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Abstract—To secure a mobile ad hoc network (MANET) in
adversarial environments, a particularly challenging problem is
how to feasibly detect and defend possible attacks on routing pro-
tocols, particularly internal attacks, such as a Byzantine attack.
In this paper, we propose a novel algorithm that detects internal
attacks by using both message and route redundancy during
route discovery. The route-discovery messages are protected by
pairwise secret keys between a source and destination and some
intermediate nodes along a route established by using public key
cryptographic mechanisms. We also propose an optimal routing
algorithm with routing metric combining both requirements on
a node’s trustworthiness and performance. A node builds up the
trustworthiness on its neighboring nodes based on its observations
on the behaviors of the neighbor nodes. Both of the proposed
algorithms can be integrated into existing routing protocols for
MANETs, such as ad hoc on-demand distance vector routing
(AODV) and dynamic source routing (DSR). As an example, we
present such an integrated protocol called secure routing against
collusion (SRAC), in which a node makes a routing decision based
on its trust of its neighboring nodes and the performance provided
by them. The simulation results have demonstrated the significant
advantages of the proposed attack detection and routing algorithm
over some known protocols.

Index Terms—Ad hoc network, mobile, routing protocol,
security.

I. INTRODUCTION

THERE is an increasing need to develop and deploy highly
secure mobile ad hoc networks (MANETs), particularly

for military tactical and other security-sensitive operations in
adversarial environments. Since a MANET does not rely on a
fixed infrastructure, and network elements are wireless mobile
nodes, they can rapidly be deployed with relatively low cost.

The main challenges in assuring MANET networks are due
to the fact that a mobile link is susceptible to attacks, and
node mobility renders the networks to having a highly dy-
namic topology. The attacks against routing protocols can be
categorized into external and internal attacks [1]. An external
attack originates from a router that does not participate in the
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routing process but masquerades as a trusted router. They can
either advertise false routing information or generate floods of
spurious service requests, such as a denial of service (DOS)
attack. An internal attack originates from a compromised, mis-
configured, faulty, or even malicious router inside a network
domain. Among the internal attacks, Byzantine attacks can be
defined as attacks against routing protocols, in which two or
more routers collude to drop, fabricate, modify, or misroute
packets in an attempt to disrupt the routing services.

Under the framework of network security, security solu-
tions can be provided in different layers of the Open Systems
Interconnection (OSI) network model. In the network layer, it
is critical to provide secure routing protocols that can defend
the most possible attacks against routing, which are data and
routing information tampering [2]. Ad hoc routing protocols
must be integrated into authentication architectures, such as
public key infrastructure (PKI) and certificate authority (CA),
to achieve the security requirements including confidentiality,
integrity, authentication, and nonrepudiation services [3].

First, how to detect and defend internal attacks against rout-
ing protocols, such as Byzantine attacks, have been a particu-
larly challenging problem. The problem has often been avoided
by most secure routing protocols by assuming that the nodes
should be trusted once authenticated. This is, unfortunately, not
the case for real-world environments.

Second, what kind of authentication and key management
schemes are needed to dynamically maintain a trustworthy
topology and defend against malicious attacks? The security
measures in mobile telecommunication networks can rely on a
CA or ID-based cryptosystem [4]. However, a MANET cannot
use such a CA server.

Third, the existing practice in developing secure routing
protocols is by first establishing a PKI and then using cryp-
tographic primitives to protect the messages exchanged in
the routing protocols. The security and routing mechanisms
are separately designed to meet the conflicting requirements:
security requires using intensive computations, whereas routing
needs to be efficient to properly scale [1]. Thus, the resulting
protocols may be secure but not feasible or vice versa.

Fourth, how to quantify the engineering tradeoffs between
the security and performance requirements? The problem has
not well been investigated.

This paper proposes a novel attack detection and defense
algorithm to solve the preceding problems for MANETs. It
also develops a secure routing protocol called secure routing
against collusion (SRAC) to defend Byzantine attacks as well
as other internal attacks against routing protocols for MANETs
in adversarial environments.
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This paper is organized as follows. Related work is reviewed
in Section II. A dynamic key management scheme and an attack
detection algorithm are proposed in Section III. The trustwor-
thiness buildup scheme and optimal routing are developed in
Section IV. The simulation results are presented in Section V.
Section VI concludes this paper.

II. RELATED WORK

The current secure routing protocols for MANETs can
roughly be divided into two categories, i.e., 1) those adding
security mechanisms to the existing routing protocols and
2) those designed to detect and defend specific attacks.

In the first category, the common practice is to secure
the popular on-demand routing protocols, such as ad hoc
on-demand distance vector routing (AODV) [5], destination-
sequenced distance vector (DSDV) [6], and dynamic source
routing (DSR) [7], by using a security association between the
source and destination nodes such as pairwise secret keys and
end-to-end authentication [4]. The resulting secure protocols
include Secure AODV (SAODV) [8], Ariadne [9], Secure Effi-
cient Ad hoc Distance (SEAD) [10], and Authenticated Routing
for Ad hoc Networks (ARAN) [11].

SAODV is a direct extension of AODV that uses a digital
signature to sign routing messages and hash chains to secure
hopcounts [8], which is expensive for MANETs. Ariadne with
Timed Efficient Stream Loss-tolerant Authentication (TESLA)
can be considered as an extension of DSR with added security
features to prevent attackers from tampering routing informa-
tion and some other types of attacks such as DOS [9]. TESLA
is an efficient broadcast authentication scheme, but it requires
some extent of time synchronization among the nodes in a
MANET [15]. SEAD is based on DSDV and uses one-way
hash chains to authenticate hopcounts and sequence numbers
of routing messages [10]. The security mechanism in SEAD
can be TESLA or the shared secret keys between each pair
of nodes. ARAN uses a digital signature to provide end-to-
end authentication and provides node authentication, message
integrity, and nonrepudiation services [11]. During route dis-
covery, each routing message is signed by a source node and
then broadcast to others. An intermediate node that forwards the
message removes its previous hop’s certificate and signature,
and then attaches its own certificate and signature. During route
setup, each message is similarly signed twice and unicast back
to its source. Due to the use of a double signature, ARAN can
defend from the most common attacks. As an authenticated
routing protocol, ARAN can work with both AODV and DSR.

In the second category, protecting routing traffic against
specific attacks is their major purpose. These include Network
layer Protocol with Byzantine Robustness [18] for Byzantine
failure and its extension to large data networks using hier-
archical routing [19], ON-Demand Secure Byzantine Routing
(ODSBR) [20], and Highly Secure and Efficient Routing
(HSER) [21] for Byzantine attacks, Rushing Attack Prevention
(RAP) [16] for rushing attacks, Secure Routing Protocol [14]
for impersonation and replay attacks, and Leap-Frog [22] for a
single compromised node within two hops. In ODSBR, a prob-
ing technique using binary search is proposed to find out faulty

links on a path and thus to detect Byzantine behaviors. The ac-
cumulated path is then protected by aggregated signatures [23],
which are unfortunately more expensive than the Rivest Shamir
Adleman (RSA) signatures. In HSER, each packet is authenti-
cated at each node by using Medium Access Control (MAC)
protocols based on pairwise secret keys to detect and defend
Byzantine adversaries. This approach has to be improved due
to the prohibitively high computation requirement at each node.
Note that ARAN is capable of defeating many identified attacks
but not the Byzantine attacks discussed in this paper.

In summary, only a few protocols are capable of detecting in-
ternal attacks such as Byzantine attacks by using expensive ag-
gregated signatures [23] or per packet filtering [21]. In addition,
without a dynamic key management mechanism, the protocols
could eventually fail after enough nodes are compromised.

III. DYNAMIC KEY MANAGEMENT SCHEME AND

ATTACK DETECTION ALGORITHM

Without losing generality, we assume that a network is
equipped with several security mechanisms in different layers
in addition to the network layer. For example, the application
layer can have some effective intrusion detection systems to
monitor anomaly behaviors that can be used to detect and
defend attacks such as DOS.

In the network layer, the most possible attacks are data and
routing information tampering [2]. The majority of external at-
tacks against routing protocols can be prevented by simple link
layer encryption and authentication. We propose to have every
node share a unique symmetric key with the source if it needs to
transmit data. By applying this mechanism, the Sybil attack, the
majority of selective forwarding and sinkhole attacks, and the
HELLO flood attacks can be prevented [2]. The major classes of
attacks not countered are internal attacks and wormhole attacks.
The defense mechanism for wormhole attacks can be found in
[17]. Therefore, we focus on internal attacks that are caused by
authenticated routers, such as Byzantine attacks.

A. Dynamic Key Management Scheme

There are two basic key management approaches, i.e., public
and secret key-based schemes. The public key-based scheme
uses a pair of public/private keys and an asymmetric algorithm
such as RSA to establish session keys and authenticate nodes.
In the latter scheme, a secret key is a symmetric key shared by
two nodes, which is used to verify the data integrity.

Although a public key management system can be fully
self-organized, the initial trust among the nodes in a network
is still built by using external mechanisms. For example,
Capkun et al. propose such a system by constructing a local
certificate repository (CR) for each node [24]. The initial con-
struction starts by issuing public key certificates based on a
users’ own knowledge about other users’ public keys. Initially,
there is a PKI or CA to distribute the knowledge among users.
Therefore, the work in [24] is a dynamic maintenance mecha-
nism in building up the certificates. Clearly, we need to assume
that there are some kind of initial trusts among the nodes. For
example, it is usually assumed that there exist pairwise shared
secret keys among the nodes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 10:32 from IEEE Xplore.  Restrictions apply.



YU et al.: SECURE ROUTING PROTOCOL AGAINST BYZANTINE ATTACKS FOR MANETs 451

Fig. 1. Demonstration of message and route redundancy. Multiple secret keys
are shared between a source and the intermediate nodes and the destination
node. Multiple copies of a message are received at a destination node via
different routes.

There are several methods to set up the shared keys:
1) Bootstrap the shared keys from a PKI, which might be a
strong assumption for MANETs; 2) use a key distribution cen-
ter, which has a shared key with each node, to build up a shared
key between two nodes by using the Kerberos protocol; or
3) embed the shared keys in each node during its initialization
before deployment. The third method is more practical for
many MANET applications. These shared keys are then used to
bootstrap the public key management system, which can create
and distribute a pair of public/private keys for each node. In this
paper, we assume that each node has a unique ID or address and
an initial pair of public/private keys, which can be embedded
into each node at the initialization of the network, or created by
a self-organized public key management system [24].

We first define a network, as shown in Fig. 1, and then
describe a framework of dynamic key management. Let
G = (V ;E) be a network whose vertices in V are nodes and
whose edges in E are direct wireless links among nodes. We de-
fine for each node x the set N1(x), which contains the vertices
in the network G that are hop-1 or direct neighbors of x, i.e.,

N1(x) = {y : (x; y) ∈ E and y �= x} . (1)

Similarly, we define the hop-2 neighbors of a node as follows.
For each node x, N2(x) contains the vertices in the network G
that are hop-2 neighbors of x, which include neither vertices in
N1(x) nor x itself, i.e.,

N2(x) = {z : (y; z) ∈ E and y ∈ N1(x), z �= x} . (2)

Similarly, we can define the hop-n neighbors of x [Nn(x)]
in terms of Nn−1(x) if the flooding path from the source to
destination has n links.

As in the existing secure routing protocols, the initial trust
among the nodes is built into the network by using some
external mechanisms. After that, unlike the existing secure
routing protocols, our framework allows a node to build up
its trust on its neighboring nodes based on its observations of
their behaviors. Here, important behavior is whether a node
correctly routes and forwards a message to its neighbors.

Initially, a node x has a public key Kx,pub that is distributed
to N1(x) by using PKI or CA. Similarly, a node y has public key
Ky,pub distributed to N1(y). Thus, for example, if y ∈ N1(x)
and x ∈ N1(y), i.e., x and y are hop-1 neighbors, then x can
authenticate y by issuing a certificate (which is a proof of y’s

ID and public key with x’s signature) that is signed by x with
x’s private key. Those who hold x’s public key can now read the
certificate and trust the binding of y and its public key. Based
on the available certificate and key information, two hop-1
neighboring nodes can easily establish a secret key between
them by using methods such as a three-way handshake [31].

Our framework for dynamic key management can be
summarized as follows.

1) A secret key is established between the source and des-
tination and some intermediate nodes along the route by
using current public key information (see Section III-B).

2) Each node along the route finds out which of its direct
neighbors are faulty or compromised by using the estab-
lished multiple keys between the source and intermediate
nodes (see Section III-C).

3) Each node updates its trustworthiness on each of its
neighbors by using the observed node behavior and
attack-detection results (see Section IV-A).

4) Each node constructs a local CR for the nodes it trusts.
The certificates for those compromised nodes are imme-
diately revoked. A node may expand its CR by adding
newly trusted nodes or exchanging repository information
with its trusted neighbors.

5) By combining the current CR information and existing
maintenance procedures for public key management, the
nodes in the network can update public key information
or build up a self-organized PKI, as in [24].

In this paper, we focus the first three steps in the following
sections.

B. Key Distribution and Node Authentication

We define the notations as follows. s denotes the sender
node; r denotes the receiver node; Ks,pub and Ks,pri denote
the public and private keys of node s, respectively; E(m,K)
denotes the public key encryption algorithm with a key K
on message m, where m = M + {IDf} + SN , and M is the
original message; IDf denotes the ID of f , which is the node
that forwards the message m; SN is the sequence number of the
message; and h(m + k) denotes the keyed hash algorithm with
a key k on message m, where + denotes the concatenation of
strings. It can be seen that any node that handles the message
has to append its ID for nonrepudiation service. The ID is
protected together with the forwarded message.

Whenever there is a need for a node to initiate a route discov-
ery process, it creates pairwise shared keys with intermediate
nodes, hop by hop, until it reaches the destination. First, it picks
random number num. Then, it signs num with its private key
by using a public key algorithm like RSA. After that, the route
discovery message is protected by a keyed hash MAC algorithm
such as MD5 [31]. Finally, the hash value and signature can now
be attached to the route discovery message and sent out to its
neighbors. The complete route request (RREQ) packet sent by
the node can be summarized as

m + h(m + num) + E(num,Ks,pri). (3)
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Those who are s’s neighbors and have its public key are able to
verify the signature and thus decrypt the key in the message.

Suppose that z ∈ N1(s) is one of s’s hop-1 neighbors. When-
ever there is a need for s to initiate a route discovery process, it
picks a key k1 at random, which will serve as the shared secret
key between s and z. Then, s encrypts the key k1 by using its
neighbor’s public key Kz,pub. After that, it encrypts the above
encrypted key by using its own private key Ks,pri. The result
serves as a signature for the route discovery message, which is
protected by a keyed hash MAC algorithm such as MD5. The
complete procedure is called Keyed MD5 [31]. The complete
RREQ sent by s can be summarized as

mq+h(mq+k1)+E (E(k1,Kz,pub),Ks,pri) , for z∈N1(s)
(4)

where mq stands for the message used in RREQ. This way,
only the node that has z’s private key can read the key k1, the
receiving node is also assured that the key and message come
from s, and finally, the integrity of message m can be verified
by the receiving node after it decrypts the key. Then, z sends
back s a route reply (RREP) packet in a similar format

mp+h(mp+k1)+E (E(k1,Ks,pub),Kz,pri) , for z∈N1(s)
(5)

where mp stands for the message used in RREP. By decrypting
the message and comparing the key, s can authenticate z and
distribute a shared key to z. Similarly, s establishes a shared
key with each of its hop-1 neighbors.

Suppose that y ∈ N1(z). z can also similarly find out its
hop-1 neighbors and also establishes a shared key with each
of them. For s to send messages to its hop-2 neighbors,
i.e., N2(s), for example, y, s requests z to forward the message
to y. In z’s handshaking with y, z can pick s’s public key instead
of a random key and send it to y. This way, s’s public key can
be delivered to its hop-2 neighbors. Similarly, s can obtain the
public keys of its hop-2 neighbors.

By checking the acknowledgement message back from
y via z, s can find out all of its hop-2 neighbors N2(s).
Therefore, s can send a message to r ∈ N2(s) via z ∈ N1(s)
in the following format:

m2 + h(m2 + k1), k1 =: shared key between s and y (6)

where

m2 = m + h(m + k2) + E (E(k2,Kr,pub),Ks,pri)
for r ∈ N2(s) (7)

where k2 is the shared key between s and its hop-2 neighbor r.
Similarly, by using the double hash and signature operations,
the shared key between s and its hop-n neighbors, i.e., kn, is
created by s and distributed to Nn(s), where n = 2, 3, . . ..

In the above key distribution process, the same message m
has been sent to the destination multiple times and protected
by different secret keys at each time. This is what we call
message redundancy. To utilize the message redundancy, the
implementation is simple: each node is required to receive
multiple copies of the same route discovery message before
sending back an acknowledgement.

It is noted that receiving multiple copies, instead of the
first copy, incurs overhead to the route discovery process. The
number of copies is determined by two factors. The first one is
security, i.e., the trustworthiness of the nodes in the network.
To build a route with a certain amount of trustworthiness,
the destination needs to evaluate more copies in a less-trusted
environment than in a more-trusted one. The second one is per-
formance, i.e., the timeout value of the route request message.
Receiving more copies means a larger value of the timeout and
thus results in a higher routing latency. Therefore, an optimal
value of the number of the copies can be found by trading off the
two factors, which are application specific. In our simulations,
the number of copies is found to be in the range of 2–4 for the
cases in which 10%–40% of the nodes are malicious.

It is worth pointing out that the use of digital signatures
and message redundancy may restrict the applications of the
proposed key management schemes to routing protocols, as we
will analyze in Section IV-D.

C. Route Discovery and Attack Detection

Based on the key management mechanism, the next task is to
develop a framework for the secure discovery of the dynamic
network topology. The attack detection scheme is incorporated
into topology discovery procedures.

Route discovery is straightforward for a node after it de-
crypts the received route discovery messages. To discover the
routes in a dynamic environment, we need to use the inherent
redundancies of the routes in ad hoc networks, called route
redundancy, which means there are multiple, possibly disjoint,
routes between nodes. As long as there are sufficiently many
correct nodes, the routing protocols should be able to discover
routes that go around some compromised nodes. Many ad hoc
routing protocols such as AODV and DSR can discover multi-
ple routes. Similar methods can be adopted into our scheme to
discover multiple routes.

Once the security associations between a source and desti-
nation have been established, and trustworthy routes have been
identified from source to destination, the source can simply use
the shared key to protect the data traffic sent to the destination:
m + h(m + ksd), where ksd is the key shared between the
source node (s) and destination node (d).

To detect internal attacks, including Byzantine attacks, we
assume the following.

1) Each node has a pair of public/private keys and a unique
ID. A compromised node participates in routing until
detected.

2) The source and destination nodes are secured by external
security agents. There is a shared key between the source
and destination nodes.

3) Each of the intermediate nodes between the source and
destination has established a shared key with the source
node by using the key management scheme described in
Section III-B.

4) There are enough uncompromised nodes in the network
so that a message can arrive at the destination via different
routes.
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In this section, we extend our algorithm in detecting collu-
sion to Byzantine attacks, in which two or more nodes collude
to drop, fabricate, modify, or misroute packets, and these nodes
are consecutively located on a path [30].

1) Detection of a Single Malicious Node: The basic mech-
anism for a node to detect misbehaving nodes is to compare
the different copies of the same message it has received via
different routes or at different times. The nodes along a route
can be found out by checking the aggregated node IDs that are
attached to the message. When a message comes from different
intermediate nodes, it has to be decrypted by using different
shared keys.

To be more specific, we assume that z (in Fig. 1) is a
compromised node during the route discovery phase, although
it is initially authenticated. Clearly, z could not tamper the
message from s to y because the message is protected with a
key between s and y. Of course, z may simply drop the message
when it needs to forward the message to y. However, there are
at least two copies of the same message y expects to receive.
By comparing these copies from other neighbors, y is still able
to detect that z is faulty or compromised.

Similarly, y can also detect other internal attacks, such as
message fabrication caused by z. Therefore, the attacks initiated
by a single inside node can be detected.

2) Detection of Two Colluding Nodes: A more challenging
case is the Byzantine attack. In our design of key management
schemes, a source has directly established a shared key with
each of its hop-n neighbors.

Suppose that both z and y are compromised and colluding.
In addition, s shares a hop-1 key with z (i.e., k1,sz), a hop-2 key
with y (i.e., k2,sy), and a hop-3 key with x (i.e., k3,sx). During
route discovery, x may receive three copies of a message m
from s and via different intermediate nodes y and z, respec-
tively, in the following formats:

C1 = m + h(m + k3,sx)

C2 = m + h(m + k2,sy) + h (m + h(m + k2,sy) + k1,yx)

C3 = m + h(m + k1,sz) + h (m + h(m + k1,sz) + k1,zy)

+ h (m + h(m + k1,sz) + k1,yx) . (8)

Suppose that z and y are two colluding nodes. It is assumed that
the source and destination, i.e., s and x, are trusted via some
external mechanisms. Note that each copy of the message is
verified by an intermediate node along a route. As a single node,
z cannot tamper the message without being detected.

Let us assume that z has modified the message but y does not
tell during its forwarding. After having received the three copies
from s, x finds the discrepancies among C1, C2, and C3. Note
that C1 directly comes from s and thus can be trusted; y cannot
change the message without being detected, and thus, C2 must
match C1. Therefore, C3 has been modified, and x finds that
there may be some compromised or faulty nodes among the
nodes that forward the message, e.g., z and/or y. It can be seen
from C3 that z may modify the message and then forwards it to
y, who also gets a copy of the message directly from s as seen
in C2. If y reports the discrepancies of the two copies, then
z must be a compromised node. Otherwise, both y and x are

compromised and colluding nodes, although y does not change
the message.

It is worth pointing out that a receiving node can select a
message most likely to be right among the multiple copies by
using voting algorithms or Bayesian estimation [26] or check
its local CR to find out who is more trustworthy among its
neighboring nodes that forward the same message. If all the
neighboring nodes are equally trustworthy, the receiving node
can simply choose one of the copies. It can also choose a copy
that comes in a route with better performance, as we will see in
Section IV-B.

3) Detection of More Colluding Nodes: Similarly, for the
case of three colluding nodes consecutively located on a route,
their collusion can also be detected if there exists at least four
copies of the message that arrives at the receiver.

Generally, to not only detect the collusion of n compromised
nodes that are consecutively located on a route but also identify
these nodes, a receiver must have at least n + 1 copies of the
same message, and one of the copies is more trusted than the
others. The copies can either go through different routes or be
protected by the shared keys in different segments of a route.

In summary, the internal attacks initiated by a single com-
promised node and the Byzantine attacks can be detected
without using expensive aggregated signatures, which are used
to protect a route from end to end.

It is also noted that the trustworthiness of the source node can
be solved only via external mechanisms such as PKI by using
such mechanisms as key refreshing, rekeying, and revoking.
We also note that the redundant use of shared keys between
a source and each intermediate and the destination node may
result in a scalability problem. For example, if there are n nodes
along a route, then the dynamic key management scheme needs
to create and distribute (n − 1)2/2 keys to the nodes on the
route. Therefore, it is not appropriate for networks with a large
number of low-resource nodes.

IV. TRUST MODELING AND OPTIMAL ROUTING

A. Trust Modeling and Evaluation

We define the trustworthiness on a node n by another node x
as the probability that n will perform a particular action ex-
pected by x, which is denoted as Tx(n), irrespective of the
ability to monitor or control n. The trustworthiness can be
evaluated by x in terms of its knowledge accumulated during
a specific operation period by using weighting average over the
trust on each category of actions, including route request, route
reply, route error, and data transmission [27].

We assume that during an observation period, x has received
a total of mt message transmissions from n, among which mc’s
are found to be correct; the total number of attempted transmis-
sions is ma; and the total number of successful transmissions is
ms. Then

Tx(n) =
mc + εms

mt + εma
(9)

where 0 < ε < 1 is a weighting factor that represents a ratio
of the successful transmissions, which reflects the probability
that the link correctly works. Here, we adopt a statistical model
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similar to the one used for measuring link quality in [25], which
is different from the trust level evaluation in [27]. The model
in (9) not only evaluates the trustworthiness but also partially
reflects the link quality. Other more complicated measurements
used to model the link quality, such as the collision detection
and signal separation technique [29], and link adaptation and
power control algorithm [13] may also be applied to obtain a
more accurate trustworthiness value.

Denote by Tx(n; j) the trustworthiness in node n, which is
assigned by node x during the jth trustworthiness updating
cycle. Every time a new observation comes in, the node updates
its repository and calculates a trustworthiness value by using
a weighted average or moving average model. Assume that
during the jth trustworthiness updating cycle the measure-
ment of Tx(n; j) is denoted as T̃x(n; j), which is computed
based on n’s current behavior when x checks the correctness
and validity of the messages that come from n. During the
(j + 1)th trustworthiness updating cycle, these values are used
to obtain an estimate of the trustworthiness, which is denoted
as T̂x(n; j).

To obtain a smooth estimation, we use a moving average
model

T̂x(n; j+1) = αT̂x(n; j)+(1−α)T̃x(n; j), for n ∈ N1(x)
(10)

where 0 < α < 1 is a weighting factor used to tradeoff between
current measurement value and previous estimate.

Consider a path p ∈ Ps→x, where Ps→x is the set of paths
that start from a source node s to a destination node x, i.e.,
Ps→x = {all paths from s to x}. Denote by Tx(p; j) the trust-
worthiness of the path assigned by node x. Thus, the path
trustworthiness can be expressed as

Tx(p; j) =
∏
n∈p

Tx(n; j). (11)

If y is on the route from s to x, i.e., y ∈ p, then y ∈ N1(x).
Denote by p1 the path from s to y. Then, we have

Tx(p; j) = Tx(y; j)
∏

n∈p1

Ty(n; j) = Tx(y; j)Ty(p1; j). (12)

Therefore, x can build up its trustworthiness on a path based on
its trustworthiness on its neighboring nodes. The relationship in
(12) is also used as a routing metric for a node to make routing
decisions.

B. Mathematical Formulation of Optimal Routing

The routing metrics can be quantified as follows. First, we
need to consider the trustworthiness of each candidate route.
We assume that each node has locally built up a trustworthi-
ness repository for the nodes it knows based on its CR and
current behavior observed in the topology discovery phase. A
destination node has also calculated a value of trustworthiness
for each possible route from the source node, as shown in
Section IV-A. The repository is updated every time the topology
is rediscovered.

Second, the performance requirement must be considered in
making routing decisions.

Assume that the transmission capacity of the wireless link
that originates from a node n is Bn. The traffic requirement
for the link is Fn, which is measured in the same units as
Bn. For delay-sensitive traffic, we also use τn to represent the
processing and propagation delay when being delivered by n to
its next hop. A frequently used objective function is [32]

Qx(p) =
∑
n∈p

(
Fn

Bn − Fn
+ τnFn

)
, for p ∈ Ps→x (13)

which is the average number of packets in the network based on
the hypothesis that each queue behaves as an M/M/1 queue of
packets. Note that for a link on path p, a smaller value of Qx(p)
is preferred, either because of a smaller delay or a relatively
larger link capacity. Rewriting (13) into a recursive format,
we have

Qx(p)=Qy(p1)+
Fx

Bx−Fx
+τxFn, y∈N1(x), y∈p1∈p.

(14)

Combining both requirements on the trustworthiness and
performance, a path that is less trustworthier and does not meet
the desired performance must be penalized in our objective;
thus, a combined cost function can be designed as

D(p) = β (1 − Tx(p; j)) Qx(p), for p ∈ Ps→x (15)

where β > 0 is a constant used to scale the value of the cost
function.

Now the routing problem can be written as

minimize D(p), for p ∈ Ps→x (16)

and subject to the constraints

Bn − Fn ≥ 0; τn ≥ 0; Tmin ≤ Tx(n; j) ≤ 1; for n ∈ p
(17)

where Tmin is the minimum trustworthiness required for a node
to be allowed to join in a route. In (15)–(17), we explicitly
integrate the security and performance requirements into a
routing problem. Note that if the intermediate nodes between s
and x have the same levels of trustworthiness, then all the routes
between s and x can equivalently be measured by the traditional
hopcounts. The routes of the same hopcounts will have the same
levels of trustworthiness. In this case, the optimal route is only
determined by the performance requirements, as shown in (15),
provided that the requirement on the minimum trustworthiness
is met. By solving the optimization problem, we can develop a
routing algorithm.

Many algorithms in distributed routing can be used to find
a global optimal solution, e.g., the Dijkstra algorithm and the
distributed asynchronous Bellman–Ford algorithm [32]. Alter-
natively, we can use the heuristic QoS routing algorithm [12]
by applying the objective function in (15). By using the latter,
we may be able to find a solution with the minimum D(p), but
the constraints in (17) may not be met.

To avoid intensive computation and communication and en-
sure good scalability, we develop a routing algorithm to solve
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the problem while guaranteeing local optimality. The source
node selects multiple routes as candidates. Each intermediate
node along the candidate routes computes a cost from the
source and passes it the next node on the way to the destination.
The cost contains two parts, i.e., Tx and Qx, in terms of (12) and
(14), respectively, which can recursively be calculated based
on the nodes along the route. Therefore, each route can be
assigned an index called Trustworthiness–QoS index (TQI),
i.e., a number to represent the combined trustworthiness and
performance cost along the route, by each intermediate node
along the route. The destination chooses a final route among
the candidates in terms of the accumulated TQI value. It is the
responsibility of each intermediate node to make a choice of its
best interest in weighting Tx and Qx.

C. Routing Algorithm

The heuristic algorithm can be summarized as follows.

1) During route discovery, a source node sends RREQ pack-
ets to its neighboring nodes. In these packets, along with
the regular information, the node also sends its security-
related information, such as key information, as outlined
in Section III-B.

2) Once an RREQ packet is received by an intermediate
node, it calculates the TQI by using (15). The node
places the link trustworthiness and QoS information in
the RREQ packet and forwards it to its next hop. This
process is repeated until it reaches the final destination.

3) At the destination, the node waits for a fixed number of
RREQs before it makes a decision. Or else, a particular
time can be set for which the destination or intermediate
node needs to wait before making a routing decision.
Once the various RREQs are received, the destination
node compares the various TQI index values and selects
the index with the least cost. It then unicasts the RREP
back to the source node. When the source node receives
the RREP, it starts data communication by using the route.

4) Once the route is established, the intermediate nodes
monitor the link status of the next hops in the active
routes. Those that do not meet the performance and
trustworthiness requirements, as shown in (17), will be
eliminated from the route.

5) When a link breakage in an active route is detected, a
route error (RERR) packet is used to notify the other
nodes that the loss of that link has occurred. Some main-
tenance procedures are needed as in AODV.

Compared with the existing ad hoc and QoS routing algo-
rithms, this algorithm for the first time intends to optimize
a combined objective function of security and performance
parameters. The existing work [9]–[11], however, considers se-
curity and performance in a separate or nonquantitative fashion
in their routing algorithm, thereby leaving no room for tradeoff
between them.

It is worth noting that the proposed algorithm is only a local
optimization method, and the solution may not globally be
optimal. On the positive side, the complexity of the solution
to the routing problem is greatly reduced.

TABLE I
SIMULATION PARAMETERS FOR SRAC AND ARIADNE [9]

D. Overhead Incurred by Secure Routing Mechanisms

To investigate the routing performance, we need to estimate
the overhead on the packet processing time, i.e., the extra time
needed by using encryption and decryption.

As shown in the previous sections, the routing (or control)
packets, including RREQ, RREP, RERR, and HELLO packets,
are encrypted. The data packets are only protected with keyed
hash MAC such as MD5. To process a routing packet (e.g.,
RREQ), a node needs to receive an encoded message that
contains the RREQ from one of its neighbors, verify that the
certificate attached by the neighbor is valid, replace the certifi-
cate with its own certificate in the attachment, sign the message,
conduct a hash operation on the message, and transmit the
message to its next hop, as shown in (4). In summary, the total
processing time by a node (denoted by Tn) includes two RSA
signature generations (denoted by tg), two RSA signature ver-
ifications (denoted by tv), one hash operation (denoted by th),
plus the time spent in receiving (denoted by tr), transmission
(denoted by tt), queueing (denoted by tq), and propagation (de-
noted by tp), that is, Tn = 2tg + 2tv + th + tr + tt + tq + tp.
For a typical network configuration, the last five terms are very
small. For example, MD5 can process packets at a typical speed
of 600 Mb/s, that is, for a typical message of 1 kb, it takes
th = 1.7408 μs to perform the hash operation. In addition, for
the values shown in Table I, we can find that tr = 0.5 μs,
tt = 0.5 μs, tq = 0.0977 μs, and tp = 0.8333 μs. The five
terms have a total of 3.67 μs and thus can be neglected.

It is estimated that for an RSA key with a length of Lk

(in bits), the CPU cycles needed to perform one RSA operation
is about (Lk + 2) × (Lk + 2 + 32) for a typical implementa-
tion [28], which is equal to 0.28 and 1.09 million for Lk = 512
and 1024, respectively. It is also estimated that the generation
of a signature takes about 20 RSA operations, whereas the
verification takes only one RSA operation. For a CPU of
2.8 GHz (e.g., an Intel Pentium 4 processor), we can find
tg = 2.0 and 7.8 ms, tv = 0.1 and 0.39 ms, and thus, we have
Tn = 4.20 and 16.38 ms for Lk = 512 and 1024, respectively.
Similarly, for a CPU of 206 MHz (e.g., an Intel Strong Arm
32-bit basic processor), we can find tg = 27 and 105.44 ms
and tv = 1.35 and 5.27 ms, and thus, we have Tn = 56.70 and
221.34 ms for Lk = 512 and 1024, respectively.

It can be seen that the major overhead is caused by the
encryption and decryption algorithms, which may restrict the
applications of the secure routing protocol. For MANETs with
high levels of mobility, links are likely to be broken frequently,
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TABLE II
SIMULATION PARAMETERS FOR SRAC AND AODV

and thus, the protocol needs to handle many RERR packets.
For example, for a CPU of 206 MHz, Lk = 1024, it takes
Tn = 221.34 ms to handle one RERR packet. To send back
an RREP on an RREQ, it may even take 2–4 times of Tn,
e.g., 0.4427–0.8856 s, due to the use of message redundancy.
Therefore, the proposed protocol is not appropriate for devices
with a low computing power. Otherwise, we need to limit the
size of the encryption key. For example, if we choose Lk = 256,
we can find that Tn = 15.25 ms for CPUs of 206 MHz.

V. SIMULATION RESULTS

In this section, an NS-2 simulator is used to investigate the
performances of SRAC and compare it to other protocols [33].

A. Network Models and Parameters

The parameters and values are given in Tables I and II for
the simulations used to compare SRAC to AODV and Ariadne,
respectively. The mobility of nodes is generated using a random
waypoint model wherein a node starts off at a random point in
the topology. The radio propagation model used is a two-ray
ground reflection that accounts for a realistic physical scenario.

The simulations are conducted on a Dell PowerEdge server
with two Intel Xeon processors of 2.66 GHz and 4-GB SDRAM
running in a Linux OS of Fedora Core version 3.0. The
encryption and decryption operations on routing packets are
simulated by adding a time of Tn = 16.38 ms (based on a CPU
of 2.8 GHz) to the processing time per packet per node, as
shown in Section IV-D. The RSA key size is assumed to be
1024 bits. The encryption and decryption times are invoked
whenever a node generates, receives, or forwards a routing
packet, which increases the overhead of SRAC as compared to
AODV. However, the total overhead has in fact been reduced in
the presence of malicious nodes in the network, as shown in the
following sections.

To include the behavior of malicious nodes into the sim-
ulations, SRAC is implemented by modifying the AODV
protocol in NS-2. We make the following assumptions on a
malicious node.

1) It does not have knowledge about the public key of its
hop-1 neighbors prior to the route-discovery phase. The
session keys are established on demand.

2) Once the route-discovery phase is accomplished, a mali-
cious node randomly drops both routing and data packets
or selectively only drops data packets with a specific
probability, i.e., the dropping ratio.

In this simulation, as a demonstration purpose, a malicious
node just drops data packets. It is worthy noting that other ma-

Fig. 2. Total throughput in the presence of five malicious nodes.

licious behaviors, such as false advertising, misrouting, and vi-
olating security rules, can be detected and defended in the same
way as dropping. We also assume that a source–destination pair
(SD pair) is trusted and cannot turn to be malicious throughout
the operation of all these protocols.

B. Performance Evaluation

The performance metrics are defined as follows.
1) Total throughput: The total number of data (application)

packets that have been received at time t by a destina-
tion node.

2) Total overhead: The total number of routing (control)
packets that have been transmitted at time t by the nodes
in the network.

3) Packet latency: The time elapsed since a data packet
is transmitted to the time when it is received at the
destination.

4) Packet delivery ratio (PDR): The ratio of the total number
of data packets successfully delivered to the destina-
tion to the total number of data packets sent out by a
source node.

In our first scenario, simulations are conducted to examine
the performance impact of adding security to routing protocols.
Here, SRAC is compared to AODV because the implementation
of SRAC is based on AODV. In the simulations, the parameters
are given in Table II. A malicious node randomly drops data
packets and can be detected during topology discovery. The
dropping ratio is in the range of 20%–50%. Each simulation
is run for 700 s to collect the performance data.

Fig. 2 shows the total throughput of SRAC and AODV in
the presence of FIVE malicious nodes out of 50. The number
of malicious nodes is so low that AODV continues delivering
packets, although with a less amount than SRAC. This is due to
the fact that packet dropping is not serious, and there are enough
uncompromised nodes available to establish routes between
SD pairs.

However, if the number of malicious nodes increases from
five to 10, and to 20, as shown in Figs. 3 and 4, the number
of packets delivered by AODV drastically decreases, whereas
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Fig. 3. Total throughput in the presence of ten malicious nodes.

Fig. 4. Total throughput in the presence of 20 malicious nodes.

SRAC still delivers almost the same amount of data as in
the previous case. The reason is that most of the routes in
AODV have to go through some malicious nodes and thus result
in a high packet drop or low PDR. Eventually, AODV stops
delivering packets at t = 550 and 500 s in the presence of 20%
and 40% malicious nodes, respectively. Due to the packet drop,
a connection will be timed out, and a new route discovery will
be reinitiated. However, with a high probability, the new routes
may again contain some malicious nodes and thus result in high
data loss. On the other hand, SRAC tries to discover the paths
that can go around malicious nodes. Even when the number
of malicious nodes is relatively high, SRAC still discovers
trustworthy routes and thus assures successful packet delivery.

Fig. 5 shows the total overhead of SRAC and AODV. It can be
seen that SRAC always has a smaller overhead than AODV in
the presence of different numbers of malicious nodes. The rea-
son is that SRAC can detect malicious nodes and thus exclude
them from routing. For AODV, if a node on an established route
becomes malicious and starts dropping packets, the source that
waits for the acknowledgment (ACK) eventually times out. A
new route discovery is initiated to reestablish the route. As the

Fig. 5. Total overheard of SRAC and AODV in the presence of different
numbers of malicious nodes.

Fig. 6. Packet delivery ratio of SRAC and AODV at different speeds.

number of malicious nodes increases, AODV tends to wait and
time out more often, thus delivering increasingly fewer routing
and data packets. Therefore, the total overhead is reduced. For
SRAC, since the behavior of neighboring nodes is monitored,
the malicious nodes are detected and excluded from routing. As
the number of nodes that join routing becomes fewer, the total
overhead is reduced to a larger extent than that of AODV.

In our second scenario, it is assumed that 50% of the nodes
are malicious. The parameters are shown in Table II, except that
the number of nodes is 100, and the traffic is the constant bit
rate with pattern in Table I. A malicious node randomly drops
both routing and data packets with a dropping ratio of 80%. The
maximum nodal speed varies between 1.25 and 10 m/s.

Fig. 6 shows the PDR of SRAC at different speeds as com-
pared to AODV. It can be seen that SRAC always outperforms
AODV in PDR, because SRAC always chooses more reliable
routes by avoiding malicious nodes. At low levels of mobility,
as the maximum speed increases from 1.25 to 2.5 m/s, although
the increased link breakage may reduce the PDR, the SD pairs
are more likely to find available nodes to forward the packets.
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Fig. 7. Packet latency of SRAC and AODV at different speeds.

At high levels of mobility, as the maximum speed increases
from 2.5 and 10 m/s, the link breakage becomes the major
cause that reduces the PDR. The SD pairs do not have adequate
time to find alternative routes due to a fixed route request timer.
Therefore, the PDR decreases as the maximum speed increases.

Fig. 7 shows the packet latency of SRAC at different speeds
as compared with AODV. For both SRAC and AODV, as the
speed increases, the information on a route in the routing table
will quickly be out of date. Thus, both take more time to
establish routes. However, SRAC always has a lower packet
latency than AODV. One reason is the use of multipath routing
in SRAC. For AODV, its routing table only stores one path.
It has to reestablish another route once a link is broken. For
SRAC, its routing table contains multiple paths. If one fails,
an alternate one will immediately be available. Another major
reason is that the packet performance and route reliability are
both considered in the routing metric, as defined in (15).

In our third scenario, SRAC is compared to Ariadne, which
is also an on-demand secure routing protocol targeted for
MANETs in adversarial environments. The performances of
SRAC are evaluated with the parameters in Table I and com-
pared to those of Ariadne reported in [9] at different levels of
mobility. Note that a smaller pause time means a higher level of
mobility and vice versa.

Fig. 8 shows the PDRs of both SRAC and Ariadne with
different pause times. It can be seen that at low to medium
levels of mobility, the PDRs of both protocols are almost the
same. While at medium to high levels of mobility, SRAC has a
higher PDR than Ariadne. At low levels of mobility, the impact
of adding time to process security is not significant; thus, SRAC
and Ariadne have similar PDRs, as in AODV and DSR. Note
that SRAC is based on AODV, whereas Ariadne is based on
DSR. At high levels of mobility, the performance difference
in PDR is mainly due to the addition of security mechanisms.
When the speed is high, links are more likely to be broken, and
thus, more RERR packets need to be handled. In SRAC, the
impact on a routing packet is adding an extra packet processing
time, e.g., Tn = 16.38 ms. In Ariadne, the security mechanism
using TESLA requires that a message cannot be verified until

Fig. 8. Packet delivery ratio of SRAC and Ariadne at different pause times.

Fig. 9. Packet latency of SRAC and Ariadne at different pause times.

the TESLA key is disclosed, i.e., the TESLA time interval
(TTI). For example, for TTI = 1 s as in Ariadne, if a sender
receives an RERR packet caused by a broken link, it continues
to send packets along the broken route until the RERR packet
is verified by using a newly released hash key, which is about
half of TTI, i.e., 0.5 s. SRAC does not have such a delay and
thus delivers more packets to the destination, i.e., it has a higher
PDR than Ariadne.

Similarly, SRAC consistently has a lower packet latency than
Ariadne, as shown in Fig. 9. In addition to the above half TTI
delay, another reason is that SRAC uses a routing metric that
contains the trustworthiness and performance metrics of the
nodes along a route. Without this routing metric, some stale
and unreliable route may be selected, which has a short lifetime.
Therefore, a new route needs to be discovered, which increase
not only the total overhead but also the packet latency.

C. Security Analysis

In this section, we analyze the security of SRAC in the
presence of different attacks. We also compare it to Ariadne
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and ARAN because most of the attacks there can be defended
by SRAC.

Byzantine Attacks: In SRAC, a node receives multiple copies
of the same message, which are forwarded by different nodes
over different routes and protected by different keys at different
segments on a route. The node can find discrepancies by
comparing these copies. If some of the nodes that forward the
message are more trustworthier than others, it can immediately
claim those that do not forward a message correctly as colluding
nodes [30].

On the other hand, Ariadne and ARAN are not designed for
this type of adversarial environment. For example, as shown
in Fig. 1, node x is next to the destination w. It attaches
its own certificate to a message and forwards the message to
z via y. If x pretends to be the destination and y does not
report the violation, i.e., they are colluding, then z will not find
out the truth. The reason is that there is no other reference in
Ariadne and ARAN that can be used to compare and validate
the correctness of a message.

Unauthorized Participation: In SRAC, all the packets are
encrypted with either an asymmetric or shared key. Only au-
thorized nodes have the asymmetric key and use the key to get
the shared key with each other. Only authorized nodes have
both keys. Thus, unauthorized nodes are prohibited to join a
route.

Spoofed Route Signaling: Route discovery packets are en-
crypted by a source and destination using either an asymmetric
or shared key. Only the source and destination have the right
keys to decrypt them. Thus, the impersonation attacks are
completely prevented.

Fabricated Routing Messages: In SRAC, each routing mes-
sage is verified at an intermediate node. The message reaches
the destination through multiple paths. By using message and
route redundancy, an intermediate node will be detected if
the message is modified. Later, a lower trustworthiness value
will be given to that node. When the trust value of the node
is below a threshold, the node will be labeled and removed
from the routing table. Therefore, the fabrication of routing
messages can be prevented. Note that ARAN does not have the
mechanism to prevent such attacks.

Securing Shortest Paths: In SRAC, multiple paths are built
from a source to a destination during route discovery. The
destination can choose a path with minimum cost to send back
a reply, which can be the most trusted or shortest path with
minimum delay, the shortest path with minimum hopcounts,
or a combined cost, as in (15). Whereas ARAN may choose
a path as the shortest path on which an RREQ packet arrives
at the destination first. Note that the total time of the RREQ
experience consists of two parts: 1) the queueing, processing,
and propagation delay and 2) the security processing time on
the packet. In some cases, the second part can be much longer
than the first. Thus, ARAN may actually choose a longer path.

Key Distribution Attack: In SRAC, if node x creates a shared
key kx,y with node y and distributes it to y, it uses y’s public
key (e.g., Ky,pub) to encrypt kx,y . By doing this, only y has
a corresponding private key, e.g., Ky,pri, to retrieve the key.
Therefore, it is completely avoided for the key distribution to
be compromised on the fly.

VI. CONCLUSION

This paper has proposed an attack detection and defense
mechanism by using both the route redundancy in ad hoc
networks and the message redundancy in topology discovery
of the routing protocols. This paper also develops an optimal
routing algorithm by combining both trustworthiness and per-
formance. To our knowledge, this is the first secure routing
that quantitatively considers not only the detection of difficult
internal attacks but the network performance as well.

The simulation results have demonstrated the effectiveness
of the proposed attack detection algorithm and optimal routing
protocol, and superiority over such known protocols as AODV
and Ariadne. The proposed attack detection and routing al-
gorithms can be integrated into existing routing protocols for
MANETs, such as AODV and DSR.

In this and other secure routing protocols, the computational
burden at each node is still a major issue in deployment. It
requires both analytical investigations and engineering consid-
erations. For example, how many neighbors should a node have
without degrading network performance and security? How
many copies should a node receive before sending back an
acknowledgement? Currently, SRAC considers the link perfor-
mance as a routing metric. Considering the mobility in SRAC
is expected to increase the prediction accuracy and thus reduce
the link breakage rate during deployment. All these problems
will further be investigated in future work.
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