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ABSTRACT

In this paper we revisit two classes of mobility models whioh
widely used to represent users’ mobility in wireless netgoiRan-

dom Waypoint (RWP) and Random Direction (RD). For both mod-

els we obtain systems of partial differential equationsclihde-
scribe the evolution of the users’ distribution. For the Rbdal,
we show how the equations can be solved analytically bothen t
stationary and transient regime adopting standard mattieshtech-
nigues. Our main contributions are i) simple expressionghvte-
late the transient duration to the model parameters; iifi#ition

of a generalized random direction model whose stationastyidu-
tion of mobiles in the physical space corresponds to an iasdig
distribution.

Categories and Subject Descriptors

1.6 [Simulation and Modeling]: General; C.2.1Computer Com-
munication Networks]: Network Architecture and Designre-
less communicatignG.1.8 Numerical Analysis]: Partial Differ-
ential Equations

General Terms
Theory, Design, Performance

Keywords
Mobility models, Partial differential equations

1. INTRODUCTION

Mobility models play a fundamental role in the analysis ard d
sign of wireless systems [1, 2]. In the past several yeassarehers
have proposed a number of mobility models for the purposemf s
ulating the movement of users in a wireless network. Two lyide

follow a sequence of linear segments and traverse each s¢gine
constant speed. The two models differ in how a user chooges th
next segment to traverse: under the RWP model, a user selects
random destination point within the space; instead, unaemRD
model a user chooses a direction to travel in and a duratiothé&
travel. In both cases, the speed on a segment is taken from som
given distribution. Moreover, before starting to travel tve new
segment users can stop for a random time, thus alternatiagegh

in which they move with phases in which they keep still.

Despite their wide use in simulation studies, propertieshef

above mobility models have only recently been establishetl a
fully understood. In [5] the authors have used Palm calctdus
study the stationary regime of a large class of mobility niede
(including RWP and RD), explaining a number of previously ob
served phenomena such as speed decay [9] and non-uniform dis
tribution of nodes [7]. Their analysis generalizes findiny§3, 6,
8] about existence and uniqueness of a stationary regingepian
vides the correct methodology to start a simulation in stesdte
so as to avoid transient effects (perfect simulation). Muoeg, the
proposed perfect sampling technique applies to quite géaeea
shapes (e.g., the Swiss Cross), without requiring the ctatipa
of complex geometric integrals (like for example in [4]).

It turns out that the RWP mobility pattern, which is appeglin
because of its natural physical interpretation, is moréadlift to
analyze and control in terms of the stationary distribugiohloca-
tion and speed of mobiles, and does not usually lead to aramifo
density of nodes in the space. On the contrary, the RD mpbilit
pattern has the nice property that users always tend to therony
distributed in the space, irrespective of the boundary itaoms im-
posed (wrap around or reflection). Moreover, the distritrutof
location and speed at a random time instant are the same as at a
transition instant [5], which greatly simplifies the anadys

Two important issues in the analysis of mobility modeld stled
to be solved. The first is the study of the convergence ratheo t
stationary regime from arbitrary initial conditions. Thiat how

used models are the Random Waypoint model (RWP) and the Ran-long does it take to approach the stationary distributidhefsimu-

dom Direction model (RD). In both models, users indepergent
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lation starts away from the equilibrium? So far, in the kiteerre, the

R transient behavior of mobility models has mostly been atered

a nuisance, and many efforts have been devoted preciselirto e
inate transient effects from simulations. However, cayagian-
ning, network resilience and reliability, etc., usuallguére to test
applications and protocols in time-varying, critical c@mhs, not

in the steady state. Take, for example, the case of a large num
ber of mobile nodes forming an ad-hoc network initially coefil

in a small area (such as a conference room, a football staditm
the like), who at some point start dispersing away. One wélkeéd

to simulate such a scenario to see how the network behavés whi
nodes get more and more far apart till connectivity is loshisT



paper will show that theoretical mobility models permit to tthis
in a controlled and predictable fashion, i.e., it is posstiol choose
parameters of the mobility model to obtain a desired nodisgied-
sion rate and duration of the transient. Our dynamical vignwp
thus brings what might be regarded as ideal, unrealisticilitob
models much closer to practical applications.

lute speed value is upper bounded by a constant;, i.e., support
of fv(v) is in the interval[—Viax, Vinax|- This is a reasonable
assumption for all cases of practical interest.

The dynamics of the mobile can be described in terms of a Marko
Process over a general space state [10], in which the iastaotis
mobile stateK (t) is characterized by: i) the phage(t) € P =

The second issue is the reverse of the problem considered so{move pausg; ii) the instantaneous positial (t) € [z, z..]; iii)

far in analytical studies appeared in the literature: isasgble
to devise a mobility pattern that achieves a desired statjodis-
tribution of nodes in space? So far, theoretical studies hast
predicted the stationary distribution generated by a giverbil-
ity model. However, the ability to design a mobility modehth
produces an assigned distribution of nodes in the area waitof
much greater interest in real problems, where node degsiteal-
most always non-uniform. As an example, one could be intedes
in simulating scenarios in which nodes are more denselyamnc
trated in some portions of the area, like in a urban context.

In this paper we propose an analysis of the RWP and RD mod-

els that allows us to address both issues above, filling treiex
gap in the analysis of mobility models. We use partial défetral
equations (PDE’s) to describe how the mobiles’ state distion
evolves over time. Our novel formulation provides the atiah}
basis for solving both transient and non-uniform cases. alrig
ular, it permits to study the transient dynamics of a systéamt-s
ing from arbitrary initial condition, for both RWP and RD meld.
For the RD model, we show how the partial differential equadi
can be solvednalytically in the transient regime adopting stan-
dard mathematical techniques. Moreover we re-derive kn@wvn
sults about the stationary distribution of the RD model in @ren
straightforward manner than previous approaches basecaln P
Calculus. Our methodology allows, for the first time to thetaf
our knowledge: i) to derive simple expressions relating tthe-
sient duration to the model parameters; ii) to generalize RiD
model so as to obtain a desired stationary distribution afesan
the space.

The remainder of paper is organized as follows. In Sections 2
and 3 we present the equations describing the behavior ofgtesi
user moving according to the RD and RWP model, respectively.
Section 4 we statistically re-interpret the previouslyasbéd equa-
tions for a single user, showing that they can be used as well t
describe the dynamics of a large population of mobile us€ére
steady state analysis of the standard RD model is providSg o
tion 5, whereas the extension of this model to achieve aryitr
distributions of nodes in the area is described in SectioTbe
transient analysis of the RD model is presented in Section?.
Section 8 we validate our analysis by simulation on a few exam
ples and present possible applications of our methodoleimpally
Section 9 concludes the paper.

2. EQUATIONS OF THE RD MODEL

We start considering a single user moving according to the ra
dom direction model over a unidimensional domain, furthesten-
ing that move and pause times are exponentially distributéen

the current speetf (¢) (in caseP(t) = move.

Let N(z,v,t) be the cumulative probability that at timethe
mobile is in themovephase at a positioX (t) € [z, z] with a
speedV (t) € [—Viax, v]:

N(z,v,t) 2 Pr{P(t) = move X(t) € [z, 2], V(t) € [~ Vinaz,]}

Let S(z,t) be the cumulative probability that at tiniehe mobile
is in thepausephase at a position € [z;, x]:

S(z,t) 2 Pr{P(t) = pause X (t) € [z1, 2]}

Consider a small intervdl” = [t,t + At). Conditionally over
the fact that no phase transition occurslinaccording to the RD
model at time + At stateK (t) = (move z, v) is deterministically
transformed into stat& (¢ + At) = (movez + vAt,v), whereas
stateK (t) = (pausez) is deterministically transformed into state
K(t + At) = (pausex); thus, conditionally over the fact that no
phase transition occurs ifi, we have:

N(x 4+ vAt,v,t + At) N(z,v,t)
S(z,t + At) S(z,t)
If atransition occurs at+7 € T', stateK (t) = (pausez —v(At—7))
is deterministically transformed into stak&(t + At) = (move x,v),
whereas staté( () = (movex — v, v) is transformed into state

K(t + At) = (pausex). Thus, conditionally over the fact that a
phase transition occurs iR, it results:

S(x,t) /j fv(v)dv + O(At)

Vmax

N(z,v,t+ At)

Vmax
/ N(z,v,t)dv + O(At)

S(z,t+ At)
Vinax

Due to the exponential distribution of the move and pausegim
the probability that a phase transition occursTirfrom pauseto
moveis AAt + o(At); the probability that a phase transition oc-
curs during?’ from moveto pauseis pAt + o(At); the probability
that more than one phase transition occurg'iis, insteadp(At).
Therefore, we can write:

N(xz + vAt,v,t + At) =
N(z,v,t)(1 — pAt) + AALS(z + vAt, t) + o(At)

S(z,t+ At) =
Vinax

(1= AAt)S(z,t) + uAt/

N(z,v,t)dv + o(At)

Vinax

Letting At — 0, assumingfy (v) to be a continuous and derivable

we generalize our approach to the case in which move and pausgunction, and defining

times have a general distribution. Finally we extend ouratigns
to the multidimensional case.

2.1 Unidimensional case with exponential phases

We assume that the domain in which the mobile can move is the 9dn(z,v,t)

interval [z;, z.,], Move and pause times are taken from an expo-
nential distribution of parameter and A, respectively. When the
mobile starts travelling on a new segment it selects a speed f
the generic distributiorfy (v). We further assume that the abso-

_ 9O’N(z,v,t) _0S(z,t)
n(z,v,t) = “orov s(z,t) = Oz
we obtain the following coupled differential equations:
_ on(x,v,t) _
(‘3t - v 8$ + )\fV('U)S(l') lu‘ 'I’l(l’, 'U, t) (l)
% = —As(z,t) + u/n(x,v,t) dv 2



Boundary Conditions

A problem that arises in the RD model is what to do when the mo-

bile hits a boundary. Several strategies have been propasezhg
them the most popular amrap aroundandreflection In thewrap

aroundmodel, the mobile hitting a boundary with speenhstanta-
neously reappears at the opposite side maintaining the spewssl.
Thus the boundary conditions of theap aroundmodel for (1) and
(2) are:

n(z,v,t) = n(zu,v,t) You,t
fim 20 on@ut)
s(zi,t) = s(zu,t) Vit
im 2@ _ oy, 9@y,
x—»x;r T T—Tq Ox

In thereflection model, instead, the mobile is bounced back revers-
ing its speed. The boundary conditions of thlectionmodel for

(1) are:

Yo, t

Yo, t

n(xy,v,t) (z1, —v,1)

=n
nN(Tu,v,t) = n(zu,—v,t)

In both cases the initial condition is assumed to be given:

n(z,v,0)
s(z,0)

no(x,v)

So(x)

We remark that the initial condition must satisfy the coaistis re-
lated to its physical interpretation as pdf of the mobileifos,
speed and phase at time= 0. In particular,no(z,v) > 0,
So(z) > 0 and

//no(x,v)dxdv—i—/so(x)dx: 1

Uniqueness of solution

In Appendix A we prove that the mathematical problem defined
by equations (1) and (2) subject to the boundary and inibabc
tions defined above either for tiap-aroundor reflectionmodels,
admits no more that one solution. We emphasize that thisus-a f
damental step of our analysis; indeed, under uniquenessngss
tions, if we find a solution of the equations with assignediahi
and boundary conditions we can conclude that it corresptmtie
actual system trajectory.

2.2 Extension to general phase times distribu-
tions

Let g(y) be the pdf ofmovetime, andu(y) the associated haz-
ard functionu(y) = g(y)/(1 — G(y)), being G(y) the cdf of
movetime. Similarly, leth(z) be the pdf ofpausetimes, and\(z)
the associated hazard functioiz) = h(z)/(1 — H(z)), being
H (z) the cdf ofpausetime. The systems dynamics can still be de-
scribed as a Markov process over a general space state. Howev
in this case the state space becomes more complex sincegihase
rations are not memoryless: the mobile staté) is now charac-
terized by the timé¥ (¢) elapsed since the last phase transition, in
addition to its current phas(t), instantaneous positiak (¢) and
current speed’ (¢) (in caseP(t) = move.

The mobile dynamics satisfies the following system of défer

tial equations:

On(e,v.y.t) _ on(e.vyt)  On(wvyt)

ot - ox Oy
+6(y) / Ae) fr@)s(@, 2.8 dz — p(yn(e, v, 01)  (3)

Os(x,z,t)
ot

0s(x, z,t)

Az)s(x, z,t)

- 0z N
+3() [ [ nwnte.vp0dvay @)

2.3 The multidimensional case

The extension to a k-dimensional domaiR” is rather straight-
forward. Letx = (z1,2,...,zx) be the position of the mobile
andv = (v1,v2,...,v) the current speed vector (each compo-
nent represents the mobile’s position/speed along thespond-
ing dimension). In case of exponential move and pause titees t
Chapman-Kolmogorov equations of the system are:

W —v - Van(x, v, 1)
A (V)s(x) —pn(x,v,t)  (5)
%gﬁ —m&ﬁ+u/waﬂ® ©)

beingv-Vxn(x, v, t) the inner product betweenandVxn(x, v, t).
In the case of general distributions of phase durations,ave h

on(x,v,y,t) _ on(x,v,y,t)

= —v.Vxn(x,v,y,t) 3y

ot
+3() [ MG ()5, dz = il v, 1)
O0s(x,z,t)

(7)
0s(x, z,t)

— A2)s(x, 2, t)

ot - 0z
+6(2) / / ny)n(x, v, g, 1) dvdy ®)

3. EQUATIONS OF THE RWP MODEL

Similarly to what we have done for the RD model, we start con-
sidering a mobile moving along a unidimensional domainyass
ing that pause times are exponentially distributed. Notie in
the RWP model users do not choose a duration for the move phase
which instead depends on the selected destination poirgzeed.
Next we generalize our approach to the case in which pausstim
are generally distributed, and finally to the multidimemsibcase.

3.1 The unidimensional case with exponential
pauses

Let [x;, z..] be the domain in which the mobile can move, and
the parameter of the exponentially distributed pause tifhe. mo-
bile in z, when choosing the next segment to travel in, first selects
a destination poird according to the distribution(d), then selects
a speed according to the distributign (v|d, z). We notice that if
d > z it must befy (v|d, z) = 0 for v < 0, while if d < x it must
be fv (v|d,z) = 0 for v > 0. We again assume that the absolute
speed value is upper bounded by a constant.; i.e., support of
fv(v|d, z) falls in the intervall— Vinaz , Vinaz], Vd, .

The dynamics of the mobile can be described in terms of a Marko
Process over an general space state in which the instantartde
K (t) is characterized by: i) the pha$¥t) € P = {move pausé;
ii) the instantaneous positiak () € [z, x.]; iii) the current desti-



nationD(t) € [z, z.]; iv) the current speell (¢) €
(in caseP(t) = move.

Let N(z,v,d,t) be the cumulative probability that at tini¢he
mobile is in themovephase at a positioX (¢t) € [z, z], with a
destinationD(t) € [z, d], and a speed (t) € [—Viax, v]:

[7Vma17 Vmaz]

N(z,v,d,t) 2 Pr{P(t) = move X (t) € [z, 2],
D(t) S [acl,d], V(t) S [_Vmaac7v]}
Let S(z,t) be the cumulative probability that at timnéhe mobile
is in thepausephase at a positioX (t) € [z;, z]:

S(x,t) 2
Introducing the derivatives
O®*N(z,v,d,t) _ 0S(z,t)
dwovod ¢ @D = 5

we obtain the following pair of equations, in a way similambat
has been done for the RD model:

Pr{P(t) = pause X (t) € [z, z]}

n(z,v,d,t) =

an(acg;, d,t) _ 7@8n(xé1;, d,t) +Afv (v | d)r(d)s(z,t)  (9)
Pl) — xstant) + [wntevatdo (10)

where (9) is defined fod > « andv > 0, ord < x andv < 0.

Boundary conditions

In the RWP model, the boundary conditions express the fadt th
the probability for the mobile to hit the boundaries is null:

n(zy,v,d,t) =0 You,d,t

n(Tu,v,d,t) =0 You,d,t
s(zi,t) =0 vt
s(zu,t) =0 vt

In addition we impose the initial conditions:

n(z,v,d,0) = no(x,v,d)
s(xz,0) = so(z)

which must be a proper pdf for the mobile’s initial positi@peed,
and destination.

3.2 Extension to general pause time distribu-
tion

Let (=) be the pdf of pause time, andz) the associated hazard
function. The system dynamics can still be described by &Mar
Process over a general state space; we only need to add tatde s
associated to the pause phase the tingdapsed since the mobile
entered the pause phase. The model equations become:

on(z,v,d,t) (‘3n(x v, d, t)Jr
ot B
v (v|z, d)r /)\ (z,2,t)d (11)
defined ford > z andv > 0 ord < x andv < 0, and
Os(z,2,t)  0Os(w,2,t)
ot B 0z
—A(2)s(z,2,t) + 6(2) / vn(z,v,z,t)dv  (12)

3.3 Multidimensional case

Letx = (x1,z2,...,2%) be the position of the mobiled =
(d1,d2, ..., dr) the current destination, andthe current speed.

Considering the case in which the pause time is generally dis
tributed, with hazard function(z), we obtain

on(x,v,d,t) B
51 = —v-Vxn(x,v,d,t)
+fv(vld, x) /)\ (x,2,t)d
O0s(x,z,t) _as(x,z,t)_
ot o 0z

—A(2)s(x, z,t) + 6(z)/||v||n(x,v,x,t) dv

4. STATISTICAL INTERPRETATION OF
PREVIOUS EQUATIONS

In this section we provide a statistical interpretationtaf equa-
tions derived in Sections 2 and 3, valid when the populatibn o
mobile users becomes large. We restrict ourselves to titéroen-
sional random direction model under general phases disitifs,
however the same interpretation holds in all other cases.

Consider a population aV mobiles, moving independently of
each other. The complete state for mohilat timet¢ is denoted
by K;(t) = (P(t),X(t),V(t),W(t)). Let M be the set of all
states in which the mobile is in thmovephase, and the set of
all states in which the mobile is in tiEausephase. LetA be any
(Lebesgue measurable) set of states, and define= AN .M and
As = ANS. Letlg,)eca be anindicator function which returns
1 if mobile: at timet is in a state belonging td, i.e. K;(t) € A,
and 0 otherwise.

By the strong law of large numbers, it results:

lim
N—oo

1
i Z L, (tyea = E[lk, (yeal = Pr{Ki(t) € A} =

i=1

:/ n(x,v,y,t)dAM+/
Apm As

Now we observe that:

s(z,z,t)dAs

. 1
Jim, 7 2 Teies

i—
has an immediate physical interpretation as the fractianabiles
whose instantaneous state at titrilongs toA; as a consequence
(3) and (4) describe the statistical density evolution @frgé popu-
lation of users moving according to the considered mohitigdel.

5. STEADY STATE ANALYSIS

In this Section we compute the steady-state solutionsgoki-
tions which are invariant with respect to time) of the RD modfée
start considering the unidimensional case with exponkphiase
times. Next we generalize our solution to the case in whicsph
are generally distributed, and finally to the multidimemsibcase.

5.1 The exponential case

The system dynamics are described by a Markov process over an
uncountable compadtspace state, whose properties have recently
been studied proving that the steady state distributiost&xinique

! Any closed bounded subset®&f, Vn, is compact.



[5, 6].2 Moreover, regardless of the initial condition(z, v, t) and
s(z, t) tend to the steady state distribution for> cc.

By setting the derivative with respect to time equal to zero i
both (1) and (2), we obtain that steady state solutiofas v), s(x)
must satisfy the following equations:

UL N @)sta) — () (19
As(z) = u/n(:c,v)dv (14)

with the boundary conditions defined in Section 2.

Considering product-form candidate solutionsdr, v), i.e.
n(z,v) = a(z)B(v), we obtain the following solution of steady-
state equations:

Afv (v) s(x) = 0
A+ w)|zw —a| A+ w)|zu — a4

which satisfies the boundary conditions for bettap aroundand
reflection in the latter case under the mild assumption that the
speed distribution is symmetric, i.¢ (v) = fv (—v). Notice that
we have basically reobtained the known result that the gtetade
distribution of nodes is uniform in space, while the speetrittiu-
tion is the same as that used to select a new speed at theitnansi
points.

n(z,v) =

5.2 General phase times distributions

When phase times have a general distribution, the steatly sta
distribution still exists unique, under the only conditithrat aver-
age phase durations are finite [5, 6]. In addition, regasdééghe
initial condition,n(x, v,t) ands(z, t) tend to the steady state dis-
tribution fort — oc.

Now we show how the steady state analysis of RD models with
generally distributed phases can be reconducted to thgsaaif
RD models with exponential phases. Setting the derivatiith w
respect to time equal to zero in both (3) and (4), we have:

_pon,vy) _on(z,vy)

ox dy
+5(y)/)\(z)fv(v)s(x,z) dz — u(y)n(z,v,y) (15)

8559:2 z) _ —A(2)s(,2) + 0(2) // w(y)n(z,v,y)dvdy (16)

Considering product-form candidate solutions of the type
n(z,v,y) = m(z,v)k(y) ands(z, z) = p(x)h(z) with
ol h(z)dz = [, k(y)dy = 1, and defining:

d 1
Aeff = /07 A2)h(z)dz = 7E[Tpau5é
fefi = /0_ w(y)k(y)dy = 7E[T;0vé

it results thatn(x, v), p(z), k(y), andh(z) must satisfy:

v% = Xt fv (0)p(@) — peg m(z,v)  (17)
Aett p(T) = Heff/m(x,v) dv (18)

2In [5, 6] the properties of RD models have been analyzed, by co
sidering the embedded discrete time Markov process whioh-4s
tained by sampling the system dynamics at instants in whieh t
mobile changes phase. An exhaustive analysis of Markoegsss
over uncountable space states can be found in [10] for tloeedes
time case.

Ok(y)

a—y move — Aeff 5(y)ppause - H(y)k(y)pmove (19)
Oh(z
%ppause = Meff 5(Z)pmove - )\(Z)h(z)ppause (20)

where ppause aNd pmove are, respectively, the probability for the

mobile of being in pause and move phase at steady state:
E[Tpausé

E[Tmové + E[Tpausé

Ppause =

E[Tmové
E[Tmové + E[Tpausé
We observe that equations (17) and (18) are structurallyticial
to equations (13) and (14), thus they admit the same sol(tdh

proper parameter substitutions). Instead, equations §a)(20)
admit the following solutions:

Pmove =

M) = e 1-6W)
Jo e J§ weyde gy E[Tmove
hz) — e~ Jo AMe)da _1—H(2)

[ e o Medaq,  ElTpausd

which correspond, as expected, to the residual time spetitein
move or in the pause phase when sampling the system at a random
point in time. Also in this case we have found the unique stead
state solution for botkvrap aroundandreflection(in the latter case
under the assumption th@{- (v) = fv (—v)).

5.3 The multidimensional case

Previous results can be immediately generalized to a nultid
mensional domain, since in this case steady-state eqsadiimit
product form solutions

ni(z1,v1)ne(x1,v1) - - ne(zk, vi) k(y)
s1(z1)sa(z1) - - se(xr) h(2)

and thus can be decoupled into unidimensional equationshvene
structurally identical to those presented in the previoesti®n.

n(x,v,y)

s(x, z)

5.4 Discussion

As a final remark of our steady-state analysis, we emphaséeze t
our approach based on differential equations allows toiolite
steady-state distribution of RD models witlap-aroundor reflec-
tion (in the latter case under the condition thfat(v) = fv(—v))
in a straightforward manner, providing an alternative tprapches
based on Palm Calculus [6, 5].

6. GENERALIZED RD MODELWITHNON
UNIFORM STATIONARY SOLUTION

The standard random direction model brings to a steady state
which nodes are uniformly distributed in space. Howevemanmy
practical cases one would like to have an anisotropous nede d
sity in the area. For this reason we now generalize the RD mode
in such a way that the stationary distributions of nodes énrttove
and/or pause phases are not necessarily uniform in spacéglbu
low a desired (assigned) distribution. In particular, wasider a
random direction model in which: i) the pause time may depend
on the positiont where the mobile stops; ii) the speed of mobiles
during the move phase can vary with the instantaneous poaiti
To simplify the presentation, we consider only the uniditi@ral
case with exponential phase times distribution, howeverstgme



results apply to the case of general phase distributionst@riae
multidimensional case.

When a mobile starts travelling on a new segment, we assume it

chooses a “base speed’from a generic distributioryy (). The
actual speed is a deterministic function of the positianand the
base speed. For simplicity we assume that the actual speed is
simply proportional to the base spe¢dhrough a factor)(z) that
depends only on the position, i.e(x, () = ¥ (x)C.

The equations of the generalized RD model are:

On(e.¢.t) __ B, Onle.¢.0)]
ot oz
FA@) fv(Q)s(z) — pn(z, () (21)
Bl — A@ste) a [ cnd @)
from which the steady-state equations are:
Ales e 50) v (©)sta) — (e, €) (29
A@)s(e) = [ 00 (24)

Substituting the expression efz) obtained from (24) into (23),
we obtain:

Ov(z, On(z, O]

s o @n [n(@, O~ pn(e,0) @)

Now, considering product-form candidate solutions, selutions
of the formn(z, ¢) = m(z)B(¢), with [ B(¢)d¢ = 1, it results:
ca O _ @i () - AL (26

and we can decouple the previous equation into two ordindsy d
ferential equations:

WEmE] ey
fv(§)
“ = B0
from which:
_ (@)

Sinces(¢) > 0and [ 3(¢) d¢ = 1, itresultsC = 0;
hence,3(¢) = fv(¢) andm(z) = 70y for somea such that
Jm(z)dz = 1.

In conclusion, we can obtain any assigned profilés) ands(z)
of the mobiles’ density in the move and pause phases, régglgct
by setting

7. TRANSIENT ANALYSIS

In this section we present an analytical solution for thentra
sient regime of the RD model. We start considering the case of
wrap aroundboundary conditions. As we will see at the end of
this section, the transient analysis of the RD model wéftection
comes for free once we know how to solve the RD model withp
around As usual, we first consider the unidimensional case with
exponential phase times. Then we extend the analysis toafee ¢
of general phase times, and finally to the multidimensioaakc

7.1 Unidimensional case with exponential phase
times

We apply the methodology of separation of variables to fild-so
tions for the system of equations (1) and (2), in caserap around
boundary conditions. Consider product-form candidateitsmis:
n(z,v,t) = 7(t)m(z,v) ands(z, t) = 7(t)r(z); substituting into
(1) and (2), we obtain:

dr(¢) _ om(x,v)
Tm(x,v) = *UT(t)T+
FAfv ()r(@)7(t) — pm(z,v)7(t)
dgit)r(x) = =Xr(z)r(t)+ /n'(t)/m(x,v) dv

From which we can separate the dependency on time from the de-
pendency on space and speed, yielding:

oIHED — \fy () ~ (u+A)mee)  (28)
_ K
r(x) = m/“ﬂ%@dv (29)

Now substituting the expression ofz) provided by (29) into (28)

we have:
om(x,v)

b

For m(z,v), we consider again product-form candidate solutions
m(z,v) = a(x)B(v), obtaining:

da(z) _

vBy) =4,

fv(v)

= fv )22 [ om0} v = Gt p)miz,v)

)\)_\:L’yoé(x)/ﬁ(v) dv — (u+ 7)a(z)B(v)

in which we can separate the functions which depend fsom the
functions which depend om

4@ ) (30)
B(v) -~ At
Twaw ~ O e Y

Functionsa(z) = €%, beingn any complex number, are solutions

of (30). Instead from (31), sincf, % dv = 1, we obtain a
fundamental relation betweenandn:
Au ) g, (32)
Aty Syttt

Wrap around boundary conditions require thdt:;) = a(z.),
lim balz) 9o(z) " This constraint is satisfied

z—zl " ox ox *

Whena(lx) is periodic with periodl/ fz = x. — ;. It follows that
wrap around boundary conditions are satisfied when j27 f, k,
with & € Z. Notice that solutionsy(z) = e’*™/=** corre-
spond to the standard Fourier basis for the intefval z;], which
is dense irC°([xw, 2:]), the class of continuous functions defined
OVer [Ty, xi].

For any givenk € Z, (32) provides an implicit equation that
defines exponent(k):

)\u/

Aty

= lim

fv(v)
p+y+ j2nkfav

dv=1 (33)



In particular, whenk = 0, (33) admits the solution; = 0, 7.2 General phase times distributions

corresponding to the steady-state distribution of theesysdlready We have not tried to solve exactly the transient analysisef t
found in Section 5. There is also the solutipn= —(A+), which system in case the move and/or pause times have general (non-
has a different physical interpretation: it is the rate aialitthe exponential) distributions. However, an approximate wsialcan
system converges to the steady state distribution fromdhdition be performed using a stage decomposition approach. Thiasnea
in which the probability of being in the move or pause phases a  that a separate differential equation has to be writtendchestage
uniform over space but not in equmbrlgm. of the decomposition. For example, consider the case intwthie
Fork # 0, the existence of real solutions feican be guaranteed  move time is described by an hyper-exponential distritutibthe
when the probability density function of nodes’ speed issytric, second order:
i.e. fv(v) = fv(—v). In this case, the imaginary component of ot ot
[y dvisnal. Ha(t) = puyne™""" + papze
For example, in casg¢y (v) is uniform in the interval—V, V] This simple 2-stage approximation allows to match the fingt t
equation (33) reduces to: moments an any distribution having a coefficient of variaterger
than one. Let(z,v,t) andnz(z,v,t) be the pdf ovelz,v) of
A arctan (M) -1 the mobile in move stages 1 and 2, respectively, at tm&he
A+ 7)2rkfeV +7 transient behavior is then described by the following sysoé dif-
from which~ can be easily obtained numerically. In general, it can ferential equations
be shown thaty has two negative solutiong and~. for everyk oni _ . 0m _
(2 <m <0). . _ ot o T ApLfvs = pam
_ As.a result of previous calculations, the class of elemgritarc- % _ 71)% + Apafvs — a2 na (37)
tions:
Aufy (v)e?2mzke et % = —As+p1 [nidv+ p2 [n2dv
ni(z,v,t) = . (34)
A+ 7))+ +52nk fov) which can be solved in a way analogous to the exponential tase
si(z,t) = P i2mfeke ot (35) this case the equation relatingo 7 is
Aty
| | | WO s fo@) 4, At
are solutions of (1) and (2), wittvrap aroundboundary condi- P e TR S e YT T

tions. Moreover, lettingis (z,t) = [ ni(z,v,t) dv, we obtain the

elementary solution vector: Similarly, we can analyze the case in which the pause time is

described by an hyper-exponential distribution of the adaarder,

. ining th f ion
<m <x,:>> _ (x " 7> pitsiaks g gy P mesetofeauatons

sk(z,1) K 8_? = *Ua—?+/\1fv81+/\2fv82*un
Recalling that for every value df there exist two solutions of, it ds1 _ _y d 38
turns out that any solution of (1) and (2) in which the initiatribu- ot w14 pufnd (38)
tion profiles in the move and pause phases are continuougevith 0sa  _ Nos

! X =2 = — + ndv
spect to the space coordinate (keG°([z., :])) can be expanded ot 252+ papt |
in series of the above elementary vectars In this case the equation relatingo n becomes
The procedure to compute the system state at an arbitragy tim A N
instantt can be summarized into the following steps: ( Pt P2A2 ) fv(v) dv=1
Aty Aty o Bty + U

1. Compute the values ofi (k) and~2 (k) associated to every

elementary vector. Instead, in the case in which move time is described by an Er-

lang distribution of the second order (the sum of two exptiaén

2. Compute the Fourier series expansion of the initial tigtr distributions with ratg:; andus), we obtain:
tion of mobiles’ in terms of elementary vectors evaluated at
timet = 0. % _ —v% S pfus —
3. Multiply each coefficient of the (possibly truncated)iser on on
expansion by the exponential decay factor of the correspond D = “vHE e = pens (39)
ing solution vector (eitheg =71 ()t or ¢~ 72(R)t), 9
o . ' a—‘; = —As+p2 [nadv
4. Reconstruct the distribution of mobiles’ using the newga
of coefficients at time. In this case the equation relatingo 7 is
Of course, steps 1 and 2 has to be performed only once, not for fv(v) Aty
anyt. As expected, as time tends to infinity all ‘propagation mde H1H2/(H1+7+ﬂv)(u2+7+ﬁv) dv=—

ak(z), with k #£ 0, tend to vanish exponentially, leaving only the
uniform distribution associated o= 0 (71 = 0). Moveover, we
observe that the duration of the transient is essentiallgrdened
by the periodic component with the minimum absolute valug; of

From the examples above it is clear that one can write a set of
equations for a generic stage decomposition of the moveoand/
pause time, and obtain an implicit equatiomofor each feasible
value ofn. We remark that to analyze the transient it is not neces-
3This is due to the fact that Fourier system represents a agimpl ~ Sary to solve the entire set of differential equations, josterive
orthogonal system in the class of square summable funatibith (numerically) the proper value of for each value of), and apply
comprise functions iC° ([2.,, z1]). the same procedure described at the end of Section 7.1. T$ing,




a stage decomposition approach the analysis of the trarmsaav-
ior of the system in the general case has the same computyion
complexity as the exponential case.

7.3 The multidimensional case

The transient analysis can be extended also to the multidime
sional case. Since the most interesting applications ofilihob
models arise on the bi-dimensional space, here we desciiibe m
in detail the transient analysis in the 2D case, restrictingselves

that of the RD model witlwrap around Indeed, the flows of mo-
biles hitting the boundaries are the same~= b’, and since in
the wrap aroundb’ = a’ we havea = a’ (similarly, b = b’),
which means that the dynamics are the same as imetfection
model. If the initial conditions are not symmetric, we daeltihe
area adding a specular ‘image’ of the initial domain to tigéti(or

to the left), as shown in the bottom part of Figure 1. Doing so,
we obtain a scenario in which the initial conditions are syatnig,
thusa = ¢’ = a’. Moreover, by construction we hale = b’.

to the case of exponential sojourn times in the move and pause Therefore the dynamics of therap aroundmodel in the extended

states. We assume that mobiles are free to move in the red#ang
aredz., z1] X [yu, y1], and independently choose the speed compo-
nents alonge andy from arbitrary distributionsfv, and fv,, (pos-
sibly different). Similarly to the mono-dimensional case apply

the methodology of separation of variables, looking folusohs

of equations (5) and (6) in the form

7(t) ax(x) fx (vz) ay (y) By (vy)
(1) rx () ry (y)

”(xylh vﬂh 'Uyyt)
s(z,y,t)

Plugging these expressions into (5) and (6) we h-‘é&&él = y7(t),
while boundary conditions of the wrap around model implyt the
only feasible solutions fat x (=) anday (y) belong to the discrete
setsay, (z) = /> =F=% anday,, (y) = /> vF=¥ respectively.
Now we have that exponentsassociated to each pdik., k) €
72, have to satisfy the equation

// fva Uz)ny (vy)
/\+7 w7 + 521 (ke fave + ky fyvy)

The procedure to evaluate the system state at a genericrigtant

t follows the same steps described in Section 7.1, excephtivat
we need to perform a bi-dimensional (Fourier) expansionhef t

initial distribution of mobiles in the move and pause phasesr
the rectangular region.

dvg dvy =1 (40)

7.4 Extension to reflection boundary condi-
tions
The transient analysis of the RD model witflectioncan be

easily reconducted to the analysis of the RD model witiip around
Here we provide an intuitive explanation of how this can bealo

A B
a «—— <« b
a'——> —1>b’
A B C

Figure 1: Reduction of RD model with reflectionto RD model
with wrap around

A formal proof is reported in Appendix B. Consider first thensi

ple case in which the initial distribution of mobiles in thmveand
pausephases are symmetric (top of Figure 1). In this case, the
solution of the RD model withreflectionis exactly the same as

area ‘contain’ those of theeflectionmodel in the restricted area.

8. VALIDATION AND APPLICATIONS

In this Section we validate our analysis of the RD model com-
paring analytical prediction with simulation results dhtd from
an event-driven simulator. At the same time we offer exasipfe
possible applications of our methodology.

8.1 Generalized mobility model.

Suppose that we want to achieve a given non-uniform statjona
distribution of mobiles’ on the 2D plane. In particular, sigter a
metropolitan area divided into 3 concentric rings, Rz, Rz in a
square area of edge 20 kilometers, as depicted in Figure 2.

R4
R3
Rz

Figure 2: Regions of the metropolitan area

The outer region is denoted by,. Let's assume the population
density is maximum inR;, equal top:, whereas the density in
regionR;, (¢ > 1), is p; = p1/i. We can design a generalized RD
model whose stationary distribution of mobiles’ locatianldws
exactly this distribution. Assuming an equal fraction oérssin the
move and pause states £ ), we have to set the scaling factor of
speed velocity)(z, y) = i,V(z,y) € R;.

Figure 3 contains the results of a simulation in which 8 rofli
mobiles move according to the generalized mobility modelcsp
ified above. Irrespective of their initial position, difttions of
move/pause times, distribution of speed, they tend to tis&ret
non-uniform density. In particular, the plot in Figure 3 og{s the
total number of users measured in simulation in each sqi@edge
100m after 5 hours of simulated time, assuming a base speed un
formly distributed in [-10 km/h, 10 km/h] in each direction.

8.2 Transient analysis in 2D.

We now present an example of transient analysis on the 22 plan
We assume that mobiles are initially uniformly distributeihin
a circle of radius 2 in the middle of square area of edge 20. At
timet = 0 they start moving with a speed uniformly distributed in
[-1,1] in each direction. Move and pause times are expoaknti
distributed with mean 1. This scenario could represent Hosv t
center of a city empties at the end of a working day.



Figure 3: Distribution of mobiles measured on simulation afer
5 hours, resulting from the generalized RD model

We follow the steps to perform the transient analysis of ffe s
tem as described in Section 7. First, we compute parametéks, k)
and~:2(k<, ky) associated to each elementary vector (see Section
7.3). Figure 4 depicts parameter for all combinations of the first
30 positive values of,, andk, as a continuous surface (for a better
representation). Note that

§a! (kxv ky) :71(_]%7 ky) =7 (kxv _ky) :’Yl(_kﬂw _ky)

thus positive values df, andk, provide all information. We ob-
serve thaty;, which is a negative number, decreases rapidly for
increasingk, or ky. In practice, the duration of the transient is de-
termined by the smallest absolute valuesyof This suggests that
there is no need to keep too many terms of the Fourier series ex
pansion of the initial distributions: solutions corresgong to large

k. or k, decay very fast over time and therefore do not provide a
significant contribution to the overall solution except retvery
beginning of the transient.

Next we compute the elementary vector expansion of thealniti
distribution of mobiles’ location (a bi-dimensional Foerriseries
expansion), truncating the serieslit28 x 128 coefficientsk, and
ky. This is enough to produce a satisfactory representatiadheof
initial distribution since the very beginning (i.¢. = 0), as illus-
trated in Figure 5.

Now, suppose that we want to compute the distribution of mo-
biles at an arbitrary time instant> 0. It is sufficient to reconstruct
the distribution from the elementary vectors series exigpan$av-
ing multiplied each term of the series by the correspondawjdr
(eithere= "1 (F= ko)t or ¢=72(keku)t) - For example, Figures 6 and
7 report the distribution of mobiles at time= 10, according to
analysis and simulation, respectively.

The mobiles’ distribution has been obtained in simulation-c
sidering 10 million nodes, and counting how many of them are
present at = 10 in each square of &00 x 100 grid. Note that
we have used such a large number of nodes to obtain a clean dist
bution on the chosen grid after a single simulation run. Waao
have considered a smaller number of nodes (or even a sindé no
but in this case it would have been necessary to averageshiise

SOO5000050
woNOORwWNE

Figure 4: Parameter v; for all combinations of (kz,ky),
1< ks, ky < 30.
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Figure 5: Representation of the initial distribution of mobiles’
location (a circle of radius 2) limiting the Fourier series expan-
sion to 128 x 128 terms.

of many independent simulation runs.

Recall that we can regard the analytical prediction as tbegpr
bility of finding a single mobile at a given point of the plarféea
time ¢, starting from an initial pdf of its location &t = 0. Actu-
ally, this point of view opens a wide range of possible agglans
of our analysis. For example, one could study the persisteiic
a wireless connection between a mobile and a base statidn, an
use our probabilistic analysis to design better hand-oétsgies.
Another interesting application is the analysis of link atimn and
availability in mobile ad-hoc networks [11].

8.3 Ingpact of parameters on the transient du-
ration.

We now turn to the 1D case and study the impact of various
parameters of the random direction model on the duratiormef t
transient. As already observed, the time constant of thesyss
essentially given by the smallest absolute valueqgfi.e. the one
associated with the fundamental made= 1. Thus, we look now
at how~: (1) depends on the system parameters. We fix the region
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Figure 6: Distribution of mobiles according to analysis at tme
t=10.
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Figure 7: Distribution of mobiles according to simulation at
time t = 10.

where mobiles move to the interval [-10,10]. First, we cdesi
the impact of move/pause dynamics, while keeping the speied u
formly distributed in [-1,1]. Figure 8 reports the valuepf(1) as
a function of the average duration of move time, for diffénextios

-0.01

-0.02 |

v1(1)

-0.05 |

-0.06 - pause/move = 4-—-x-— *e. b
pause/move = 2---8--- RSy
.0.07 + pause/move = 1 --—-&--- e 4
pause/move = 1/2 ----&-- *
pause/move = 1/4 ----e--- h
.0.08 i h | . .
0 0.5 1 1.5 2 25 3

Average duration of move phase

Figure 8: The dependence ofy(1) on move/pause dynamics.

y1(1)

-0.08 |

-0.12 |

-]

15 2
maximum speed V

25 3

Figure 9: The dependence ofy(1) on maximum speedV’, for
different variation coefficients of move time.

Con = 8 should produce the slower transient. We take as ini-
tial distribution of mobiles’ position a gaussian distrifan with a

between pause and move times. Both of them are assumed to beariance of 1, centered in the origin. Figures 10, 11, 120rsp

exponentially distributed.

We observe that, for a given pause/move ratig,1) becomes
more negative (which implies a shorter transient) for iasiag du-
ration of the move time, because mobiles spread fasteryfkbep
the same direction and speed for prolonged period of time.aFo
given value of average move time, the absolute valug, ¢f) de-
creases (which implies a longer transient) for increasergistence
in the pause state.

respectively, the distributions mobiles f6f,, = 1,2,8 sampled
every 10 time units.

Analytical predictions match perfectly with simulatiorstéts in
all cases, and confirm the impact of the variation coeffici¢éne
curves referring taC,, = 2 flatten more rapidly than the curves
for Con = 1, which in turn flatten more rapidly than the curves for
Con = 8.

Finally, Figure 13 reports the values ¢f (k) up tok = 1000

Next, we fix the average duration of the move and pause times for the three considered values@f,. The most significant values

equal to 1, and vary the maximum spdéaf mobiles, which is as-
sumed to be uniformly distributed jr-V, V]. Figure 9 reports the
value ofv; (1) as a function oft” for different values of the varia-
tion coefficientC,,, of move time, whose distribution is assumed to
be hyper-exponential of the second order. Pause times stesaith
exponentially distributed, i.eCog = 1.

While the effect of speed distribution is more intuitives,. iy, (1)
becomes more negative for increasihg(shorter transient), the
dependency on the variation coefficieft, is quite intriguing,
with multiple intersections among curves corresponding'de =
1,2, 8. Therefore we decided to check on simulation this peculiar
behavior. In particular, we consider the casdof= 1. According
to Figure 9 the fastest transient should be €&, = 2, whereas

of ~1(k) in determining the duration of the transient are shown in
the inset of Figure 13.

9. CONCLUSIONS AND FUTURE WORK

So far in the literature, the theoretical investigation afidom
direction and random waypoint mobility models has mainly fo
cused on the analysis of the steady state distributions. aphe
proach proposed in this paper permits to extends the asalysi
the transient regime. We have started from the observatianh t
Chapman-Kolmogorov equations describing the dynamicssaf-a
gle mobile can be used to describe the dynamics of large pepul
tion of users. We have obtained Chapman-Kolmogorov equstio
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Figure 10: Distribution of mobiles for C,, = 1. Comparison

between analysis and simulation at different time instants
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Figure 11: Distribution of mobiles for C,, = 2. Comparison

between analysis and simulation at different time instants

of a mobile moving according to either RD or RWP model. Then
we have applied standard mathematical techniquesabytically
solve the equations for RD models in both steady state andiénat
regime, either wittwrap aroundor reflectionboundary conditions.
We have derived simple expressions relating the transienattion

to the model parameters; moreover, we have proposed gexeetal
RD models to achieve a desired stationary distribution obihes

in the space, a problem that has received so far little attenOur
dynamical viewpoint indeed opens many new directions irthiee

ory and practice of random mobility models.
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APPENDIX
A. UNIQUENESS OF SOLUTION

Here we prove that the problem defined by equations (1),
with boundary and initial conditions specified in sectioh &dmits
at most one solution in both thverap-aroundand reflectioncases.
First we introduce the following two lemmas which will be dge
prove our main result.

)

LEmMMA 1. Suppose for simplicity thafy (v) is uniformly dis-
tributed betweer—1/2, 1/2]. Then the functional

= %//nQ(x,v,t)dxdv—i—%/s(x7t)2dx

is a non-increasing function of time, for any pair of funae.(z, v, t),
s(z,t) which are solutions of (1) and (2), respectively.

Proof: We first define:

Is@olt = [$aod= [[Hen
/f(v)du:
// xt

Iz, O[] fy ()]

v)dvdz

I fv (@)]1?
v)dvdz =
= |[|s(=

2
I[s(z,t) fv (V)]
ol
Now let us evaluate:

dL(t dt{ // (z,v,1t) d:cvarA/( )dx}

dt

:u//n(x,v,t)xi’v’tdxdv—&—)\/s(x,t)

// (0.t { a”("g U8 5 fy (0)s(2) —,m(m,t)] dwdvt

+,\// (z,t) { :ct)Jr,u/ (x,v,t)dvdx}dx:

)dx:

:,H// anmvtddv+)\u//fv n(z, v, t) dvde —
—u// azvtdv—i—u)\// n(z,v,t)dvdr—

-\ /s (z,t)dz <

< — |0 (z, 0, 1) + 22lls(@)]] [[n(e, v, 1) = A*ls(2)]]* < 0

In case in whichfy (v) is not uniform the previous result can be
extended redefining the functidi(t). |

LEMMA 2. Let fy(v) be a regular pdf whose associated cdf
is Fy (v). Having definedn(z,v,t) = n(z,v,t)/fv(v) for any
€ > 0 the functional

=k // m(z,v,t)? dz dFy (v) + A /s(:c,t)2 dx
2 vify (v)>e 2

is not increasing.

Proof: this statement can be proved repeating the passages of

previous proof.

From the monotonicity of functionalL(t) we can easily show
that solutions of equations (1) and (2) are unique.

Proof: By contradiction, suppose that two different pairs of
functionsni (z,v,t) , s1(z,t) andna(z, v, t) , s2(z, t) are solutions
of the equations (1) and (2) with the same initial and bouydan-
ditions; then by linearity of the equations (1) and (2),

ni(x,v,t) — na(x,v,t) and si(z,t) — s2(z,¢) are solutions of
the equations (1) and (2) with null initial conditions; j.e.
ni(x,v,0) —na2(z,v,0) = 0 and si(x,0) — s2(z,0) = 0. As a
consequence, sincké(t) > 0 (by definition), L(0) = 0, and
L(t) is not increasing, it result&(t) = 0,Vt. Therefore it must
be ni(z,v,t) — na(z,v,t) = 0 andsy (z,t) — s2(x,t) = 0; i.e.,
ni(x,v,t) = n2(z,v,t) andsi (z,t) = s2(x, t). |

B. TRANSIENT ANALYSIS OF RD MODEL
WITH REFLECTION

Here we prove that the transient analysis of the RD model with
reflectioncan be reduced to the analysis of the RD model witép
around as explained in Section 7.4. We assume that the the speed
distribution is symmetric, i.e.fv (v) = fv(—v). The proof is
articulated in four steps.

Step 1 Consider the unidimensional RD model witliap around
Without loss of generality, let the domain be the interval
[x1 = -1,z = 1]. If n(z,v,t) ands(z,t) are the solution
of (1) and (2) corresponding to the initial conditions(x, v)
ands.(z), thenn(—z, —v, t) ands(—=z, t) are the solution of
(1) and (2) corresponding to the initial conditions(—z, —v)
ands,(—z). This property can be easily checked directly on
equations (1) and (2) through the change of variables) —
(—z, —v).

Step 2 As a consequence of previous step the following property
follows: if the initial condition is symmetrical, i.en, (z, v) =
no(—x, —v), so(x) = so(—2x), then the solutiom(z, v, t),

s(z, t) is symmetrical for alt, i.e.,n(z, v,t) = n(—z, —v,t)
ands(z,t) = s(—x,t).

step 3 For any symmetrical initial condition, (z,v) = no(—z, —v)
ands,(z) = so(—z), the RD models witlwrap aroundand
reflectionadmit the same solution. Indeed, tiveap around
solution must satisfy the boundary conditionél, v,t) =
n(—1,v,t). This, combined with the invariance under the
transformation(z,v) — (—z, —v), implies thatn(1, v,t) =
n(l, —v,t), and similarlyn(—1,v,t) = n(-1, —v,t), thus
thewrap aroundsolution satisfies also threflectionboundary
conditions and therefore provides a solution for the reifbect
model. Finally, from the uniqueness of the solution of the RD
model, no other solution for theflectionmodel exists.

Step 4 Now, without loss of generality, considereflectionmodel
over the domain0, 1], under an arbitrary initial condition
no(x,v) ands,(x, t). We compare the solution of this model
with that of awrap aroundmodel over the extended domain
[—1, 1], under the initial conditiom, (z,v) + no(—z, —v)
and so(x) + so(—x): we claim that the restriction of the
latter model (with wrap around) over the domdin 1] pro-
vides the solution of theeflectionmodel over the same do-
main. Indeed considei(x, v,t) ands(z, t), the solution of
the wrap aroundmodel over[—1,1]. Observe that, by con-
struction, the initial conditions of thigsvrap aroundmodel
are symmetric. Being(x,v,t) ands(z,t) invariant under
the transformatiorfx, v) — (—z, —v), we haven(1,v,t) =
n(—1,v,t) = n(1, —v, t), therefore the solution satisfies the
reflection condition at boundary = 1. Moreover, by con-
structionn (0, v,t) = n(0, —v, t), thus the reflection bound-
ary conditions are satisfied alsoaat= 0. Sincen(z,v,0) =
no(z,v) ands(z,0) = s,(x) over domain0, 1], the restric-
tion of n(z,v,t), s(x,t) over[0, 1] provide the unique solu-
tion of thereflectionmodel over the same domain, under the
initial conditionn, (z,v) ands,(x).



