with a speed uniformly distributed in
[-1,1] in each direction. Move and pause times are exponentially
distributed with mean 1. This scenario could represent how the
center of a city empties at the end of a working day.
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Figure 3: Distribution of mobiles measured on simulation after
5 hours, resulting from the generalized RD model

We follow the steps to perform the transient analysis of the sys-
tem as described in Section 7. First, we compute parametersγ1(kx, ky)
andγ2(kx, ky) associated to each elementary vector (see Section
7.3). Figure 4 depicts parameterγ1 for all combinations of the first
30 positive values ofkx andky as a continuous surface (for a better
representation). Note that

γ1(kx, ky) =γ1(−kx, ky) =γ1(kx,−ky) =γ1(−kx,−ky)

thus positive values ofkx andky provide all information. We ob-
serve thatγ1, which is a negative number, decreases rapidly for
increasingkx or ky. In practice, the duration of the transient is de-
termined by the smallest absolute values ofγ1. This suggests that
there is no need to keep too many terms of the Fourier series ex-
pansion of the initial distributions: solutions corresponding to large
kx or ky decay very fast over time and therefore do not provide a
significant contribution to the overall solution except in the very
beginning of the transient.

Next we compute the elementary vector expansion of the initial
distribution of mobiles’ location (a bi-dimensional Fourier series
expansion), truncating the series to128 × 128 coefficientskx and
ky . This is enough to produce a satisfactory representation ofthe
initial distribution since the very beginning (i.e.t = 0), as illus-
trated in Figure 5.

Now, suppose that we want to compute the distribution of mo-
biles at an arbitrary time instantt > 0. It is sufficient to reconstruct
the distribution from the elementary vectors series expansion, hav-
ing multiplied each term of the series by the corresponding factor
(eithere−γ1(kx,ky)t or e−γ2(kx,ky)t). For example, Figures 6 and
7 report the distribution of mobiles at timet = 10, according to
analysis and simulation, respectively.

The mobiles’ distribution has been obtained in simulation con-
sidering 10 million nodes, and counting how many of them are
present att = 10 in each square of a100 × 100 grid. Note that
we have used such a large number of nodes to obtain a clean distri-
bution on the chosen grid after a single simulation run. We could
have considered a smaller number of nodes (or even a single node),
but in this case it would have been necessary to average the results
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Figure 4: Parameter γ1 for all combinations of (kx, ky),
1 ≤ kx, ky ≤ 30.
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Figure 5: Representation of the initial distribution of mobiles’
location (a circle of radius 2) limiting the Fourier series expan-
sion to128 × 128 terms.

of many independent simulation runs.
Recall that we can regard the analytical prediction as the proba-

bility of finding a single mobile at a given point of the plane after
time t, starting from an initial pdf of its location att = 0. Actu-
ally, this point of view opens a wide range of possible applications
of our analysis. For example, one could study the persistence of
a wireless connection between a mobile and a base station, and
use our probabilistic analysis to design better hand-off strategies.
Another interesting application is the analysis of link duration and
availability in mobile ad-hoc networks [11].

8.3 Impact of parameters on the transient du-
ration.

We now turn to the 1D case and study the impact of various
parameters of the random direction model on the duration of the
transient. As already observed, the time constant of the system is
essentially given by the smallest absolute value ofγ1, i.e. the one
associated with the fundamental modek = 1. Thus, we look now
at howγ1(1) depends on the system parameters. We fix the region
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t = 10.
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Figure 7: Distribution of mobiles according to simulation at
time t = 10.

where mobiles move to the interval [-10,10]. First, we consider
the impact of move/pause dynamics, while keeping the speed uni-
formly distributed in [-1,1]. Figure 8 reports the value ofγ1(1) as
a function of the average duration of move time, for different ratios
between pause and move times. Both of them are assumed to be
exponentially distributed.

We observe that, for a given pause/move ratio,γ1(1) becomes
more negative (which implies a shorter transient) for increasing du-
ration of the move time, because mobiles spread faster if they keep
the same direction and speed for prolonged period of time. For a
given value of average move time, the absolute value ofγ1(1) de-
creases (which implies a longer transient) for increasing persistence
in the pause state.

Next, we fix the average duration of the move and pause times
equal to 1, and vary the maximum speedV of mobiles, which is as-
sumed to be uniformly distributed in[−V, V ]. Figure 9 reports the
value ofγ1(1) as a function ofV for different values of the varia-
tion coefficientCon of move time, whose distribution is assumed to
be hyper-exponential of the second order. Pause times are instead
exponentially distributed, i.e.Coff = 1.

While the effect of speed distribution is more intuitive, i.e.γ1(1)
becomes more negative for increasingV (shorter transient), the
dependency on the variation coefficientCon is quite intriguing,
with multiple intersections among curves corresponding toCon =
1, 2, 8. Therefore we decided to check on simulation this peculiar
behavior. In particular, we consider the case ofV = 1. According
to Figure 9 the fastest transient should be forCon = 2, whereas
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Figure 8: The dependence ofγ(1) on move/pause dynamics.
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Figure 9: The dependence ofγ(1) on maximum speedV , for
different variation coefficients of move time.

Con = 8 should produce the slower transient. We take as ini-
tial distribution of mobiles’ position a gaussian distribution with a
variance of 1, centered in the origin. Figures 10, 11, 12, reports,
respectively, the distributions mobiles forCon = 1, 2, 8 sampled
every 10 time units.

Analytical predictions match perfectly with simulation results in
all cases, and confirm the impact of the variation coefficient: the
curves referring toCon = 2 flatten more rapidly than the curves
for Con = 1, which in turn flatten more rapidly than the curves for
Con = 8.

Finally, Figure 13 reports the values ofγ1(k) up tok = 1000
for the three considered values ofCon. The most significant values
of γ1(k) in determining the duration of the transient are shown in
the inset of Figure 13.

9. CONCLUSIONS AND FUTURE WORK
So far in the literature, the theoretical investigation of random

direction and random waypoint mobility models has mainly fo-
cused on the analysis of the steady state distributions. Theap-
proach proposed in this paper permits to extends the analysis to
the transient regime. We have started from the observation that
Chapman-Kolmogorov equations describing the dynamics of asin-
gle mobile can be used to describe the dynamics of large popula-
tion of users. We have obtained Chapman-Kolmogorov equations
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Figure 10: Distribution of mobiles for Con = 1. Comparison
between analysis and simulation at different time instants.
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Figure 11: Distribution of mobiles for Con = 2. Comparison
between analysis and simulation at different time instants.

of a mobile moving according to either RD or RWP model. Then
we have applied standard mathematical techniques toanalytically
solve the equations for RD models in both steady state and transient
regime, either withwrap aroundor reflectionboundary conditions.
We have derived simple expressions relating the transient duration
to the model parameters; moreover, we have proposed generalized
RD models to achieve a desired stationary distribution of mobiles
in the space, a problem that has received so far little attention. Our
dynamical viewpoint indeed opens many new directions in thethe-
ory and practice of random mobility models.
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APPENDIX

A. UNIQUENESS OF SOLUTION
Here we prove that the problem defined by equations (1), (2)

with boundary and initial conditions specified in section 2.1 admits
at most one solution in both thewrap-aroundand reflectioncases.
First we introduce the following two lemmas which will be used to
prove our main result.

LEMMA 1. Suppose for simplicity thatfV (v) is uniformly dis-
tributed between[−1/2, 1/2]. Then the functional

L(t) =
µ

2

ZZ

n2(x, v, t) dxdv +
λ

2

Z

s(x, t)2 dx

is a non-increasing function of time, for any pair of functionsn(x, v, t),
s(x, t) which are solutions of (1) and (2), respectively.

Proof: We first define:

||s(x, t)||2 =

Z

s2(x, t) dx =

ZZ

s2(x, t)1(v) dv dx

||fV (v)||2 =

Z

f2(v) dv = 1

||s(x, t)fV (v)||2 =

ZZ

s2(x, t)f2(v) dv dx =

||s(x, t)||2||fV (x)||2 = ||s(x, t)||2

Now let us evaluate:

dL(t)

dt
=

d

dt

»

µ

2

ZZ

n(x, v, t)2 dxdv +
λ

2

Z

s(x, t)2 dx

–

=

= µ

ZZ

n(x, v, t)
∂n(x, v, t)

∂t
dxdv + λ

Z

s(x, t)
∂s(x, t)

∂t
dx =

=

ZZ

n(x, v, t)

»

−v
∂n(x, v, t)

∂x
+λfV (v)s(x) −µn(x, v, t)

–

dxdv+

+λ

ZZ

s(x, t)

»

−λs(x, t) + µ

Z

n(x, v, t) dv dx

–

dx =

= −µ

ZZ

v
∂n2(x, v, t)

∂x
dxdv + λµ

ZZ

fV (v)s(x)n(x, v, t) dvdx−

−µ2

ZZ

n2(x, v, t) dv + µλ

ZZ

s(x)n(x, v, t) dv dx−

−λ2

Z

s2(x, t) dx ≤

≤ −µ2||n2(x, v, t)|| + 2λµ||s(x)|| ||n(x, v, t)|| − λ2||s(x)||2 ≤ 0

In case in whichfV (v) is not uniform the previous result can be
extended redefining the functionL(t).

LEMMA 2. Let fV (v) be a regular pdf whose associated cdf
is FV (v). Having definedm(x, v, t) = n(x, v, t)/fV (v) for any
ǫ > 0 the functional

L(t) =
µ

2

ZZ

v:fV (v)>ǫ

m(x, v, t)2 dx dFV (v) +
λ

2

Z

s(x, t)2 dx

is not increasing.

Proof: this statement can be proved repeating the passages of
previous proof.

From the monotonicity of functionalL(t) we can easily show
that solutions of equations (1) and (2) are unique.

Proof: By contradiction, suppose that two different pairs of
functionsn1(x, v, t) ,s1(x, t) andn2(x, v, t) ,s2(x, t) are solutions
of the equations (1) and (2) with the same initial and boundary con-
ditions; then by linearity of the equations (1) and (2),

n1(x, v, t) − n2(x, v, t) and s1(x, t) − s2(x, t) are solutions of
the equations (1) and (2) with null initial conditions; i.e.,
n1(x, v, 0) − n2(x, v, 0) = 0 and s1(x, 0) − s2(x, 0) = 0. As a
consequence, sinceL(t) ≥ 0 (by definition), L(0) = 0, and
L(t) is not increasing, it resultsL(t) = 0 ,∀t. Therefore it must
be n1(x, v, t) − n2(x, v, t) = 0 ands1(x, t) − s2(x, t) = 0; i.e.,
n1(x, v, t) = n2(x, v, t) ands1(x, t) = s2(x, t).

B. TRANSIENT ANALYSIS OF RD MODEL
WITH REFLECTION

Here we prove that the transient analysis of the RD model with
reflectioncan be reduced to the analysis of the RD model withwrap
around, as explained in Section 7.4. We assume that the the speed
distribution is symmetric, i.e.,fV (v) = fV (−v). The proof is
articulated in four steps.
Step 1 Consider the unidimensional RD model withwrap around.

Without loss of generality, let the domain be the interval
[xl = −1, xu = 1]. If n(x, v, t) ands(x, t) are the solution
of (1) and (2) corresponding to the initial conditionsno(x, v)
andso(x), thenn(−x,−v, t) ands(−x, t) are the solution of
(1) and (2) corresponding to the initial conditionsno(−x,−v)
andso(−x). This property can be easily checked directly on
equations (1) and (2) through the change of variables(x, v) →
(−x,−v).

Step 2 As a consequence of previous step the following property
follows: if the initial condition is symmetrical, i.e.,no(x, v) =
no(−x,−v), so(x) = so(−x), then the solutionn(x, v, t),
s(x, t) is symmetrical for allt, i.e.,n(x, v, t) = n(−x,−v, t)
ands(x, t) = s(−x, t).

step 3 For any symmetrical initial conditionno(x, v) = no(−x,−v)
andso(x) = so(−x), the RD models withwrap aroundand
reflectionadmit the same solution. Indeed, thewrap around
solution must satisfy the boundary conditionsn(1, v, t) =
n(−1, v, t). This, combined with the invariance under the
transformation(x, v) → (−x,−v), implies thatn(1, v, t) =
n(1,−v, t), and similarlyn(−1, v, t) = n(−1,−v, t), thus
thewrap aroundsolution satisfies also thereflectionboundary
conditions and therefore provides a solution for the reflection
model. Finally, from the uniqueness of the solution of the RD
model, no other solution for thereflectionmodel exists.

Step 4 Now, without loss of generality, consider areflectionmodel
over the domain[0, 1], under an arbitrary initial condition
no(x, v) andso(x, t). We compare the solution of this model
with that of awrap aroundmodel over the extended domain
[−1, 1], under the initial conditionno(x, v) + no(−x,−v)
and so(x) + so(−x): we claim that the restriction of the
latter model (with wrap around) over the domain[0, 1] pro-
vides the solution of thereflectionmodel over the same do-
main. Indeed considern(x, v, t) ands(x, t), the solution of
the wrap aroundmodel over[−1, 1]. Observe that, by con-
struction, the initial conditions of thiswrap aroundmodel
are symmetric. Beingn(x, v, t) ands(x, t) invariant under
the transformation(x, v) → (−x,−v), we haven(1, v, t) =
n(−1, v, t) = n(1,−v, t), therefore the solution satisfies the
reflection condition at boundaryx = 1. Moreover, by con-
structionn(0, v, t) = n(0,−v, t), thus the reflection bound-
ary conditions are satisfied also atx = 0. Sincen(x, v, 0) =
no(x, v) ands(x, 0) = so(x) over domain[0, 1], the restric-
tion of n(x, v, t), s(x, t) over [0, 1] provide the unique solu-
tion of thereflectionmodel over the same domain, under the
initial conditionno(x, v) andso(x).


