
SDAR: A Secure Distributed Anonymous Routing Protocol

for Wireless and Mobile Ad Hoc Networks

Azzedine Boukerche
†
, Khalil El-Khatib

‡,†
, Li Xu

†
, Larry Korba

‡

†
 SITE, University of Ottawa

E-mail: {bouketrch,lxi}@site.uottawa.ca
‡
 National Research Council of Canada

{Khalil.el-khatib,Larry.Korba}@nrc.gc.ca

Abstract

Providing security and privacy in mobile ad hoc
networks has been a major issue over the last few years.

Most of the research work has so far focused on providing

security for routing and data content, but nothing has been
done in regard to providing privacy and anonymity over

these networks. In this paper, we propose a novel

distributed routing protocol which guarantees security,
anonymity and high reliability of the established route in a

hostile environment, such as ad hoc wireless network, by

encrypting routing packet header and abstaining from
using unreliable intermediate node. The major objective of

our protocol is to allow trustworthy intermediate nodes to

participate in the path construction protocol without
jeopardizing the anonymity of the communicating nodes.

We describe our protocol, and provide its proof of

correctness.

1. Introduction

Security and privacy are complex issues in ad hoc

wireless networks. This complexity is the result of a

number of factors, including the wireless medium, nodes

mobility and lack of infrastructure. A malicious node (or

attacker) can easily eavesdrop into the wireless

communication channels and infer communication.

Additionally, because of the mobility of the nodes and the

absence of infrastructure, communicating nodes rely on

other mobile intermediate nodes to relay their data. This

openness in ad hoc wireless networks makes the nodes

more susceptible to attacks by hackers.

There are different kinds of attacks that can be used by

malicious nodes (or users) to harm the network, and leave

its ad hoc routing protocols unreliable. They can be

basically categorized, based upon the nature of the attacks,

into passive attacks and active attacks [1].

In this paper, we propose a novel secure distributed

path construction protocol for anonymous communication

and wireless ad hoc networks. As opposed to previous

related protocols, the proposed protocol does not require

the source node to gather and store information about the

network topology. Instead, the source node initiates a path

establishment process by broadcasting a path discovery

message with certain trust requirements to all of

neighboring nodes. Intermediate nodes satisfying these

trust requirements insert their identification (IDs) and a

session key into the path discovery message and forward

copies of this message to their selected neighbors until the

message gets to its destination. The intermediate nodes

encrypt this information before adding it to the message,

and only the selected neighbor nodes are able to decrypt it.

Once the receiver node receives the message, it retrieves

from the message the information about all intermediate

nodes, encapsulates this information in a multi-layered

message, and sends it along a reverse path in the

dissemination tree back to the source node. Each

intermediate node along the reverse path removes one

encrypted layer from the message, and forwards the

message to its ancestor node until the message reaches the

source node. When the protocol terminates, the source

node ends-up with information about all the trusted

intermediate nodes on the discovered route as well as the

session keys to encrypt the data transmitted through each

of these nodes. The multicast mechanism and the layered

encryption used in the protocol ensure the anonymity of

the sender and receiver nodes.

The remainder of the paper is organized as follows.

Section 2 will review previous and related work on

anonymous communication systems. Section 3 discusses

the security issues in routing protocols for wireless ad hoc

networks. Section 4 describes the trust management

system upon which our algorithm relies upon. Section 5

describes our secure distributed anonymous routing

protocol, which we refer to as SDAR. Section 6 presents

the main features of our protocol, and the conclusion

follows in Section 7.

2. Anonymous Communication Systems

Over the Internet, anonymous systems [2,3,4] use

application level routing to provide anonymity through a

fixed core set of MIXes, as we described earlier for the

Onion Routing protocol. Each host keeps a global view of

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

the network topology, and make anonymous connections

through a sequence of MIXes instead of making direct

socket connections to other hosts. The authors in [5] used

an alternate Onion Routing approach to provide

anonymous communications for mobile agents in the

JADE environment (Java Adaptive Dynamic

Environment). Each JADE multi-agent has several onion

agents that provide an anonymous data forwarding service,

and at least one onion monitor agent that keeps track of the

location of all other onion agents in the system. Onion

monitor agents exchange onion agent reachability

information in order to maintain a valid topology of the

complete onion agent network. Levien [6,7] developed a

monitoring utility that queries MIXes and publishes on a

website the average latency and uptime of each MIX over

the past 12 days.

A variety of widely known intrusion techniques may be

used to infer the entities’ identities, their locations, and/or

relationships between communicating entities in a public

network. Typical malicious actions may affect the message

coding, timing, message volume, flooding, intersection

and collusion. Onion Routing [8] is a communication

protocol that is resistance against some of these attacks. It

employs a network of Chaum MIXes [9] in order to

provide anonymous and secure communications. It

provides a communication infrastructure that is reasonably

resilient against both eavesdropping and traffic analysis.

Using this protocol, entities representing applications

communicate through a sequence of networked computing

nodes, which are referred to as onion routers. Onion

routers are generally application layer routers that realize

Chaum MIXes. Onion routing connections proceed in

three phases: connection setup phase, data transfer phase

and connection termination phase.

Recently, Tarzan [10] and MorphMix[11] have

discussed the difficulties of constructing routes in dynamic

environments. In Tarzan [10], the initiating node

establishes the anonymous path by iteratively adding one

node at a time to the path. In a single iteration, the initiator

adds one node to the path, and receives the list of

neighbors of that node. The initiator selects one of these

neighboring nodes to be added to the path during the next

iteration. A similar approach was used in MorphMiX [11]

but the difference is that in MorphMix, and instead of the

initiator, a trusted third party makes the selection of the

next node. Using the probability of appearance of nodes on

the path, the path initiator can, up to a certain degree,

determine existence of malicious collusions among the

nodes on the path. The problem with Tarzan and

MorphMix is that it takes a long time to construct the

paths, which is a major problem for dynamic environment,

and wireless ad hoc networks.

3. Securing Ad hoc Network Routing

Protocols

Due to the nature of the wireless environment and the

lack of predefined infrastructure [12,13], achieving secure

routing in wireless ad hoc networks is a complex task A

number of protocols have been developed to add security

to routing in ad hoc networks. Papadimitriou and Haas

[14] proposed SRP (Secure Routing Protocol) based on

DSR [15,16]. The protocol assumes the existence of a

security association between the source and destination to

validate the integrity of a discovered route. Sanzgiri et al.

[17] proposed the ARAN (Authenticated Routing for Ad

hoc Networks) protocol that uses public key cryptography

instead of the shared security association used in the SRP

[14]. Each intermediate node running the protocol verifies

the integrity of the received message before forwarding it

to its neighbor nodes. Source and destination nodes use

certificates included in the route discovery and reply

messages to authenticate each other. The protocol has an

optional second discovery stage that provides non-

repudiating route discovery. Yi [18] developed a

generalized SAR (Security-Aware Ad-hoc Routing)

protocol for discovering routes that meet a certain security

criteria. The protocol requires that all nodes that meet a

certain criteria share a common secret key.

Venkatraman and Agrawal [19] proposed an approach

for enhancing the security of AODV protocol [20], which

is based on public key cryptography. In their approach,

two systems, EAPS (External Attack Prevention System)

and IADCS (Internal Attack Detection and Correction

System) were introduced. EAPS works under the

assumption of having mutual trust among network nodes

while IADC runs by having the mutual suspicion between

network nodes. Every route request message carries its

own digest encrypted with the sender’s private key hash

result in order to ensure its integrity. To validate

established routes, route replies are authenticated between

two neighbors along them. This approach prevents

external attacks. IADC system classifies internal attacks

and sets a misbehavior threshold for each class of attack in

order to detect compromised network nodes.

The above three protocols, i.e., SRP, ARAN, and

Venkatraman and Agrawal’s schemes, ensure only the

authenticity but not the privacy of the routing information,

while SAR finds routes that meet a certain security level.

In all these protocols, intermediate nodes that handle the

route control messages can easily find the identity of the

communicating nodes, which must be protected in case of

anonymous communication. Our protocol uses the Onion

Routing approach and trust management system to provide

trust and anonymity for the path discovery (and hence for

subsequent communications using this path).

4. Trust Management System

As we mentioned earlier, due to the openness of ad hoc

wireless environments, some nodes in the network are

likely to defect and become harmful to the network,

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

thereby necessitating a mechanism to identify these nodes

and isolate them. In this section, we will introduce the

notion of trust management system we have used in our

proposed protocol. The purpose of this system is to

motivate the participating nodes not only to help each

other relaying data traffic, but also identify the malicious

nodes, and avoid using them during the route

establishment. The identification of malicious nodes

makes it easy to take them out of the network, thereby

increasing the route’s security and reliability

In this section, we will introduce our trust management

approach as well as the trust notion we choose to use in ad

hoc wireless environment to select routing path that meets

certain trust requirements. In our approach, we define the

trust level in a node as a cumulative value that is based on

the past behavior of the node. The trust level of a node

increases as long as the node behaves exactly as it is

supposed to (in our cases, follow reliably the steps of the

routing protocol) or decreases as the node misbehaves

accordingly. A node’s trust is computed by each of its

direct neighboring nodes based on their past experience or

observation of the node’s behavior. These neighboring

nodes, together with the evaluated node, form what we

refer to as a community, as we will describe later.

4.1 Community management

In our system, we define a node’s community as the set

of nodes that includes the node itself, referred as central

node, and all of its one-hop neighboring nodes, among

which some may be malicious. To build and maintain a

node’s community, we employ a similar method used by

AODV ad hoc routing protocol [20] in order to accomplish

neighboring nodes management. In our protocol, a node

keeps track of its neighbors simply by listening for a

HELLO message, which is broadcasting periodically by

each node. The sender’s public key is passed as part of the

HELLO message. Upon receipt of a HELLO message

from one of its neighboring nodes, a central node stores its

neighboring node’s the public key if it does not have it yet.

Since nodes can move freely in an ad hoc wireless

network, some neighbors of the central node may leave

while new neighbors may join the neighborhood of the

central node. Thus, if a node does not receive for some

time the HELLO message from one of its neighbors, it

removes it from its list identifying its neighboring nodes.

4.2 Community Key Management

In each community, the central node classifies its

neighboring nodes into three classes, based on their trust

level. The first and lowest trust level is for nodes whose

trust value is between 0 and 1, while the second trust

level, i.e., the medium level, contains the nodes whose

trust level is between 1 and 2. The trust level,

corresponding to the high level, contains the nodes whose

trust value is between 2 and . Each node selects

independently the values for 1, 2, and .

The central node generates two different keys for the

medium and high trust level, and shares them with its

neighbors. All neighbors in the same trust level share the

same key. The neighbors in high trust level will have both

High Trust Level Community Key (referred to as HTLCK)

and Medium Trust Level Community Key (referred to as

MTLCK), whereas, the neighbors in medium trust level

have only MTLCK. As for the neighbors in low trust level,

they do not share any community key at all.

When the central node detects a new neighbor, it will

assign an initial trust value to it and updates this trust level

later on, based on their interaction. We will assume that

the node assigns a medium trust level to a new neighbor

and shares with it the MTLCK. The central node updates

the corresponding community key when a node’s trust

level goes up or down, and also when a node leaves the

community. To protect a community key during

distribution, the central node encrypts the key with the

public key of the intended neighboring node before

sending it.

4.3 Identification of Nodes’ Malicious Behavior

In this section, we will describe how each node can

compute and constantly update the node’s trust in its

neighboring nodes. Our approach is based on the ability of

the node to identify neighboring nodes good or malicious

behavior, and hence updating the trust level accordingly. A

behavior is good if it confirms to the specification of the

routing protocol and malicious otherwise. For our

protocol, a malicious behavior happens when a node drops

silently the packet without forwarding it or maliciously

updating the packet before forwarding it. We call these

two malicious behaviors as Malicious Dropping and

Malicious Modification. A node can identify these

behaviors simply by overhearing whether its neighboring

node modified maliciously the message before sending it

(Malicious Modification) or simply did not forward the

message (Malicious Dropping). Note that for the

destination node to protect its anonymity without

jeopardizing its trust, it must also forward a copy of the

message it receives.

4.4 Trust-Based Distributed Route Selection

Mechanism

Our routing protocol, as we shall see in the next

section, requires each intermediate node that receives a

route request message, to forward this message to its

neighboring nodes. But in order to achieve the security and

reliability of the route, our protocol uses a selection

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

algorithm that is based on the level of trust each

intermediate node has with its neighboring nodes.

When a source node initiates the route discovery

protocol, it specifies the trust level requirement in the

initial message. Each intermediate node will propagate the

message only to selected neighboring nodes, depending on

the source node requested trust level. If the requested trust

level is high, the node will use the community key for the

neighbors with high trust level to encrypt the message; this

will ensure that only highly trusted nodes will participate

in the routing protocol. If the required trust level is

medium, the node will use the community key for the

neighbors with medium or high trust level to encrypt the

message. Using this approach restricts the participation of

intermediate nodes only to the ones that have a certain

trust level.

5. A Secure Distributed Anonymous Routing

Protocol (SDAR)

In this section, we introduce our secure distributed

protocol for establishing anonymous paths in ad hoc

wireless networks. The major objective of our protocol is

to allow trustworthy intermediate nodes to participate in

the path construction protocol without jeopardizing the

anonymity of the communicating nodes.

To send data anonymously to a receiver node R, a

sender node S has to discover and establish a reliable and

anonymous path that connects the two nodes. Both the

path discovery and establishment process should be carried

out securely and without jeopardizing the anonymity of the

communicating nodes. The process is divided into three

phases: the path discovery phase, the path reverse phase

and the data transfer phase. Distributed information

gathering about intermediate nodes that can be used along

an anonymous path is carried out during the path discovery

phase, while passing this information to the source node

takes place during the path reverse phase. The official data

exchange is processed during the data transfer phase after

the construction of the route. The main notation used in

this paper are presented in Table 1.

Table 1: Notations

IDi : The identity of node i.

PKi : The public key of node i.

TPK : A temporary one-time public key.

TSK : The private (secret) key corresponding

to TPK.

Ki : A symmetric (session) key generated by

node i.

PLS : The padding length set by the sender.

PS : A padding implemented by the sender.

PLR : The padding length made by the

receiver R.
PR : A padding made by the receiver node R.

)(ME
iPK : The message M is encrypted with a

public key PKi.

)(ME
iK : The message M is encrypted with the

symmetric session key Ki.

H (M): The message M is hashed with a hash

function.

)(MH
iK : The mixture of M and Ki is hashed with

a hash function.

SignS(M): The message M is signed with the

private key of the source node S.

iIDsessionSN _ : A random number generated by node

IDi for the current session.

HCKi: The high trust level community key

which is a one way symmetric key and

generated by node i.

MCKi : The medium trust level community key

which is a one way symmetric key and

generated by node i.

5.1 Path Discovery Phase

The path discovery phase allows a source node S that

wants to communicate securely and privately with node R

to discover and establish a routing path through a number

of intermediate wireless nodes. An important characteristic

of this phase is that none of the intermediate nodes that

participated in the path discovery phase can discover the

identity of the sending node S and the receiving node R.

The source node S triggers the path discovery phase by

sending a path discovery message to all nodes within its

wireless transmission range. The path discovery message

has five parts. The first part is the open part. It consists of

message type, TYPE, trust requirement, TRUST_REQ, and

a one-time public key, TPK. The trust requirement

indicated by TRUST_REQ could be HIGH, MEDIUM or

LOW. TPK is generated for each path discovery session

and used by each intermediate node to encrypt routing

information appended to the path discovery message. This

key serves also as a unique identifier for the message. The

second part contains the identifier IDR of the intended

receiver, the symmetric key KS generated by the source

node and PLS the length of the third part, padding, all

encrypted with the public key PKR of the receiver. The

source node may learn about the public key PKR of the

destined receiver through a number of ways including

using the service of a certificate authority (CA). The

symmetric key KS is used to encrypt the fourth part of the

message as well as to protect against replay attacks. The

third part is a padding PS, generated by the source node

and used to hide real routing information and to protect

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

against message size attack. The forth pare consists of IDS,

PKS, TPK, TSK,
SIDSessionSN _ and SignS(MS), all encrypted

with KS. The intended receiver uses the public key TPK

and it’s corresponding private key TSK to decrypt and

verify the routing information in the message.
SIDSessionSN _ is

a random number generated by the source node and is

mapped to the encryption key KS to use with the message.

SignS protects the integrity of the message. The fifth part

of the message contains information about intermediate

nodes prior to the current node along the route. A message

just sent by a source node has the format shown in Figure

1, with MS = H (TYPE, TRUST_REQ, TPK, TSK, IDR, KS,

IDS, PKS, SIDSessionSN _ , PLS, PS).

Figure 1. Path discovery message just sent by
the source S.

We assume that each node keeps an internal table for

mapping the randomly generated number of a session to

the encryption key for the session, as well as to the

ancestor and successor node along the anonymous path for

the session. Given an encrypted message and a randomly

generated number, a node can use this mapping table to

know which key to use to encrypt the message. Only the

random number, the session key, and the ancestor node

entry are added to the table during the path discovery

phase, while the successor node entry is added later during

the path reverse phase.

When a node i receives a path discovery message, it

processes the message according to the following steps:

1. Check if the message has already been received from

other nodes within its wireless transmission range

using the TPK as the unique identifier for the

message. If the message was received previously,

drop it silently and stop; otherwise, continue.

2. Check if the node is the sender’s intended next hop by

finding the corresponding community key in its

community key lists. If the key is found then decrypt

the message using that key and go to the next step;

otherwise, stop

3. Check if the node is the destined receiver (try to

decrypt),,(SSRPK PLKIDE
R

, with the private key of the

node and compare the IDR to the node’s id)

4. If the node is NOT the intended receiver, then

a. Add the following information to the message, all

encrypted with the TPK: the id of the node, a

session key Ki (shared encryption key generated

by the node), a randomly generated number

iIDPathSN _ for the session, and the signature of the

original received message.

b. Forward the new message to the neighbors whose

trust levels meet the source node’s trust

requirement.

c. Add <
iIDPathSN _ , id of the ancestor node, Ki > to

the internal mapping table.

5. If the node is the destined receiver, then

a. Use the length of padding, PLS, from

),,(SSRPK PLKIDE
R

 to find out the offset of the forth

part and then use the retrieved session key KS to

decrypt the forth part of the message and get TSK,

then use the TSK to get session keys for all the

nodes along the path of the message.

b. Put all ids of the nodes and their session keys in

one message; encrypt the message several times,

each time with the session key of a node along

the path to the receiver. Use the reverse order of

the keys in the message (same as the data flow in

onion routing)

c. Send the message to the first node in the reverse

path

A path discovery message that has already traveled

nodes i on its way from the sender S to the receiver R
would have the format shown in Figure 4.

A path discovery message that has already traveled

nodes i on its way from the sender S to the receiver R

would have the format shown in Figure 2, with MS =

H(TYPE, TRUST_REQ, TPK, TSK, IDR, KS, IDS,

PKS, SIDSessionSN _ , PLS, PS), and
iIDM = H (Mprev, IDi, Ki,

iIDPathSN _), and Mprev is the cumulative message that

nodei gets from its ancestor nodei-1.

Figure 2. Path discovery message just processed
by nodei.

5.2 Path Reverse Phase
The path discovery message is forwarded from one

node to the other in the network until it reaches the target

 TYPE, TRUST_REQ, TPK,

),,(SSRPK PLKIDE
R

,

 PS ,

))(,,,,,(_ SSIDSessionSSK MSignSNTSKTPKPKIDE
SS

TYPE, TRUST_REQ, TPK,

),,(SSRPK PLKIDE
R

,

PS ,

))(,,,,,(_ SSIDSessionSSK MSignSNTSKTPKPKIDE
SS

,

))(,,,(
111_11 IDIDIDSessionTPK MSignSNKIDE ,

:

:

))(,,,(_ iii IDIDIDSessioniiTPK MSignSNKIDE

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

receiver R, which triggers the path reverse phase. When

the intended receiver gets the path discovery message, it

can use its private key to retrieve KS. Then using KS, it can

obtain the temporary private (secret) key TSK encrypted in

the fourth part of the message. Using TSK, the receiver

node R can also retrieve the id’s of all intermediate nodes

and the session key to use with each one of these

intermediate nodes, and the random number generated by

each node. The receiver then composes a message that

contains all these random numbers and the corresponding

session keys, and encrypts the message with the session

keys of all the nodes along the path to the source node.

With each encryption, the receiver R adds a layer that

contains the random number generated by the node and the

random number generated by the node’s next-next-hop

node along the reverse path to the sender. If the first node

to get this message from the receiver is node i, the

encrypted message constructed by the receiver R should

have the format shown in Figure 3, where

Mi=)(),(,),(2__2 21 iKiIDSessionIDSessioniK NHMHSNSNME
iiii

,

Ni = ()(,,),(
2__1 iKIDSessionIDSessioniK NHSNSNME

iiii
). P is a

padding that has the same length as any Mj, and

1SSesson_IDSN is a random number having the same number

of bits as any regular
JSesson_IDSN and it is generated by the

source node.

Figure 3. Path reverse Message

Each intermediate node that receives the path reverse

message uses the
iIDSessionSN _ to retrieve the key for the

session, removes one encryption layer and forwards the

message to the next node on the reverse path to the source

node. The ID of the node from which the message was

received is added to the successor node entry

corresponding to the random number into the mapping

table. When the source node receives the message, it

decrypts the message and passes the information about all

the intermediate nodes (i.e., the route) to the higher

application.

5.3 Data Transfer Phase

Our protocol uses a similar approach to the Onion Routing

protocol for the data transfer.

When the source node gets the path reverse message,

it first checks whether or not the message is correct, and

then uses the shared session keys of the intermediate nodes

to make the layer encryption for the data, which the sender

wants to transfer to the receiver. Each intermediate node

just decrypts one encryption layer and forwards the

message to the next node according to the ID of the next

node.

6. Features of the SDAR Protocol

The proposed SDAR protocol has a number of

features, including:

Non-Source-Based Routing: In standard onion

routing [8], the source onion node must know in

advance the topology and link state of the network

before it can establish a routing path. The source

onion node must also know the public keys of all

onion nodes on the path as well as the exit policies for

the edge onion nodes. In our protocol, each node in

the network contributes toward the final routing path

by forwarding the path discovery and path reverse

messages. This approach eliminates the need for

managing routing centrally.

No Source Control over Route Length: Unlike

DSR [15, 16], the source node in our protocol cannot

set a limit on the maximum number of nodes on the

path. A large number of nodes on the routing path can

render the path too slow for real-time interactive

applications.

Resilience against Path Hijacking: While a well-

behaved node forwards the routing messages to all

neighboring nodes in an unbiased way, a malicious

node might forward the message only to its

neighboring malicious nodes, resulting in a path with

only malicious nodes. We refer to this situation as

“path hijacking”. The proposed protocol proves to be

resilient against path hijacking. To confirm that, note

that the protocol terminates successfully only after the

trusted intended receiver triggers the path reverse

phase, and after the path reverse message has made its

way successfully to the source onion node. If

malicious nodes keep on forwarding a path discovery

message among each other, the message will never get

to the intended receiver and the source node will

never get a path reverse message triggered by the path

discovery message.

In addition to these features, the SDAP protocol has a

number of properties. Due to space limitation, we will list

these properties as theorems; the proof of these theorems

can be found in [21].

TYPE,

)(),(,,

)),(),(,,

)),(),(,,

)),...),(),(,,

)),(),(,,

)),(),(,,

),,,,,...,

,,,

(((...(((

2__

13__

24__

2__

1__

__

_2

1

2

131

242

22

111

1

21

1221

ikiIDSessionIDSession

iKiIDSessionIDSession

iKiIDSessionIDSession

KSIDSessionIDSession

KIDSessionIDSession

SKIDSessionIDSession

RRIDSessioni

IDSessionIDSession

KKKKKK

NHMHSNSN

NHMHSNSN

NHMHSNSN

NHMHSNSN

NHPHSNSN

NHPHSNSN

PPLSNKK

SNKSN

EEEEEE

iii

iii

iii

S

S

SSS

R

Siii

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

Theorem 6.1: SDAR is secured against passive and

active attacks, but not against Denial-of-Service attacks

Theorem 6.2: SDAR maintains the anonymity of the

sender and receiver.

Theorem 6.3: SDAR is able to identify malicious nodes

and avoid using them to establish routes.

Theorem 6.4: SDAR is able to establish a route

matching certain trust requirement if enough nodes with

qualifying trust value exist between the source and

destination.

7. Conclusion

Due to the nature of the wireless environment and the

lack of predefined infrastructure, achieving secure routing

in wireless ad hoc networks is a complex task. A number

of protocols have been developed to add security to

routing in ad hoc networks. In this paper, we have

presented a novel secure distributed anonymous routing

protocol for MANET, which we refer to as SDAR. We

have discussed the protocol and highlighted its main

features, which include (i) Non-source-based routing (ii)

Flexible and reliable route selection, and (3) Resilience

against path hijacking.

Reference

[1] L. Venkatraman, D.P. Agrawal: A novel authentication in ad

hoc networks. In Proceedings of the second IEEE Wireless

Communications and Networking Conference, Chicago,

September 2000.

[2] Electronic Frontiers Georgia (EFGA). Anonymous remailer

information. http://anon.efga.org/Remailers/.

[3] I. Goldberg, and A. Shostack: Freedom network 1.0

architecture, November 1999.

[4] P. F. Syverson, D. M. Goldschlag, and M. G. Reed:

Anonymous connections and onion routing. In Proceedings of the

IEEE Symposium on Security and Privacy (Oakland, California,

May1997), pp. 44–54

[5] L. Korba, R. Song, and G. Yee: Anonymous

Communications for Mobile Agents. MATA 2002: 171-181

[6] http://www.sendfakemail.com/~raph/remailer-list.html

[7] http://www2.pro-ns.net/~crypto/chapter8.html

[8] M. Reed, P. Syverson, and D. Goldschlag: Proxies for

anonymous routing. In 12th Annual Computer Security

Applications Conference, pages 95-104. IEEE, Dec. 1995.

[9] D. Chaum: Untraceable Electronic Mail, Return Addresses,

and Digital Pseudonyms. Communications of the ACM, vol. 24,

no. 2, pages 84-88, Feb. 1981.

[10] M. J. Freedman, R. Morris: Tarzan: A peer-to-peer

anonymizing network layer. In Proceedings of the First

International Workshop on Peer-to-Peer Systems (Cambridge,

MA, Mar. 2002).

[11] M. Rennhard. MorphMix: Peer-to-Peer based Anonymous

Internet Usage with Collusion Detection. Technical Report Nr.

147, TIK, ETH Zurich, Switzerland, August 2002

[12] J. Lundberg: Routing Security in Ad Hoc Networks.

http://citeseer.nj.nec.com/400961.html

[13] A. Boukerche, “Performance Evaluation of On-Demand

Routing Protocols”, ACM/Kluwer Mobile Networks and

Applications, 2004.

[14] P. Papadimitratos and Z. J. Haas: Secure Routing for Mobile

Ad hoc Networks. SCS Communication Networks and

Distributed Systems Modeling and Simulation Conference

(CNDS 2002), San Antonio, TX, January 27-31, 2002.

[15] D. Johnson and D. Maltz: Dynamic source routing in ad hoc

wireless networks. In T. Imielinski and H. Korth, editors, Mobile

computing. Kluwer Academic, 1996.

[16] D. B. Johnson, D. A. Maltz, and J. Broch, DSR: The

Dynamic Source Routing Protocol for Multi-Hop Wireless Ad

Hoc Networks. In Ad Hoc Networking, ch. 5, pp. 139--172.

Addison-Wesley, 2001.

[17] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M.

Belding-Royer: A Secure Routing Protocol for Ad Hoc

Networks, In Proceedings of 2002 IEEE International Conference

on Network Protocols (ICNP). November 2002.

[18] S. Yi, P. Naldurg, and R.Kravets: Security-Aware Ad Hoc

Routing Protocol for Wireless Networks. The 6th World Multi-

Conference on Systemics, Cybernetics and Informatics (SCI

2002), 2002.

[19] L. Venkatraman, D.P. Agrawal: Strategies for enhancing

routing security in protocols for mobile ad hoc networks, in

Journal of Parallel and Distributed Computing, Volume 63, Issue

2 (February 2003), Special issue on Routing in mobile and

wireless ad hoc networks, Pages: 214 – 227, Year of

Publication: 2003, ISSN:0743-7315

[20] C. E. Perkins and E. M. Royer: Ad hoc on demand distance

vector (AODV) routing. http://www.ietf.org/internet-drafts/draft-

ietf-manet-aodv-00.txt, 1997. IETF Internet Draft.

[21] Boukerche, A., El-Khatib, K., and Xu, L. Secure Routing

Protocols for mobile Ad Hoc Networks. Technical Report, TR-

2004, University of Ottawa.

Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04)
0742-1303/04 $ 20.00 IEEE

